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Strong periodic stimuli such as bright flashing lights evoke nonlinear responses in the brain and interact
nonlinearly with ongoing cortical activity, but the underlying mechanisms for these phenomena are poorly
understood at present. The dominant features of these experimentally observed dynamics are reproduced
by the dynamics of a quantitative neural field model subject to periodic drive. Model power spectra over a
range of drive frequencies show agreement with multiple features of experimental measurements, exhibiting
nonlinear effects including entrainment over a range of frequencies around the natural alpha frequency fα,
subharmonic entrainment near 2fα, and harmonic generation. Further analysis of the driven dynamics as a
function of the drive parameters reveals rich nonlinear dynamics that is predicted to be observable in future
experiments at high drive amplitude, including period doubling, bistable phase-locking, hysteresis, wave
mixing, and chaos indicated by positive Lyapunov exponents. Moreover, photosensitive seizures are
predicted for physiologically realistic model parameters yielding bistability between healthy and seizure dy-
namics. These results demonstrate the applicability of neural field models to the new regime of periodically
driven nonlinear dynamics, enabling interpretation of experimental data in terms of specific generating
mechanisms and providing new tests of the theory.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Periodic flashing light, also termed flicker or photic driving, evokes
responses in the electroencephalogram (EEG) that have been studied
since the 1930s. Despite being widely used to probe visual function
and perception (Müller et al., 2006; Nunez, 1995; Regan, 1989), the un-
derlying neurophysiological mechanisms of these responses remain
poorly understood. Early studies identified a clear nonlinear contribu-
tion to the driven cortical dynamics (van der Tweel and Spekreijse,
1969; van der Tweel and Verduyn Lunel, 1965). Nonlinearity in large-
scale brain activity has seen considerable recent interest (Stam, 2005),
particularly in healthy resting state activity (Freyer et al., 2009, 2011;
Stam et al., 1999), epileptic seizures (Breakspear et al., 2006; Lehnertz
and Elger, 1998; Robinson et al., 2002;Wendling et al., 2000), and func-
tional neuroimaging (Stephan et al., 2008a). Notable nonlinear features
in the EEG response to flicker include entrainment and frequency
mixing (Herrmann, 2001; Rager and Singer, 1998; Regan, 1989;
Townsend et al., 1975), both of which involve interactions between
stimuli and ongoing activity and are thus of central importance to un-
derstanding brain function (Engel et al., 2001).
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Periodic stimuli can also provoke epileptic seizures (Parra et al.,
2005), particularly for driving frequencies near the natural alpha
rhythm fα(≈10 Hz in adult humans), the most prominent feature of
healthy resting EEG (Nunez, 1995). The mechanisms of these seizures
are not well understood, nor is there a clear relation to the brain's re-
sponse in cases when the stimuli do not cause seizure. Thus there is a
need for modeling to unify these nonlinear phenomena within a sin-
gle framework.

Studies of the nonlinearmechanisms responsible for flicker-induced
EEG signals have primarily taken a signal analysis approach (Kelly,
1981; Liu et al., 2010; Regan, 1989; van der Tweel and Spekreijse,
1969; van der Tweel and Verduyn Lunel, 1965), modeling time series
data as arising from abstract filters. Although successful in describing
input–output relationships, such models are difficult to generalize to
other phenomena; it is preferable to have a single systematic theory. In-
deed there is a strong need in neuroscience to move beyond models of
time series to models of the underlying brain structures and connectiv-
ity, fromwhich the observed dynamics emerge (Breakspear et al., 2010;
Stephan et al., 2008b). Such modeling is now possible given recent de-
velopments in neural field theory (Coombes, 2010; Deco et al., 2008),
particularly as it relates to the corticothalamic system (Robinson et al.,
1997, 2002, 2004).

Neural field models describe the aggregate activity of populations of
neurons and are thus especially appropriate for describing large-scale
brain dynamics. Building on early work (Amari, 1975; Ermentrout and
Cowan, 1979; Freeman, 1975; Lopes da Silva et al., 1974; Nunez, 1974;
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Fig. 1. Spectral response for fD=1–50 Hz. Responses to the Nth harmonic of fD are la-
beled N:1; subharmonic entrainment is labeled 1:2. Darker shading denotes higher
power, and spectra have been multiplied by f to enhance power at high frequencies
as in the original Fig. 5 of Herrmann (2001). (a) Adult human EEG. Figure adapted
from Fig. 5 of Herrmann (2001) after cropping, changing aspect ratio to 1:1, and put-
ting independent variable on the horizontal axis. (b) Model with (νee,νei,νes,νse,νsr,
νsn,νre,νrs)=(1.7, −2.8, 0.19, 0.84, −0.62, 1.0, 0.28, 3.0) mV s, (α,β,αsr,βsr)=(80, 800,
10, 60)s−1, bϕn

