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Abstract Evoked potentials are the transient electrical
responses caused by changes in the brain following stim-
uli. This work uses a physiology-based continuum model
of neuronal activity in the human brain to calculate the-
oretical cortical auditory evoked potentials (CAEPs) from
the model’s linearized response. These are fitted to experi-
mental data, allowing the fitted parameters to be related to
brain physiology. This approach yields excellent fits to CAEP
data, which can then be compared to fits of EEG spectra.
It is shown that the differences between resting eyes-open
EEG and standard CAEPs can be explained by changes in
the physiology of populations of neurons in corticothalamic
pathways, with notable similarities to certain aspects of slow-
wave sleep. This pilot study demonstrates the ability of our
model-based fitting method to provide information on the
underlying physiology of the brain that is not available using
standard methods.
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1 Introduction

Evoked potentials (EPs) are the components of the electro-
encephalogram (EEG) that occur in response to brief stimuli,
including tones, flashes, and electric shocks. The brain’s elec-
trical responses to these stimuli are superposed with ongoing
EEG activity, and to improve the signal to noise ratio, EPs are
typically obtained by averaging over several hundred stimuli
(Picton et al. 2000), since the EP is time-locked to the stim-
ulus while other EEG activity is not. It is not known whether
EPs are generated by the activation of additional networks,
or by changes in networks already active during resting EEG;
it is possible that early features of the response are due to the
former, while later features are due to the latter (Näätänen
and Picton 1987).

In the auditory oddball paradigm, used here, frequent low-
pitched “standard” tones are interspersed pseudorandomly
with rarer high-pitched “target” tones, to which the subject
responds. This paper will focus on CAEPs resulting from
standard tones, where no response is required, since tar-
get CAEPs require a greater degree of cognition, and hence
present additional complexities. A typical standard CAEP is
shown in Fig. 1.

Physiological changes underlie the observed electrical
response, and hence EPs contain information about how the
brain carries out stimulus processing (Kotchoubey 2005). It
has been shown that CAEPs display systematic changes in
amplitude and latency depending on the stimulus character-
istics, task instructions, and age, and on conditions such as
depression and schizophrenia (Picton et al. 2000). Hence,
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Fig. 1 Example of a CAEP for a single individual, recorded using the
Cz electrode, as described in Sect. 3.1. The major features, N1, P2, and
P3, are labeled

the modulation of physiological parameters in the brain that
leads to these conditions results in consistent, reproducible
changes in the CAEP.

Traditional methods analyze CAEPs as sequences of peaks
and troughs, called “components” (Picton et al. 2000). Small,
early (<20 ms) components result from brainstem nuclei;
components such as N1, P2, and P3 are often attributed to
early cognitive processing in the cortex; later, smaller fea-
tures (>400 ms) are also attributed to the cortex, and are
affected by emotional priming and other high-level processes
(Schupp et al. 2006).

CAEPs are typically “scored” by listing the amplitude and
latency of a predetermined set of extremums, but there are
serious drawbacks to this method. Most of the information
contained in the CAEP is ignored, since scoring emphasizes
a handful of data points and discards the rest of the wave-
form. Additionally, CAEP components are thought to result
from spatiotemporal superpositions of activity from differ-
ent populations of neurons (Näätänen and Picton 1987), and
hence treating each component as a single, distinct phenom-
enon is misleading. Furthermore, since scoring is entirely
phenomenological, it does not allow comparison between
EEGs and CAEPs, even though they are different aspects
of the same system. Although a number of disorders are
marked by reliable changes in the aspects of EPs that are
used in scoring (Polich and Herbst 2000), it is possible that
other disorders, which are not yet known to be correlated to
changes in CAEPs, could be detected using a more sophisti-
cated method.

In addition to scoring, several other methods of CAEP
analysis have been used, including equivalent dipole source

localization (e.g., Turetsky et al. 1990; Gevins 1996), wave-
let analysis (Bradley and Wilson 2004), and autoregression
(Mainardi et al. 2000). However, none of these methods relate
CAEPs to brain physiology; even the locations of sources
found using dipole modeling are not necessarily indicative
of the actual locations of sources in the brain (Wood 1982;
Nunez and Silberstein 2000).

To produce a more biologically relevant analysis of CAEPs
based on the entire waveform, we use a physiology-based
mean-field model of the brain’s electrical activity to model
CAEPs. Mean-field models of the brain have been used and
developed over several decades (Wilson and Cowan 1973;
Lopes da Silva et al. 1974; Nunez 1974, 1995; Freeman 1975;
Steriade et al. 1990; Jirsa and Haken 1996; Wright and Liley
1996), and Robinson et al. developed an analytic, physiology-
based continuum model, incorporating many aspects of
previous models (Robinson et al. 1997, 2001b, 2002, 2005;
Rennie et al. 2002; Rowe et al. 2004). Not all of the para-
meters in this model are known precisely from experiment
(Horwitz and Glabus 2005), but all are required to lie within
physiological limits, and can be estimated through inverse
modeling. The predictions of this model have been verified
against many types of EEG phenomena as well as indepen-
dent physiological measurements (e.g., Robinson et al. 2004;
Rowe et al. 2004).

In the present work, we fit a theoretical CAEP produced
by the Robinson et al. model to experimental data, allow-
ing model parameters to be deduced. This method, based
on modeling the physiology underlying CAEPs rather than
merely reproducing or analyzing their shape, can potentially
provide more information about the subject’s neurophysio-
logical state than standard methods. Through modeling, it
should be possible to use CAEPs to quantitatively estimate
some of the brain’s physiological parameters and their dif-
ferences from resting state.