0>=18 s−1, σn=1 s−1, Φn=2 s−1; other parameters as in Breakspear
et al. (2006). Spectra are smoothed with a 0.4 Hz moving window to display sharp
peaks more clearly.
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Wilson and Cowan, 1973), neural field models (Baker and Cowan, 2009;
Bressloff et al., 2002; Coombes, 2005; Hutt and Atay, 2005; Jirsa, 2009;
Jirsa and Haken, 1996; Pinotsis and Friston, 2011; Pinotsis et al., 2012;
Robinson et al., 1997; Taylor and Baier, 2011; Wright and Liley, 1996)
and their limiting case of neural mass models (Cosandier-Rimélé et al.,
2008; David and Friston, 2003; David et al., 2006; Goodfellow et al.,
2011; Jansen and Rit, 1995; Lopes da Silva et al., 2003; Moran et al.,
2009; Wendling et al., 2000) have successfully described a broad range
of healthy and pathological brain dynamics at the spatial and temporal
scales probed by EEGs andmagnetoencephalograms. Neural fieldmodels
havebeennotably successful in describing spatiotemporal dynamics in vi-
sual cortex (Baker and Cowan, 2009; Bressloff et al., 2002; Coombes,
2005; Ermentrout and Cowan, 1979), in particular explaining pattern for-
mation during hallucinations. Visual evoked responses to individually-
flashed stimuli have also been studied using neural mass models (David
et al., 2006; Jansen and Rit, 1995), and (Spiegler et al., 2011) very recently
applied the (Jansen and Rit, 1995)model to study entrainment and other
nonlinear features of photic-driven activity. Both classes of model have
explained a range of seizure phenomena, relating this pathological activ-
ity to healthy dynamics generated by the samemodels (Breakspear et al.,
2006; Cosandier-Rimélé et al., 2008; Goodfellow et al., 2011; Kim et al.,
2009; Lopes da Silva et al., 2003; Nevado-Holgado et al., 2012; Roberts
and Robinson, 2008; Robinson et al., 2002; Taylor and Baier, 2011;
Wendling et al., 2000).

In this paper we explain experimentally-observed nonlinear inter-
actions between brain activity and flicker by incorporating periodic
driving into a corticothalamic model (Roberts, 2010; Robinson et al.,
1997, 2002). The results reproduce multiple features of published
data and constrain the physiologically allowable states. We further
predict various other nonlinear phenomena whose existence can be
tested in future experiments, including period doubling, bistable
phase-locking, hysteresis, wave–wave interactions, and chaos, and
show how to treat entrainment and seizures in the same framework.
This extends neural field modeling into a new regime and enables
new experimental tests of the theory.

We focus on EEG responses to sinusoidally modulated light, which
are termed steady-state visual evoked potentials (SSVEPs) (Nunez,
1995; Regan, 1989), but our approach is general and could be applied
to any periodic stimulus. The SSVEP is dominated by synchronous corti-
cal activity concentrated at the drive frequency fD and its harmonics. Ex-
periments have measured the response over a wide range of fD in cats
(Rager and Singer, 1998) and humans (Herrmann, 2001), showing
clear spectral peaks, as seen in Fig. 1(a) for spatially uniform square
wave modulated stimuli. Here, as in the original figure in Herrmann
(2001), the spectrum for each fD is multiplied by f to enhance peaks at
higher frequencies, and the peaks appear as discrete dots due to being
sampled on a coarse grid. These peaks involve both responses at fD
(which can be linear or nonlinear) and inherently nonlinear effects.

The clearest nonlinear effect is the generation of N:1 harmonics
(N response oscillations phase-locked to each drive oscillation).
Since the square wave input signal used here contains only odd har-
monics, the even harmonics in the output (in particular the prominent
2:1 harmonic) must be generated nonlinearly; power at the odd har-
monic frequencies likely contains both linear and nonlinear compo-
nents. The position of this nonlinearity in the visual pathway is not
yet well established, and could involve effects in retinal, thalamic,
and/or cortical neuronal populations.

Suppression of background alpha activity over a range of fD is another
significant nonlinear effect seen in Fig. 1(a), where the dominant re-
sponse tracks fD or fD/2, while the dominant frequency is unchanged out-
side this range. (These oscillations are network-level collective modes,
whose frequencies are not individual neural firing rates in general.) This
is an example of entrainment, characterized by a reduction of ongoing ac-
tivity in favor of activity phase-locked to the drive, at frequencies harmon-
ically related to the drive frequency. Fig. 1(a) thus shows entrainment to
fD (1:1 phase locking) and subharmonic entrainment to fD/2 (1:2 locking).
Quantitative modeling, such as that used in the present work, will be
critical in analyzing the data to distinguish between the above possibili-
ties. In this context, it is particularly important to use establishedmodels,
rather than introducing a new one ad hoc for each new experiment.
Established models enable new phenomena to be incorporated into
wider, unified frameworks, thereby relating them to other measures
and situations, and permitting parameters to be constrained a priori, rath-
er than being treated as free. The wide use of the Hodgkin–Huxleymodel
is perhaps the best known example of this approach in neuroscience.

This paper is organized as follows. The Methods section outlines the
nonlinear corticothalamic model. In the Results section the periodically
driven dynamics of this model system are shown to reproduce the main
features of the experimental SSVEP spectra in Fig. 1(a) as well as
predicting rich nonlinear dynamics whose existence and properties can
be explored in future experiments.

Methods

The Corticothalamic model section presents the nonlinear cor-
ticothalamic model, the dynamics of which will be analyzed using
the time series methods described in the Time series analysis section.
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Corticothalamic model

Neural field theories have successfully reproduced many aspects of
the dynamics of populations of neurons by averaging over small spatial
and temporal scales to give a description at scales≳0.1 mm; seeDeco et
al. (2008) for a recent review. We use a recent corticothalamic model
(Breakspear et al., 2006; Robinson et al., 1997, 2002, 2004) to analyze
nonlinear SSVEPs (Roberts, 2010; Robinson et al., 2002, 2008). We fol-
low the exposition and notation of Robinson et al. (2002) here, except
where otherwise noted. The neuronal populations included are (see
Fig. 2) excitatory (e) and inhibitory (i) cortical neurons, and the specific
relay (s) and reticular (r) thalamic neurons. The relay in the visual sys-
tem is the lateral geniculate nucleus, which has reciprocal connections
with both the cortex and the reticular nucleus as shown in Fig. 2
(Sherman and Guillery, 1996; Steriade et al., 1997). External input
from the brainstem and sensory systems (n) drives the system via s. Un-
structured stimuli presented to the entire visual field drive a large area
of cortex, so we concentrate on spatially uniform activity.

A nonlinear sigmoidal function S(Va), given by (Freeman, 1975;
Wilson and Cowan, 1973)

S Vað Þ ¼ Q max

1þ exp − Va−θð Þ=σ ′
� � ; ð1Þ

relates the mean firing rate Qa=S(Va) of each neuronal population a
to its mean cell body potential Va (relative to resting), where Qmax is
the maximum firing rate, θ is the mean threshold voltage andσ ′π=

ffiffiffi
3

p

is its population standard deviation. Here Va=∑bVab, with

DabVab r; tð Þ ¼ νabϕb r; t−τabð Þ; ð2Þ

Dab ¼ 1
αabβab

d2

dt2
þ 1

αab
þ 1
βab

� �
d
dt

þ 1; ð3Þ

where Vab is the contribution due to input ϕb from neurons in popu-
lation b arriving after mean axonal delay τab, Dab gives the soma po-
tential response allowing for synaptodendritic dynamics and soma
capacitance, connection strength νab=Nabsab, Nab is the mean num-
ber of synapses per neuron of type a from neurons of type b, sab is
the strength of response to a unit input from neurons of type b, and
αab and βab are the inverse decay and rise times of the soma response
to input b, respectively. For the system in Fig. 2, the only nonzero de-
lays τab are τes= τis= τse= τre= t0/2 where t0 is the total cor-
ticothalamic loop delay.

Average afferent firing rates ϕa propagate as fields in the continu-
um limit, approximately governed by a damped wave equation with
source Qa (Jirsa and Haken, 1996; Nunez, 1995; Robinson et al.,
1997), giving

1
γ2
a

∂2

∂t2
þ 2
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Fig. 2. Connectivities of cortical (excitatory e, inhibitory i) and thalamic (relay s, retic-
ular r) neural populations; arrowheads ab denote where fields ϕb project, with connec-
tion strength νab for input to a from b; ϕn denotes sensory input.
where γa=va/ra, va is the axonal conduction speed, and ra is the char-
acteristic axon length. We assume that the activity is spatially uni-
form over the cortical area of interest, consistent with a large-scale
mode driven by flicker stimuli; thus the∇ 2 term is zero and for nota-
tional simplicity we omit the r argument hereafter. We set γa=∞ for
a= i, r,s owing to the short ranges of these axons (Robinson et al.,
2002). We retain long-range excitatory intracortical connectivity via
nonzero re and finite γe. Note that, although we neglect position de-
pendence of activity, we have not reduced our model to a neural
mass model, since this would also require shrinking the cortical man-
ifold to be zero-dimensional by setting re=0 and γe=∞.

We assume random intracortical connectivity,which impliesνib=νeb
for b=e, i,s and hence Vi=Ve, as derived in detail previously (Robinson
et al., 1998). The inhibitory population is modeled explicitly (νei, νii, νie,
andνis are all nonzero); randomconnectivity implies that itsmean-field
dynamics are closely related to (but not identical to) those of the excit-
atory population with which it is spatially commingled (the excitatory
neurons project much further, giving rise to the parameter γe). For sim-
plicity we assume that all the synaptodendritic time constants are equal
except for the inhibitory intrathalamic sr connection, which ismediated
by GABAB dynamics slower than the other channels (Steriade et al.,
1997). Hence we set αab=α, βab=β, Dab=Dα for all ab except for the
sr connection; α and β are thus to be interpreted as effective values.
We do not explicitly model the bursting mode of thalamic neurons,
which tends to only be relevant to frequencies lower than those typical-
ly observed in SSVEPs (Steriade et al., 1997).

We set parameters at or near previously published values (see figure
captions) (Breakspear et al., 2006), which enables unification of the
findings here with those of previous studies. Here the parameters
place the system near a stability boundary associated with the
intrathalamic loop (Robinson et al., 2002). All model parameters corre-
spond to physiological quantities and have been rigorously constrained
across numerous independent experimental measures (Robinson et al.,
2004).

Thus for the connectivity in Fig. 2 and the above assumptions, the
model equations are

1
γ2
e

d2

dt2
þ 2
γe

d
dt

þ 1

" #
ϕe tð Þ ¼ S Ve tð Þ½ �; ð5Þ

DαVe tð Þ ¼ νeeϕe tð Þ þ νeiϕi tð Þ þ νesϕs t−t0=2ð Þ; ð6Þ

DαVr tð Þ ¼ νreϕe t−t0=2ð Þ þ νrsϕs; ð7Þ

Vs tð Þ ¼ Vse tð Þ þ Vsr tð Þ þ Vsn tð Þ; ð8Þ

DαVse tð Þ ¼ νseϕe t−t0=2ð Þ; ð9Þ

DsrVsr tð Þ ¼ νsrϕr tð Þ; ð10Þ

DαVsn tð Þ ¼ νsnϕn tð Þ; ð11Þ

with ϕb(t)=S[Vb(t)] for b= i, r,s.
External stimuli ϕn drive the brain via the relay nuclei. Resting EEG