Our primary aim is to describe this method of CAEP anal-
ysis and demonstrate its potential for allowing insights not
afforded by other methods. Hence, here it is applied only to
data from normal subjects, with clinical applications to be
discussed in future publications.

Section 2 briefly reviews the corticothalamic model of
Robinson et al., including stability and sensitivity analyses.
Section 3 describes the experimental subjects and methods,
as well as the details of the CAEP fitting procedure. Section 4
presents the results obtained by fitting the model to experi-
mental data, while Sect. 5 relates these results to physiology.

2 The model

This section outlines the model used in the remainder of
the work. Sections 2.1–2.5 describe the neuronal, neuroana-
tomical, and physiological features underlying the model.
Sections 2.6 and 2.7 discuss the stability of the model dynam-
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ics and their sensitivity to changes in parameter values,
respectively.

2.1 Overview of the model

Two key structures needed in modeling EPs resulting from
simple auditory stimuli are the cortex and the thalamus. The
cortex is approximated as a 2D surface (Robinson et al. 1997),
and the thalamus is modeled as two functionally and anatom-
ically distinct components: the relay nuclei and the thalamic
reticular nucleus (Rennie et al. 2002).

Five distinct populations of neurons are considered: (i)
cortical neurons with large characteristic ranges (denoted by
the subscript e), primarily pyramidal cells, which form pre-
dominantly excitatory connections to cortical and thalamic
neurons. (ii) Cortical neurons with short characteristic ranges
(denoted i), including interneurons and spiny stellate cells,
which form predominantly inhibitory synapses onto other
cortical neurons. (iii) Thalamic sensory relay nuclei neu-
rons (denoted s), the excitatory neurons linking the sensory
modalities to the cortex. (This population also includes dif-
fuse projection nuclei neurons, since these also provide excit-
atory thalamocortical connections.) (iv) Reticular thalamic
neurons (denoted r ), which form inhibitory connections to
the main body of the thalamus, and are involved in regulating
thalamic activity. (v) Sensory neurons (denoted n), which in
this context are the excitatory neurons of the auditory path-
way, and which transmit signals from the cochlea to the thal-
amus. These five populations and their interconnections are
shown in Fig. 2.

Because the phenomena we are concerned with occur on
scales of mm to cm, we use a continuum model of neural
dynamics, which is a valid approximation for scales larger
than ∼0.1 mm (e.g., Wilson and Cowan 1973; Lopes da Silva
et al. 1974; Freeman 1975; Wright and Liley 1996; Robinson
et al. 1997). This allows the properties of individual neurons
to be replaced by the mean properties of ensembles of neu-
rons.

The state of a given population of neurons is determined
by the activity of all populations that synapse onto that pop-
ulation, including activity from self connections. Hence, the
net effect Pa on the activity of neurons of population a by all
populations of neurons b is given by

Pa(r, t) =
∑

b

νabφb(r, t), (1)

where νab ≡ Nabsb, Nab is the number of synapses from
neurons of population b to population a, sb is the strength
of the postsynaptic potentials generated by neurons of pop-
ulation b, φb is the activity (expressed as the rate of action
potentials) in neurons of population b, and the sum is over

Fig. 2 The Robinson et al. corticothalamic model, consisting of the
cortex (e and i), thalamic reticular nucleus (r ), thalamic sensory nuclei
(s), and sensory afferents (n). The excitatory and inhibitory neuron
populations (white and black boxes, respectively) are interlinked by
bundles of axons (arrowheads for excitatory connections; circles for
inhibitory). Time delays (t0/2, tos ) are also shown. Not all pathways
are reciprocal; for example, there is no direct connection from the
reticular nucleus to the cortex

all populations of neurons that have connections to neurons
of population a.

2.2 Neuronal properties

The effect of synaptic activity on the postsynaptic cell’s
membrane potential is also affected by the passive electrical
properties of dendrites and the kinetics of the neurotransmit-
ter and its receptor, all of which attenuate high frequency
components of the signal. This filtering can be approximated
by the convolution kernel

L(t) = αβ

β − α

(
e−αt − e−βt) , (2)

for t ≥ 0, with L = 0 for t < 0, and where 1/β and 1/α

are the rise and decay time constants, respectively. Although
different populations of neurons have different values of α

and β, here a single characteristic value for each is used.
The membrane potential Va (relative to resting) for a pop-

ulation of neurons is approximated by a convolution of the
net activity Pa and the filter function L:

Va(r, t) =
t∫

−∞
L(t − t ′)Pa(r, t ′)dt ′. (3)
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Fig. 3 The sigmoidal response function for a population of neurons,
using (4) and physiological data, as a function of the membrane potential
V = Vrest + Va , where Vrest is the resting membrane potential and Va
is the potential relative to resting

Although the activity of a single neuron is effectively a step
function of the cell body potential, a population of neurons
will exhibit a sigmoidal response to increasing membrane
depolarization, since cells have a distribution of threshold
potentials due to variations in membrane properties. This
response is approximated by

Qa(r, t) = Qmax
a

1 + e−C(Va−θa)/σa
, (4)

where Qa is the firing rate, Qmax
a is the maximum firing rate,

θa is the mean of the threshold distribution relative to resting,
and C = π/

√
3. The derivative of (4) approximates a normal

distribution, and the constant C is chosen so that the standard
deviation (SD) of the derivative is equal to σa (Wilson and
Cowan 1973; Jansen and Rit 1995; Wright and Liley 1996).
This function is shown in Fig. 3.

Although (4) is nonlinear, under most conditions ∆Va ∼<
σa , and hence a linear approximation to (4) is valid (Robinson
et al. 1997; Rennie et al. 1999). Thus, treating the EEG signal
as being the result of small perturbations about a steady state,
the response function becomes

Qa(r, t) ≈ Q(0)
a + ρa[Va(r, t) − V (0)

a ], (5)

where

ρa ≡ dQa

dVa
= C Qa

σa

(
1 − Qa

Qmax
a

)
(6)

is evaluated at steady state. It is not necessary to determine
the steady state firing rate Q(0)

a , as only perturbations to this
value are used in the model. Using (6), we can relate these
perturbations in the activity from neurons of population b to
perturbations in the activity of neurons of population a by
defining linear gains Gab:

Gab = ∆Qa

∆Qb
= ρa Nabsb . (7)

The net gain of more than two populations of neurons con-
nected serially is simply the product of the separate gains,
and such compound gains are written as GabGbc = Gabc,
for example.

Finally, to relate the neuronal activity φa to the average
membrane potential Qa , we use a damped wave equation
to approximate the propagation of neuronal activity in the
cortex (Nunez 1995; Jirsa and Haken 1996; Robinson et al.
1997; Rennie et al. 1999, 2002). Hence,

Daφa(r, t) = Qa(r, t) , (8)

Da = 1

γ 2
a

[
∂2

∂t2 + 2γa
∂

∂t
+ γ 2

a − v2
a∇2

]
, (9)

where γa = va/ra is the damping rate, va is the axonal prop-
agation velocity, and ra is the characteristic range of axons
for neurons of population a. Since cortical inhibitory neurons
have short (∼10−4 m) axonal processes, we assume ri ≈ 0,
and hence Di ≈ 1 (Robinson et al. 1997); the same approxi-
mation can be made for intrathalamic connections, and thus
Ds ≈ Dr ≈ 1.

2.3 Transfer functions

Since the scalp potential measured using EEG techniques is
directly related to φe (Nunez 1995; Nunez and Srinivasan
2006), and since the stimulus is defined as being φn , deter-
mining the scalp potential from the stimulus requires the
transfer function φe/φn . To obtain this transfer function, we
first Fourier transform (1)–(5), (8), and (9), allowing the eval-
uation of perturbations to the steady state. Assuming that a
signal traveling from the thalamus to cortex takes a time
t0/2 = rct/vct , where vct is the thalamocortical propaga-
tion velocity and rct is the distance from the thalamus to the
cortex, we find that (1) becomes

Pe(k, ω) = νeeφe + νeiφi + νesφs eiωt0/2, (10)

Pi (k, ω) = νieφe + νi iφi + νisφs eiωt0/2, (11)

Ps(k, ω) = νseφeeiωt0/2 + νsrφr + νsnφn, (12)

Pr (k, ω) = νreφeeiωt0/2 + νrsφs, (13)

where k is the wavenumber and ω is the frequency. Equations
(2), (3), (4), and (9) become

L(ω) = (1 − iω/α)−1 (1 − iω/β)−1 , (14)

Va(k, ω) = L(ω)Pa(k, ω), (15)

Qa(k, ω) = ρa Va(k, ω), (16)

Da(k, ω)φa(k, ω) = Qa(k, ω), (17)

De(k, ω) = k2r2
e + (1 − iω/γ )2 , (18)

Di = Ds = Dr = 1 . (19)
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The transfer function φe/φn is found by eliminating P ,
V , and Q from (10) to (19). Assuming random cortical con-
nectivity (i.e., Gab = Gcb for all combinations where a, b, c
are either e or i ; Wright and Liley 1996), the component of
this transfer function for an impulse traveling directly from
the thalamus to the cortex is given by

I = eiωt0/2 L2Gesn

1 − L2Gsrs
, (20)

the modulation of this signal by cortical feedback is

Mc = De(1 − LGei ) − LGee, (21)

and the modulation by corticothalamic loops is

Mt = eiωt0(L2Gese + L3Gesre)

1 − L2Gsrs
. (22)

The transfer function is given by combining (20)–(22),
which yields

T (k, ω) ≡ φe(k, ω)

φn(k, ω)
= I

Mc − Mt
. (23)

2.4 Stimulus

We can approximate the incoming stimulus arising from the
sensory neurons as a Gaussian in both space and time. Such
a stimulus has the normalized form

φn (r, t) = e
− 1

2

(
t−tos

ts

)2

ts
√

2π

e
−

( |r−ros |
rs

)2

πr2
s

, (24)

where ts is the characteristic duration of the stimulus, tos is
the transmission delay from cochlea to thalamus, rs is the
spatial width of the stimulus at cortex, and ros is the offset
of the center of the stimulus from the point of measurement.
The Fourier transform of this function is

φn (k, ω) = e− 1
2 ω2t2

s eiωtos e
−

(
krs
2

)2

e−ik·ros . (25)

The stimulus parameters ts, tos, rs and ros should be con-
sidered effective values, as the actual spatiotemporal struc-
ture of the impulse is likely to be much more complex than
that modeled here. However, one advantage of using a spa-
tially Gaussian stimulus is that it implicitly incorporates the
effects of volume conduction, which can be approximated
for low to moderate wavenumbers by a filter function of
the form (Srinivasan et al. 1998; Robinson et al. 2001b;
O’Connor et al. 2002)

F(k) = e−k2/k2
0 , (26)

where F(k) is the square of the ratio of scalp to cortical volt-
ages and k0 ≈ 30 m−1.