spectra are successfully generated when driving the model with
white noise (Robinson et al., 1997, 2001a, 2001b, 2002, 2004),
which assumes that the collective input from all sensory pathways
is so complex that it does not favor any particular frequency in the
range of interest (Engel et al., 2001; Lopes da Silva et al., 1974;
Stam et al., 1999). Impulsive stimuli yield evoked response potentials
(Kerr et al., 2008; Robinson et al., 2001a, 2004). Sinusoidally modulat-
ed flicker stimuli generate SSVEPs (Robinson et al., 2002, 2008) and in
the linear regime the model yields cortical phase velocities for SSVEPs
consistent with experiment (Robinson et al., 2008). Here we concen-
trate on the nonlinear regime, where the drive is strong.

image of Fig.�2
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To study interaction between flicker and background activity we
model ϕn as

ϕn tð Þ ¼ ϕnoise
n tð Þ þ ϕD

n tð Þ; ð12Þ

where ϕn
noise is Gaussian white noise with mean ϕn

(0) and standard de-
viation σn, and ϕn

D is a periodic drive with zero mean. We use two
forms for ϕn

D in the Results section. For comparison with Fig. 1(a)
we use a square wave drive given by

ϕD
n tð Þ ¼ Φn sgn cos 2πf Dtð Þ½ �; ð13Þ

where Φn is the drive amplitude and sgn indicates the sign function.
This square wave consists of a sum of sinusoids, such that the drive
contains power at all odd multiples of fD; system responses at even
multiples are necessarily nonlinear. To study the simpler case of a sin-
gle sinusoid we use the form

ϕD
n tð Þ ¼ Φn cos 2πf Dtð Þ; ð14Þ

for which all higher harmonics in the model output are necessarily
generated nonlinearly.

Our use of the square wave drive Eq. (13) matches the photic
drive used in Herrmann (2001), but neglects possible nonlinearities
in the retina that might have modified the latter drive before it ar-
rived at the corticothalamic system. We thus use a square wave so
as to introduce the fewest additional assumptions, but note that it
would be straightforward to implement other more complicated
forms for the input. For example, the model could be explicitly
coupled to models of retinal dynamics, which would enable it to
compare and evaluate putative nonlinearities in the earliest parts
of the visual stream. However, these topics are beyond the scope of
this paper.

To solve the model equations numerically we use a standard ex-
plicit forward step integration scheme with a timestep of 0.1 ms
(Press et al., 1992), of the type used by Robinson et al. (2002), for ex-
ample. We have checked that the results are numerically stable and
that the timestep is sufficiently short that they do not change signif-
icantly when it is further reduced.

Time series analysis

To characterize the frequency content of the model's response to a
range of stimulus parameters, we calculate power spectra from model
time series. We estimate spectra from windowed Fourier transforms
via Welch's method (as implemented in MATLAB R2008b), using 10 s
windows overlapping by 50%. To display sharp peaks more clearly, we
additionally smooth spectra with a 0.4 Hz moving window.

To elucidate the role of nonlinear frequency coupling in generating
peaks in the model EEG spectra we calculate bicoherence from model
time series (Kim and Powers, 1979). Bicoherence is a nonlinear coher-
encemeasure that is sensitive to phase locking between Fourier compo-
nents at different frequencies, and is derived from the bispectrum, a
higher-order spectrum that generalizes the usual power spectrum
(Kim and Powers, 1979). The bicoherence b2(ω1,ω2) between frequen-
ciesω1 and ω2 of a signal with Fourier transform X(ω) is given by (Kim
and Powers, 1979)

b2 ω1;ω2ð Þ ¼ X ω1ð ÞX ω2ð ÞX� ω1 þω2ð Þj j2
X ω1ð ÞX ω2ð Þj j2 X ω1 þω2ð Þj j2 ; ð15Þ

where X* is the complex conjugate of X. We estimate the X(ω) terms by
averaging FFTs of windowed time series (16384-point Hanning win-
dow, mean subtracted from each).

To characterize nonlinear dynamics at large drive amplitudes we
estimate the largest Lyapunov exponent (LLE) (Parlitz, 1998) from
model time series using the software package OpenTSTOOL v1.2
(Merkwirth et al., 2009). A positive LLE implies that nearby trajecto-
ries diverge exponentially and is indicative of chaos; periodic orbits
have an LLE of zero. We use the method of time-delay embedding
on long (80 s) time series for ϕe sampled at 1000 Hz, with the mini-
mum embedding dimension chosen using the method of Cao (1997)
with three nearest neighbors and 1000 reference points, and the
delay chosen using the first minimum of the auto-mutual information
function (see OpenTSTOOL documentation for further details). A ben-
efit of using this method for LLE estimation is that it is also applicable
to experimental time series (i.e., does not require access to the full
underlying dynamical system).

To analyze phase-locking regimes as a function of drive amplitude
and frequency, we calculate for each point in parameter space the
ratio of the drive's period to that of time series simulated in the ab-
sence of noise. We use the sequence of turning points in ϕe to calcu-
late both the time series period (thus identifying 1:N phase-locking
regimes) and the number of oscillations per period (identifying N:1
regimes, where the drive and ϕe have the same period).

Results

We begin in the Results section by driving the system with a
square wave photic input to compare the model output to the data
of Herrmann (2001) in Fig. 1(a). We analyze the driven dynamics in
more detail using sinusoidal input in the Sinusoidal drive section.