2.5 Evoked potential

To evaluate the response of the cortical neurons φe to the
stimulus, we must inverse Fourier transform the product of
(23) and (25):

R(r, t) = 1

(2π)3

∫∫
φe(k, ω)

φn(k, ω)
φneik·re−iωt dω d2k. (27)

Considering first the spatial inverse Fourier transform, we
find

R(r, ω) = 1

(2π)2

∫
φe(k, ω)

φn(k, ω)
e
−

(
krs
2

)2

e−ik·ros eik·rd2k, (28)

= 1

(2π)2

∞∫

0

k
φe(k, ω)

φn(k, ω)
e
−

(
krs
2

)2 2π∫

0

eik|r−ros | cos θ dθdk,

(29)

= 1

2π

∞∫

0

k
φe(k, ω)

φn(k, ω)
e
−

(
krs
2

)2

J0(k|r − ros |) dk,

(30)

where J0 is a Bessel function of the first kind.
In the case where rs → 0 (i.e., the stimulus is spatially

delta-like), (30) has an analytic solution, given by

1

2π

∞∫

0

k
φe(k, ω)

φn(k, ω)
J0(k|r − ros |) dk = IK0(q|r − ros |)

2πr2
e (1 − LGei )

,

(31)

where I is defined by (20), K0 is a modified Bessel function
of the second kind, and

q = 1

re

√(
1 − iω

γ

)2

− LGee + Mt

1 − LGei
. (32)

As an alternative to using infinite boundary conditions,
one can define characteristic circumferences of the cortex
lx and ly (representing the cortical dimensions in the coronal
and frontal planes, respectively) and sum over discrete wave-
numbers corresponding to the modes of the system. Assum-
ing a rectangular cortex with periodic boundary conditions,
R(r, ω) can be evaluated using

R(r, ω) = 1

lx ly

∞∑

m,n=−∞

φe(kmn, ω)

φn(kmn, ω)
e
−

(
krs
2

)2

eikmn ·(r−ros),

(33)
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Fig. 4 Three plots of q2. These show stable (dashed), marginally sta-
ble (dotted), and unstable (solid) states. The initial point of each locus
lies on the real axis and other points correspond to ω > 0

where

kmn =
(

2πm

lx
,

2πn

ly

)
, (34)

and k = |kmn|. Typically, the sum (33) produces almost
identical results to the integral case (30), except very near to
certain resonances, or in the physiologically unrealistic case
lx , ly ∼< re (Robinson et al. 2001a).

Finally, to obtain the CAEP waveform R(r, t), we per-
form an inverse Fourier transform in the time domain, and
multiply by a normalization factor N that incorporates the
unknown amplitudes of (i) the stimulus, (ii) the gain Gesn

between the auditory neurons and the cortex, and (iii) the
ratio of scalp to cortical voltages:

R(r, t) = N

2π

∫
R(r, ω)e− 1

2 (ωts )2
eiωtos e−iωt dω. (35)

This equation, together with (23) and (33), yields a CAEP
time series based on the input parameters.

2.6 Model stability

The stability condition for the model is that Re q > 0 (32),
which is equivalent to the condition that q2 is never simul-
taneously negative and real (Robinson et al. 1997, Robinson
et al. 2001b). If this condition does not hold, the transfer func-
tion becomes unbounded for some combination of ω and k,
which corresponds to the amplitude of oscillations increas-
ing rather than decreasing exponentially with time. Three
examples of q2 at various levels of stability are shown in
Fig. 4.

The stability of the brain is primarily a function of the
balance between excitation and inhibition, and we can
parameterize this balance using three stability parameters.

The cortical stability parameter X is

X = Gee

1 − Gei
, (36)

the corticothalamic stability parameter Y is

Y = Gese + Gesre

(1 − Gei )(1 − Gsrs)
, (37)

and the intrathalamic stability parameter Z is

Z = −Gsrs
αβ

(α + β)2 . (38)

Together X , Y , and Z define a three-dimensional space,
within which a region of stability exists (Robinson et al.
2002). If the parameters lie outside this region, instability
results, with the frequency of the instability depending on
which of the instability boundaries is crossed.

A special case of the requirement Re q > 0 is that q2 > 0
when ω = 0 (Robinson et al. 2002). The value of q2r2

e at this
point is denoted S; from (32) we see

S = 1 − X − Y. (39)

If S < 0, the transfer function is unbounded at zero frequency
for some wavenumber, and the system is unstable.

2.7 Parameter sensitivities

The model is significantly more sensitive to some parameters
than others; the parameters to which the model is sensitive
are shown in Fig. 5, and the qualitative effects of varying
each parameter are described below. While we use a linear-
ized approximation to the model (5), with the exception of
the overall scaling factor N , all parameters have a nonlinear
effect on the shape of the curve.

Small changes in the cortical damping rate γ and the decay
rate α affect the amplitude and latency of peaks, respectively,
while large changes in either affect all aspects of the CAEP.
Changes in the rise rate β have little effect; since rise times are
typically about one tenth of decay times (Koch et al. 1996),
we fix β = 10α in the remainder of this work.

Increasing the intracortical excitatory gain Gee tends to
increase the magnitude of the CAEP, as expected, with the
greatest effect being on N1. Increasing the magnitude of the
cortical inhibitory gain Gei uniformly reduces the amplitude
of all CAEP features. Decreasing |Gei | may lead to slow-
wave instability, as seen in Fig. 5.