Square wave drive

Fig. 1(b) shows the model response spectrum vs. fD for a square
wave drive given by Eq. (13), with each spectrum multiplied by f for
comparisonwith Fig. 1(a). Key features are peaks at fD (1:1) and its har-
monics (N:1), in good agreementwith Fig. 1(a) (Herrmann, 2001; Rager
and Singer, 1998). Most significantly, entrainment to fD is evidenced by
suppression of the background alpha activity fα≈11 Hz in favor of fD for
fD≲15 Hz, consistent with Fig. 1(a) where no strong alpha peaks are
seen off the 1:1 diagonal. The alpha peak is suppressed without any
changes to cortical or thalamic parameters; only the drive frequency
changes. Further striking agreement is shown by 1:2 subharmonic en-
trainment for fD≈15–24 Hz, where peaks follow f= fD/2. Suppression
of background activity is necessarily nonlinear; in the linear regime
the drive and background superpose without interacting. The suppres-
sion observed experimentally cannot be attributed to averaging over
trials, or else the alpha peak would not be observed for any fixed drive
frequency contradicting Fig. 1(a). The extent towhich the alpha activity
is suppressed by the drive in the experimental data is not as clear as in
the model; peaks in Fig. 1(b) are narrower than in Fig. 1(a) due to the
FFT used here yielding better resolution than the autoregressive spec-
trum in Fig. 1(a). The experimental data also appears “lumpier” than
the model data due to being sampled on only a coarse grid of frequen-
cies; similarly coarse sampling in the model would yield an even more
similar appearance. Additional responses in the model at f=3fD/2 and
f=5fD/2 are not seen in Fig. 1(a), likely due to Fig. 1(a) being an average
over ten subjects, thus further blurring peaks via variability between
subjects.

Sinusoidal drive

In this subsection we drive the system with a single sinusoid to
avoid ambiguity between spectral peaks that would be present in a
nonsinusoidal drive and peaks generated by nonlinear processes.
Fig. 3(a) shows that a sinusoidal drive given by Eq. (14) reproduces
the main features of the EEG response to a square wave drive, demon-
strating that entrainment and harmonic generation are not specific to
square wave input. Here and in Fig. 3(b) additional features are re-
vealed by plotting a wider dynamic range than in Fig. 1(a) (here we
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also show the actual spectrum without multiplication by f). The
model parameters here are modified slightly from those in Fig. 1(b)
to better maintain the resemblance to key features of the data, such
as widths of entrainment regimes. This parameter adjustment is
needed because removing harmonics from the drive in going from
square to sine wave reduces power at higher frequencies. This mod-
ifies the EEG spectra (such as by changing the mix of subharmonics
generated), which can be approximately compensated for by small
adjustment of model parameters. We stress that this step is carried
Fig. 3. Model results for (νee,νei,νes,νse,νsr,νsn,νre,νrs)=(1.3, −2.9, 0.13, 2.9, −0.57, 1.0, 0.
fD=0–50 Hz, labeled as in Fig. 1(b) but with grayscale range extended to show lower-level
text. (c) Bicoherence for SSVEP at fD=30 Hz and parameters of (a). (d) Turning points (afte
and red points show bistable solutions obtained by continuation up and down in Φn, respecti
for noise-free driven system initially at a stable fixed point for parameters of (a). (f) Largest Ly
in (d). Dark points in (a)–(c) correspond to high values.
out solely to probe the underlying mechanisms with more clarity
and does not affect the level of agreement between the square-
wave case and experiment found in the Square wave drive section.

Entrainment of the alpha frequency to 2fD occurs over a narrow
range where 2fD≈ fα; just above this drive frequency there is an en-
hancement where the background activity is shifted slightly down-
wards. Sum and difference frequencies f±=|fD± fα| are generated
by nonlinear interactions (other than entrainment) between the
drive and background activity. This phenomenon is well-known as
67, 2.9) mV s, Φn=2.8 s−1, other parameters as in Fig. 1(b). (a) Spectral response for
peaks, and without multiplying by f. (b) Detail of (a); Features A–C are discussed in the
r transients) of noise-free time series vs. Φn for fD=20 Hz and parameters of (a). Green
vely; yellow shows where red would otherwise overplot green. (e) Phase-locking zones
apunov exponent (LLE) vs. Φn for time series corresponding to the forward continuation
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mixing in nonlinear wave physics (Robinson et al., 2001a; Whitham,
1974), and is seen in SSVEP studies using two stimulus frequencies
(Regan, 1989). To briefly illustrate how mixing occurs in a general
setting, consider a signal y(t)=sin(ω1t)+sin(ω2t) comprising two
sinusoids with frequencies ω1 and ω2. If this signal is passed through
a quadratic nonlinearity (i.e., is squared), the resulting signal (after
using trigonometric identities) is y2(t)=1−cos(2ω1t)/2−cos(2ω2t)/
2+cos[(ω1−ω2)t]−cos[(ω1+ω2)t], and thus contains second har-
monics 2ω1 and 2ω2, and sum and difference frequencies ω1+ω2 and
ω1−ω2, respectively. To have high power at frequencies f± requires a
sharp alpha peak, so they are not observed in Fig. 1(a) [except possibly
near (0,10)Hz], where the alpha peak is broader and intersubject vari-
ability tends to obscure this feature in the group average. Bicoherence
(Kim and Powers, 1979) is shown in Fig. 3(c) for fD=30 Hz. Clear
peaks at (f1, f2)=(fD, fα) signify high phase coherence between fD, fα,
and fD+ fα. Peaks around (fD, fD), (fD,0), and (0, fD) show phase coher-
ence between fD and fD± fD (2:1 harmonic generation; phase coherence
with f1,2=0 represents the limiting case as f1,2→0). Enhancement is
also seen on diagonals where f1+ f2= fD,2fD,3fD, showing coupling be-
tween frequencies that sum to fD, 2fD, and 3fD.