The ∼10 Hz oscillation associated with increasing the cor-
ticothalamic excitatory loop Gese is related to the alpha
rhythm in EEGs. Similarly, increasing the corticothalamic
inhibitory loop |Gesre| accentuates the ∼4 Hz theta rhythm,
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Fig. 5 Sensitivity of the
theoretical CAEP to variation of
model parameters, as labeled in
the corner of each frame. The
solid line is the CAEP
corresponding to the nominal
parameter values (Table 1); the
dotted line indicates a 50%
decrease in magnitude of a
given parameter, while a dashed
line indicates a 50% increase
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with the frequencies of these oscillations determined by the
time delay in each loop. The gains Gese and Gesre have
opposing effects, as shown in Fig. 5, where the curve corre-
sponding to increased Gese is similar to the curve correspond-
ing to decreased |Gesre|. Increasing |Gesre| with respect to
Gese causes Y to become negative, which leads to a shift in
the dominant frequency from ∼10 Hz (alpha band) to ∼4 Hz
(theta band). Increases in the magnitude of the intrathalam-
ic inhibitory loop Gsrs cause oscillations with sleep spindle
frequency (∼15 Hz), which is expected since the reticular
nucleus plays a major role in their generation (Steriade et al.
1993).

One of the most important parameters of the model is
the corticothalamic delay t0, as modulations of t0 change the
temporal position of the CAEP features. Even a small change
in t0 has clear effects on the CAEP, since it changes the rel-
ative phases of the components of the waveform generated
by the corticothalamic pathways, leading to constructive and
destructive interference.

Increasing the stimulus duration ts produces temporal low-
pass filtering of the CAEP; changing the temporal stimulus
offset tos shifts the CAEP in time but does not change its
shape. The effects of the spatial stimulus width rs and offset
ros are more complicated, depending on both their relative
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and absolute values. In general, increasing either quantity
decreases the magnitude of the response, and also produces
temporal low-pass filtering due to the relationship between
spatial and temporal frequencies given by the dispersion rela-
tion (18). While this filtering is not as obvious as it is for ts , the
N1 feature has a larger high-frequency component than the
P2 feature, and hence low-pass filtering will tend to decrease
the amplitude of N1 as compared to P2, as seen in Fig. 5.

3 Experimental methods

This section discusses the application of the model outlined
in Sect. 2 to experimental data. Section 3.1 details the acqui-
sition of the EEG data, Sect. 3.2 describes the process by
which the model was used to determine brain parameters
from this data, and Sect. 3.3 clarifies the assumptions made
in the fitting procedure.

3.1 Data acquisition

The two sets of data from normal subjects were obtained from
the Brain Resource Company (BRC) International Database
(Gordon et al. 2005), from which subjects were excluded if
they had been exposed to factors (disease, injury, etc.) that are
known to affect performance in psychometric tests. The first
dataset contained parameter values from fits to eyes-open
EEG data and the second contained CAEP data. Subjects
from both datasets were evenly distributed in age from 21 to
56 years.

Recordings were made at 26 sites of the international
10–20 system using an electrode cap, following previously
published methods for acquisition and artifact removal (Rowe
et al. 2004; Gordon et al. 2005). EEG data were recorded
at a 125 Hz sampling rate and an A/D precision of 0.42µV
through a SynAmps™ amplifier using a linked earlobe ref-
erence and a low-pass third-order Butterworth filter with a
–6 dB point at 50 Hz. Eye movements were corrected offline
using the method of Gratton et al. (1983). Only data from the
Cz electrode are reported here, as this electrode receives less
noise from muscle artifacts than other electrodes and records
the most prominent N1 and P2 components (Key et al. 2005).

In the first experimental condition, eyes-open EEG data
were recorded for three minutes from 313 subjects (165
females, 148 males). Spectral fitting to this data was done
by the BRC using the method given by Rowe et al. (2004).

In the second experimental condition, CAEP data were
recorded from 214 subjects (108 females, 106 males). Sub-
jects were presented binaurally, via headphones, with a series
of high and low tones, at 75 dB and lasting for 50 ms, with
a constant interstimulus interval (ISI) of 1 s. Rise and fall
times of the tones were 5 ms. Subjects were instructed to
press buttons with the index finger of each hand in response

0.0 0.1 0.2 0.3 0.4 0.5 0.6

t(s)

10

5

0

-5

-10

V
(µ

V
)

Fig. 6 Grand mean standard CAEP from 214 normal subjects. Stan-
dard deviation is shown by the vertical lines, and SEM is shown by the
heights of the rectangles

to “target” tones (presented at 1,000 Hz). They were asked not
to respond to “standard” tones (presented at 500 Hz). Subjects
were given a brief practice session to clarify the distinction
between target and standard stimuli. Speed and accuracy of
response were stressed equally in the task instructions. There
were 280 standard and 60 target tones presented in a quasi-
random order, with the only constraint being that two targets
could not appear consecutively. Subjects were told that the
duration of the auditory oddball task was six minutes. Mean
standard CAEPs were obtained by averaging the 280 periods
following standard stimuli. A grand mean standard CAEP
was produced by averaging the mean CAEPs over all sub-
jects; this CAEP is shown in Fig. 6.

3.2 CAEP fitting procedure

In addition to the experimental CAEP data to be fitted, a set of
nominal values of model parameters is required to produce a
theoretical CAEP to initialize the fitting. The choice of nom-
inal parameter values is based on the null hypothesis that
there are no differences between resting EEG and standard
CAEP states. While this hypothesis was rejected, as shown
in Fig. 7, it provides the reference point from which param-
eters can be subsequently varied. However, EEG fitting does
not provide any estimates of the stimulus parameters, so ini-
tial values of these parameters were obtained by identifying
physiologically plausible ranges for each and by finding the
values within those ranges for which the theoretical curve
has peak width and latency characteristics most similar to
CAEP data.

After an initial theoretical CAEP is generated, the χ2 value
(goodness of fit) between the experimental and theoretical
CAEPs is calculated using
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Fig. 7 Comparison of the theoretical CAEP produced by nominal
eyes-open EEG parameters (solid line) and standard CAEP data
(squares). Parameter values are as given in Table 1. The poor corre-
spondence between the theoretical and experimental CAEPs shows that
brain parameters differ between resting EEG and CAEP states

χ2 =
n−1∑

i=0

(
D(i) − T (i)

W (i)

)2

, (40)

where n is the number of points in the time series, D is the
experimental CAEP time series, T is the theoretical time
series, and W is a weight function. The weight function is
such that data points are weighted by a factor of 1 from 0–
300 ms, 0.5 from 300–400 ms, and 0.25 from 400–600 ms,
thus assigning greater significance to the earlier features of
the waveform, as later features are likely dependent upon
cortical interactions beyond the scope of our current model
(Goodin et al. 1978).

Fitting is performed by varying the parameters of the theo-
retical CAEP to minimizeχ2 using the Levenberg-Marquardt
method of χ2 minimization (Press et al. 1992). In this stage
of fitting, parameters are allowed to vary without bound. Ide-
ally, the parameters would converge to the global minimum
χ2 from anywhere within a large region of parameter space,
and hence the choice of initial parameter values would be
unimportant to the final result of the fit. However, this is not
necessarily the case, as there may be multiple minimums in
χ2 for each parameter, as shown in Fig. 8.

The task of finding the global minimum value of χ2 is
further complicated by the high dimensionality of parameter
space. To overcome these difficulties, a Monte Carlo method
is used to vary the initialization of each parameter. The dis-
tribution of parameter values used for the initializations is
a Gaussian with a mean equal to the nominal value and an
SD of 40% of the mean; after these initializations, the fitting
routine is run with the new initial parameters. This process
is repeated thousands of times to obtain a statistical distribu-
tion, from which the fits that successfully found the global
minimum χ2 are determined.

Fig. 8 Schematic diagram of goodness-of-fit (χ2) as a function of the
corticothalamic loop delay t0, showing several qualitative features of
parameter space. Prior to the application of the fit selection criteria,
randomly initialized trials converge on both the global minimum (A)
and on local minimums (e.g., B). Small, local features (e.g., C) may be
circumvented in other dimensions of parameter space

Once the fits to EEG and CAEP data have been calculated,
a subset of these fits is selected using four criteria. First, fits
are excluded if their χ2 value is above a certain threshold,
as this indicates that the fit did not find the global minimum.
Second, fits are rejected if they violate any of the stability
criteria defined in Sect. 2.6. Third, fits are rejected if any
parameters are unphysical (e.g., a negative time delay) or
have values outside the physiologically accepted limits. We
find that only about 30% of trials are actually eliminated as a
result of this criterion; the remainder fall naturally within the
physiological limits. The fact that the fit parameters converge
on physiologically reasonable values even in the absence of
constraints is one of the key aspects of the model, and is dis-
cussed further in Sect. 4. Finally, remaining fits are excluded
if at least one parameter is more than two SDs from the mean.
This eliminates fits that found χ2 minimums in distant parts
of parameter space, and hence are not in the main basin of
attraction. These fits are eliminated because they are typically
extremely sensitive to small perturbations in parameter val-
ues, and it is impossible to reach these regions of parameter
space without crossing instabilities.

The result of applying these selection criteria is that the
parameter distributions are unimodal and approximately
Gaussian, which allows each distribution to be characterized
by its mean value and SD. The parameters of these remaining
trials are averaged to obtain an estimated value and uncer-
tainty for each parameter.

3.3 Implicit assumptions

The fitting approach requires four primary assumptions. First,
it is assumed that the function χ2(p), where p is the vector
of parameters, has a global minimum clearly distinguishable
from local minimums. If no clear global minimum exists for a
given parameter, the uncertainty in the value of that parame-
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ter is determined by the range over which the local minimums
are distributed.

Second, it is assumed that the limits chosen for the param-
eters are physiologically reasonable. All parameters are con-
sistent with known limits; however, the true ranges of many
parameters are not accurately known, and the ranges which
are ultimately allowed are likely to be narrower than current
estimates.

Third, it is assumed in our calculations that parameter
values are constant throughout the CAEP. While stimulus-
induced changes will necessarily be transient, it is assumed
that these changes can be approximated to sufficient accuracy
by using a single parameter value. This assumption becomes
increasingly tenuous with time, and likely explains why early
features are modeled better than later ones, as discussed in
Sect. 4. The use of constant parameter values also assumes
that the sources of the CAEP remain fixed; this approxima-
tion is made because our aim is to explain the data using as
simple a model as possible, with further elaborations added
only when required.

Finally, it is assumed that the grand mean CAEP accu-
rately represents the effects of robust physical processes. This
is similar to the assumption, made in almost all research on
EPs, than the mean EP obtained by averaging over hundreds
of stimuli in a given subject adequately reflects the essential
processes occurring in the brain.