Entrainment involves more than just suppression of background
peaks: enhancements A, B, and C in Fig. 3(b) are precursors to phase-
locked regions entered by increasing the amplitude Φn, as is explored
further in Fig. 4. Enhancement A is an incipient 1:4 subharmonic; a
small further increase in Φn is sufficient to enter this regime, yielding
high power at f= fD/4, as seen by comparing Figs. 4(c) and (d). Both B
and C have two branches (those at B roughly have a forked shape on
the end of the 1:2 line, but are blurred together here into a broad
peak), and at each fD the sum of their (mean) frequencies equals that
of the sharp peak immediately above in f (i.e., the frequencies sum to
fD at B and to fD/2 at C). Under changes in Φn the branches at B always
meet at the left endpoint of the subharmonic regime, shifting the back-
ground activity away from fD. This is seen more clearly by comparing
Figs. 4(a)–(c), where increasing Φn leads to competition between the
linear purely noise-driven fα resonance and a new resonance near
onset of 1:2 entrainment. Such competition can result in incomplete en-
trainment, where background activity is shifted in frequency to yield an
enhancement at a new frequency different from fD; periodic pulling
(Klinger et al., 1995) is a similar phenomenon seen in plasma physics.
The noise-driven spectrumof the forced system results from interaction
between background resonances (set by system parameters) and reso-
nances due to the drive (set by both system and drive parameters).

The system undergoes period doubling bifurcations as Φn is in-
creased for fixed fD in intervals around f≈ fα,2fα,…. Fig. 3(d) shows
turning points (after transients) of sinusoidally driven time series at
fD=20 Hz vs. Φn in the absence of noise (i.e., σn=0). We stress that
this analysis is of the interaction between the system and the periodic
drive, not of the various frequency interactions possible with noise
input that are better probed by spectra. For small Φn the peak-to-peak
amplitude (the maximum minus minimum shown) depends linearly
on Φn; at larger Φn the solution jumps to the period doubled branch
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Fig. 4. Spectra vs. fD for increasing drive amplitude Φn with other parameters as in Fig. 3(a
sponds to high values.
(subharmonic entrainment). Successive period doubling with increas-
ingΦn leads to aperiodic dynamics; further increases yield periodic so-
lutions again. The LLE is positive for drive amplitudes in the range
Φn≈5–9 s−1 (apart from narrow periodic windows), as shown in
Fig. 3(f), indicating that the dynamics are chaotic. Since the LLE can be
estimated from time series without needing access to the full set of un-
derlying dynamical variables, this model prediction should be testable
using experimental EEG time series.

Another key feature is the existence of bistability between 1:1 and
1:2 entrainment, shown by coexistence of green and red points around
Φn≈1 s−1. Thus both 1:1 and 1:2 entrainments (the latter always ex-
hibits 1:1 activity concurrently) exist at the same point in parameter
space. The implication is that experimental SSVEPs at given fD and Φn

are not necessarily unique, yielding a new source of intertrial variability
that warrants study in its own right. We also predict hysteresis in stud-
ies where fD is ramped slowly up and down through a zone where bis-
table entrained states exist, which would give different spectra on the
up and down paths. This should be relatively straightforward to test;
one possible place to look is where the 1:1 and 1:2 entrainment zones
meet in Fig. 1. Hysteresis effects would likely be obscured in studies
where stimuli at the fD of interest are presented in random order, as is
commonly used to avoid habituation effects (Regan, 1989). Spontane-
ous transitions between bistable states during a long recording session
might also contribute to intertrial variability.

Extending the analysis of period doubling bifurcations in Fig. 3(d)
across a range of drive frequences reveals a rich pattern of entrainment
zones. Fig. 3(e) shows phase-locking regions vs. fD andΦn for dynamics
initially at a stable fixed point. For comparison, Fig. 3(d) lies at
fD=20 Hz, and Fig. 3(a) lies at Φn=2.8 s−1 showing that 1:1 entrain-
ment of fα occurs near the 1:2 regime boundary. The 1:1 region is
near-linear for small Φn but increasingly nonlinear at larger Φn, for ex-
ample yielding regions ofN:1 phase-locking at fD≈ fα/N. The 1:1 regime
bifurcates to 1:N regimes over ranges of fD around (and for minimalΦn

at) fD≈Nfα, consistent with observed 1:3 and 1:8 entrainments
(Herrmann, 2001) (in Figs. 5 and 4 therein, respectively). The 1:N re-
gions are always nonlinear, showing nested and overlapping period
doublings toward dark blue regions where dynamics are variously of
high period (fD>80f), quasiperiodic, or chaotic. Gaps in the 1:3 family
of period doublings around fD=30 Hz and Φn=14 s−1 reveal the
locking regions underneath, hinting at a complicated structure reminis-
cent of overlapping Arnold tongues (Glass, 2001). The layout of entrain-
ment zones in parameter space is also a new source of parameter
constraints, because a given parameter set can be ruled out if it does
not exhibit the correct entrainment properties. This is complementary
to previous constraints in the linear regime, because satisfying these
does not guarantee the same for the nonlinear regime. For example,
the requirement that the system lie near a period doubling in the
nonlinear dynamics is complementary to constraints previously eluci-
dated for linear background EEG spectra (Robinson et al., 2004).

The structure in Fig. 3(d) is for a driven system initially at a stable
fixed point, not a pre-existing limit cycle, and the entrainment in
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Fig. 1(b) is for noisy perturbations of a fixed point. Bifurcations of the
fixed point itself (under changes in parameters other than the drive)
affect entrainment. Numerically we find that entrainment requires
the system to lie near a linear stability boundary, in accord with evi-
dence that the brain operates near marginal stability (Breakspear et
al., 2006; Robinson et al., 1997; Stam, 2005; Stam et al., 1999), and
also near a nonlinear stability boundary, as seen in Fig. 3(e). Entrain-
ment like that in Fig. 1 also requires that no other attractor coexist
near the fixed point; otherwise the spectrum would change marked-
ly. For a bistable limit cycle associated with seizure dynamics, such as
near the subcritical 10 Hz bifurcation in the model (Breakspear et al.,
2006), a sinusoidal drive near resonance perturbs the system away
from the stable state onto a large-amplitude attractor, even for rela-
tively weak stimuli (Kim et al., 2009); a typical case in Fig. 5 shows
a dramatic increase in power at all frequencies for drives near
fα≈9 Hz and 2fα, with a waveform similar to the 10 Hz seizure in
Robinson et al. (2002) and Breakspear et al. (2006); such behavior
is characteristic of photosensitive epilepsy (Kim et al., 2009; Parra
et al., 2005). The seizure frequency f≈10 Hz is little affected by the
drive, which hardly perturbs the large-amplitude attractor.

Numerical exploration reveals that entrainment of fα is favored for
parameters yielding decreases (2- to 10-fold relative to typical alert
resting values) inmeanfiring ratesϕe,ϕi, andϕs, withϕr increased (pos-
sibly substantially) or unchanged. Such decreases are qualitatively con-
sistent with decreased metabolic load in these structures during
entrainment (Parkes et al., 2004) (assuming that background activity
is analogous to the aperiodic stimulation used there for comparison),
suggesting that subnetworks activated by stimuli likely differ from
those underlying resting activity, agreeing with recent experiments
(Birca et al., 2006; Kerr et al., 2008). A relative increase in thalamic inhi-
bition is plausibly a form of automatic gain control (Schwartz and
Simoncelli, 2001), attenuating strong sensory stimuli before they are re-
layed to the cortex.
Discussion

Wehave studied driven nonlinear brain dynamics in a physiologically-
based model of the cortex and thalamus, have compared its predictions
with experiments from the literature, and have made a series of new
50

f (
H

z)

fD (Hz)

45

40

35

30

25

20

15

10

5

0
10 20 30 40 50

Fig. 5. Spectrum vs. fD for parameters with a bistable seizure limit cycle attractor for the
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predictions that can be tested in future experimental work. The main re-
sults are as follows:

(i) Our theory reproduces the key features of entrainment of the
alpha rhythm to periodic stimuli, including entrainment to
subharmonics of the drive, showing extensive agreement
with experiment (Herrmann, 2001). Further good agreement
is shown by the presence of nonlinearly-generated harmonics
of the drive. The comparison in Fig. 1 demonstrates that the
model agrees with experiment over wide ranges of drive and
response frequencies.

(ii) The model predicts additional nonlinear dynamics to be found
in future experiments. We predict bistability between different
entrained states having the same drive amplitude and drive
frequency, which can be tested experimentally by looking for
hysteresis when slowly ramping the drive frequency up and
down. Spontaneous transitions between bistable states during
a long recording session might also contribute to intertrial var-
iability, a possibility that could be tested experimentally.

(iii) At large drive amplitudes we predict period doubling of phase-
locked states leading to quasiperiodic and chaotic dynamics.
The 1:1 state bifurcates to a 1:N regime for minimal drive am-
plitude when fD≈Nfα, consistent with experiment (Herrmann,
2001).

(iv) We predict nonlinear sum and difference frequency generation
in cases where background activity is sharply peaked but not
entrained by the drive. This has been observed in studies
using two stimulus frequencies simultaneously (Regan, 1989).

(v) The model predicts that when a stable limit cycle coexists with
the stable fixed point corresponding to the resting state, peri-
odic stimuli near the alpha frequency and its harmonics can
drive the system into a seizure state. This plausibly explains
seizures induced by high amplitude flashing light (Kim et al.,
2009; Parra et al., 2005), and is open to further test.

These findings provide new verifications of the model, and of neu-
ral field theory more generally, complementary to previous studies.
Since the samemodel has previously successfully described many lin-
ear and nonlinear dynamics (Breakspear et al., 2006; Robinson et al.,
1997, 2002, 2004), this paper unifies these phenomena with
nonlinear SSVEPs within the same framework using compatible pa-
rameters. Moreover, this work opens new interdisciplinary research
avenues by predicting a rich variety of nonlinear dynamics that
should be experimentally verifiable in human subjects. Quantitative
modeling is essential for distinguishing between potential physiolog-
ical mechanisms in such studies, and a model that also covers multi-
ple other phenomena is essential to enable unification and avoid ad
hoc interpretations.