4 Experimental results

After the selection criteria described in Sect. 3.2 were applied,
the remaining fits were all good matches to data, especially
for the N1 and P2 features, as shown in Fig. 9. To our knowl-
edge, these results are the closest fits to CAEPs to date using
physiological modeling (cf. Rennie et al. 2002; David et al.
2006). The naïve view that we have used a dozen indepen-
dent parameters to fit two features of a CAEP is incorrect,
since (i) many parameters have similar effects, (ii) param-
eter variations are restricted by stability and physiological
considerations, and (iii) the model is limited in the types of
responses it can produce; it cannot fit arbitrary curves. Addi-
tionally, there is no a priori reason why the model should pro-
duce CAEPs at all, as it was not designed for this purpose.
Furthermore, parameter values which generate CAEPs are
close to values obtained from EEG fitting, as expected, and
lie within physiological limits. This agreement with physi-
ology was found for approximately 70% of fits even without
externally-imposed constraints, providing independent evi-
dence that the model parameters successfully characterize
the physiology of the system.

The vast majority of the contribution to χ2 in our fits
comes from the second half of the CAEP time window
(t > 300 ms); for a typical fit, only 2% of the contribution
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Fig. 9 Comparison between experimental CAEP data (squares) and
a randomly selected subset of 40 theoretical trial fits which remained
after the fit selection criteria were applied (solid lines)

comes from the first half. This is likely caused by three fac-
tors. First, we use constant parameter values for the duration
of the CAEP, and the validity of this approximation decreases
with time. Second, late features are associated with memory,
emotion, and other high-level cognitive aspects (Schupp et al.
2006), which may depend upon brain regions that are not
considered separately in our current corticothalamic model,
but are instead grouped with other regions. Although future
models will incorporate such complexity as required, our aim
here is to reproduce the major features of the CAEP as simply
as possible.

Uncertainties in parameter values obtained through mod-
eling are difficult to determine precisely, since these are
determined by the region of parameter space that produces
acceptable fits. The size of this region can be estimated quali-
tatively by determining the consistency of the fitted parameter
values following perturbations to (i) the nominal parameter
values, (ii) the fit selection criteria, and (iii) the experimen-
tal data. These perturbations do not usually have significant
effects on the results, implying that this region of parameter
space has reasonably well-defined boundaries. It was found
empirically that the SDs of the parameter distributions give
uncertainty estimates which are in good agreement with the
qualitative tests listed above. Hence, although not statisti-
cally exact, these SDs can be taken as quantitative estimates
of the uncertainty in parameter values. Estimates of parame-
ter values and their SDs are summarized in Table 1.

4.1 Gains

All gains except the intrathalamic gain Gsrs showed nota-
ble differences between resting EEG and CAEP fits. Both
cortical and corticothalamic excitatory gains (Gee and Gese,
respectively) had decreased magnitude in CAEP fits com-
pared to resting EEG fits, while cortical and corticothalamic
inhibitory gains (Gei and Gesre, respectively) had increased
magnitude, collectively producing a shift from excitation
to inhibition. The most consistent differences were in the
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Table 1 Parameter values and
standard deviations for resting
eyes-open EEG and standard
CAEPs. Values which differ by
more than one SD between EEG
and CAEP fits are marked with
asterisks

Parameter Symbol EEG (±SD) CAEP (± SD) Unit

Cortical damping rate γ * 67 ± 30 200 ± 30 s−1

Dendritic decay rate α* 96 ± 37 45 ± 2 s−1

Corticothalamic loop delay t0* 84 ± 14 64 ± 4 ms

Cortical excitatory gain Gee 5.6 ± 3.8 3.1 ± 1.6 –

Cortical inhibitory gain Gei −6.9 ± 3.9 −10.8 ± 1.7 –

Corticothalamic excitatory gain Gese* 7.7 ± 5.0 0.8 ± 0.7 –

Corticothalamic inhibitory gain Gesre −5.3 ± 4.2 −7.8 ± 2.1 –

Intrathalamic gain Gsrs −0.8 ± 0.5 −0.8 ± 0.1 –

Cortical stability X* 0.7 ± 0.2 0.3 ± 0.1 –

Corticothalamic stability Y * 0.2 ± 0.2 −0.3 ± 0.1 –

Intrathalamic stability Z 0.1 ± 0.1 0.1 ± 0.01 –

Zero frequency stability S* 0.1 ± 0.1 1.1 ± 0.2 –

Temporal stimulus offset tos – 50 ± 4 ms

Temporal stimulus width ts – 23 ± 1 ms

Spatial stimulus offset ros – 0.14 ± 0.03 m

Spatial stimulus width rs – 0.09 ± 0.09 m

corticothalamic gains Gese and Gesre, although these gains
also had the broadest distributions.

In our model, the excitatory corticothalamic gain Gese

enhances activity in the alpha band (8–12 Hz), while the
inhibitory corticothalamic gain Gesre enhances activity in
the theta band (∼4 Hz). While EEG spectra show a strong
peak in the alpha band, such a peak is lacking in CAEPs,
which are dominated by activity in the theta band; hence,
we would expect a decrease in Gese and an increase in the
magnitude of Gesre, as observed.