It is worth pointing out that the data sets of Herrmann (2001) and
Rager and Singer (1998) were acquired under quite different experi-
mental conditions, yet our model reproduces the main features of
both. Herrmann (2001) recorded scalp EEGs from awake human sub-
jects, while Rager and Singer (1998) recorded intracortical multi-unit
activity (MUA) and local field potentials (LFPs) from anesthetized
cats. While EEGs necessarily involve filtering through the scalp, this
is predominantly linear (David et al., 2006; Nunez, 1995; Robinson
et al., 2001a) and so does not change the observed frequencies. In
any case, EEGs and cortical LFPs are closely related because the
same brain structures (mainly pyramidal cells) are ultimately respon-
sible for both (Nunez, 1995; Steriade et al., 1997), and indeed the re-
sults of Herrmann (2001) and Rager and Singer (1998) are in good
agreement. Two differences are that the cat LFP data do not show ev-
idence of the subharmonics and gamma-band resonances seen in the
human data; however, preliminary investigations indicate that our
model can also reproduce this situation for plausible parameter
values, though the exploration of appropriate parameters for the
anesthetized cat is beyond the scope of this paper, and any such
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study should also account for the fact that the cat “alpha” resonance is
near 25 Hz (Nunez, 1995; Rager and Singer, 1998).

Parameter dependences of features such as entrainment regions,
coupled with experiment, potentially enable calibration of parame-
ters in the real brain, extending the utility of SSVEPs in probing phys-
iology. For example, experiments could map out the phase locking
zones as a function of drive frequency and amplitude for direct com-
parison with Fig. 3(e). This would be a particularly sharp test of the
theory. Another measure that could be mapped experimentally is
LLE; indeed Spiegler et al. (2011) recently performed such an explo-
ration in their model. Formal model inversion schemes may also en-
able parameter inference by fitting directly to EEG data, particularly
when coupled to model selection criteria (David et al., 2006; Moran
et al., 2009; Pinotsis et al., 2012), or by using state estimation tech-
niques (Valdes-Sosa et al., 2009) for real-time parameter estimation;
such methods are highly nontrivial for nonlinear time series and an
active area of research.

We analyzed the driven dynamics in the vicinity of a stable fixed
point, whereas Spiegler et al. (2011) analyzed interactions between
an external drive and a pre-existing limit cycle. Recent evidence points
toward both types of dynamics occurring in the alpha bandwith erratic
switching between low and high amplitude modes (Freyer et al., 2009,
2011). Thus there is the potential for entrainment properties to fluctu-
ate on similar time scales, or perhaps for the mode-switching dynamics
to themselves be altered by a periodic drive. Such possibilities could be
explored experimentally bymeasuring the time dependence of entrain-
ment and other nonlinear measures.

Another important avenue for future theoretical work is to study
phase relations between the drive and the ongoing and driven dynam-
ics, thus complementing the frequency properties studied here. Phase-
resetting of ongoing activity is thought to contribute to some ERP phe-
nomena (Klimesch, 1999), and phase coupling in the brain is an area of
intense research interest (Canolty et al., 2006; Varela et al., 2001).

Retention of spatial variation in activity and intracortical connectiv-
ity will enable study of spatiotemporal SSVEP dynamics (Nunez, 1995;
Robinson et al., 2008) and gamma activity (Robinson, 2007), which is
known to interact with flicker (Herrmann, 2001), although we have
shown that neither is necessary to reproduce the entrainment proper-
ties discussed here. Spatial variation in both the cortex and the stimuli
will also enable exploration of the rich array of patterns associated
with visual hallucinations (Bressloff et al., 2002). In addition, spatially-
varying stimuli such as stationary (Muthukumaraswamy and Singh,
2008) and moving (Swettenham et al., 2009) gratings evoke beta and
gammaband (≳20 Hz) activity, and visual evoked responses to gratings
differ in photosensitive subjects at both alpha and lower frequencies
(Porciatti et al., 2000). These phenomena could all be explored in the
model.

Here we focused on visual stimulation, but the same model and
analysis should be applicable to other periodic sensory stimuli that
pass through the thalamus, with appropriate parameter changes to
account for the different thalamic relay nuclei and cortical subnet-
works activated. For example, cortical responses to auditory stimula-
tion in schizophrenic subjects and healthy controls have been shown
to differ in their frequency profiles (Vierling-Claassen et al., 2008),
and such differences could be explored and interpreted with the
same techniques as used here. Another potential avenue lies in driv-
ing cortical populations directly. This would enable modeling of non-
sensory stimulation methods such as transcranial alternating current
stimulation (tACS), which has been shown to interact with ongoing
cortical activity in a frequency-dependent manner (Kanai et al.,
2008).

In summary, the model applied here exhibits the main features of
observed EEG responses to periodic visual stimuli, reproducing key
nonlinear features of entrainment and harmonic generation, and en-
abling quantitative analysis in terms of underlying physiology. It
does this by using an established approach that immediately relates
these phenomena to ones in other fields to which the model has
been applied. This unified framework permits parameters deter-
mined elsewhere to be used here; this is far more parsimonious
than introducing an ad hoc approach with free parameters. Additional
readily-verifiable nonlinear dynamics are also predicted for strong
drives, including period doubling, bistability, and chaos, thereby en-
abling the theory to be further tested in future experiments. More-
over, photosensitive seizures emerge within the same framework,
illustrating the ability of neural field models to unify a wide range
of phenomena and opening new avenues for future work.
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