A simple picture of the preceding results emerges if we
consider the stability parameters X, Y, Z , and S, introduced
in Sect. 2.6. Most notably, Y reverses sign, indicating that
the corticothalamic loop changes from producing positive to
negative feedback; the decrease in X indicates that the ratio
of excitation to inhibition in the cortex also decreases. These
changes correspond to increased stability, and this is dramat-
ically shown by the change in S—for parameters obtained
from fits to resting EEG spectra, S is close to the instabil-
ity boundary (S ≈ 0; Robinson et al. 2005), while for fits
to CAEPs, the system is extremely stable (S > 1). These
changes are shown in Fig. 10.

4.2 Temporal parameters

Changes in the cortical damping rate γ and the dendritic rate
constant α, though large, were not highly reproducible. This
is because increases in γ can be partially offset by decreases
in α, resulting in multiple minimums during fitting.

To investigate this interaction, CAEP fits were repeated
with α fixed at its nominal EEG value. As expected, γ values

Fig. 10 Differences in stability parameters X, Y, Z, and S between EEG
and CAEP states. Note the sign change in Y , indicating inhibitory thal-
amocortical feedback, and the increase in S, indicating greater stability.
Error bars show standard deviations

obtained from these fits (140 ± 35 s−1) were closer to those
found from EEG fits; the values of other parameters were not
notably different from fits where α was allowed to vary.

Although small, the difference in the corticothalamic delay
t0 between resting EEG and CAEPs is robust, as it is highly
constrained by the alpha peak frequency of the EEG (Rowe
et al. 2004) and by the latencies of CAEP components.
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4.3 Stimulus parameters

In contrast to other model parameters, the stimulus parame-
ters are not comparable to EEG, since the stimulus used in
resting EEG fits was spatiotemporal white noise (Robinson
et al. 1997).

Both temporal stimulus parameters are strongly
constrained by the N1 feature of the CAEP. The latency of
this feature is given by t = tos + t0/2, where tos is the tem-
poral stimulus offset. Since t0 is robust, it follows that the
stimulus offset tos can be accurately determined. Similarly,
the width of the N1 feature is determined predominantly by
the stimulus duration ts . As a result, both of these parameters
have narrow distributions.

The spatial stimulus offset (ros) and width (rs) are more
poorly constrained, as their primary effect is to reduce high
spatiotemporal frequencies that are already damped given
typical values of ts . Both parameters lie within physiological
ranges, however. Interestingly, rs = 0.09 m is equivalent to
a volume conduction parameter k0 (see Sect. 2.4) of 22 m−1,
which agrees very well with previous estimates (O’Connor
et al. 2002), implying that rs is dominated by volume con-
duction effects.

5 Discussion

We have shown that by fitting our physiology-based model
to experimental CAEP data, self-consistent and reproducible
estimates of model parameters can be obtained. In this sec-
tion, we suggest some possible physiological interpretations
of these results.

The key advantage of physiology-based modeling is that
the fitted model parameters give us information about brain
physiology that is only accessible by invasive means, if at
all. The changes in parameters found using this model accord
with such invasive experiments done on other animals: the
increases in cortical and thalamic inhibition found here are
consistent with microelectrode and depth electrode record-
ings in rats (Meeren et al. 2001; Barth and Di 1990), suggest-
ing that the CAEP generation mechanisms in rats are similar
to those implied by our model in humans.

One of the complications of both experimentation and
modeling is the considerable complexity of even a single fea-
ture of the CAEP—Näätänen and Picton (1987) found seven
separate sources of the auditory N1 feature, many of which
are fairly localized. The process of averaging used to pro-
duce EPs effectively selects these active networks, while fil-
tering out activity from other regions in the brain. Hence, the
parameters reported here likely do not reflect changes in the
whole brain, but instead describe the state of networks spe-
cific to CAEP generation. For example, the observed increase
in inhibition could be explained by increased excitation in a

focal area of cortex, surrounded by a large area of increased
inhibition. Such lateral inhibition is a widespread phenome-
non in the nervous system (Blakemore et al. 1970; Houtgast
1972; Margrie et al. 2001), and several authors have pos-
tulated that it is the basis of focal attention (Crick 1984;
Sokolov et al. 2002).

The possibility of specific networks being selected in the
CAEP also invites a possible explanation for the decrease in
the corticothalamic delay t0. This change implies an increase
in the corticothalamic conduction velocity, which suggests
that networks with greater conduction velocities are recruited
(or weighted more heavily) in stimulus processing. This is
consistent with neuroanatomical studies showing that axons
from the relay nuclei of the thalamus are more myelinated
than those of the diffuse thalamocortical projection system
(Salami et al. 2003). Additionally, our estimate of t0 is sim-
ilar to the empirically determined time delay required for
attention switching (Crick 1984; McDonald et al. 2005), con-
sistent with the hypothesis that the thalamus is essential to
stimulus processing.

As with conventional theories of information process-
ing in the brain (Ashwin and Timme 2005), our model pre-
dicts that the brain operates near an instability boundary
(Robinson et al. 2002). However, in order to respond to stim-
uli efficiently, the networks that process these stimuli must
respond transiently (< 1 s). In our model, this implies a high
degree of damping, and hence a high level of stability within
these networks. As expected, the parameters corresponding
to CAEPs are further from instability than the parameters for
resting EEG.

The values of the gains observed here are strikingly simi-
lar to those reported for sleep states (Robinson et al. 2002).
Although there are obvious behavioral differences between
sleep and CAEPs, it is notable that both are dominated by
theta activity. While it cannot be concluded that the same
pathway is involved, it does appear that the pathways used in
both sleep and CAEPs have similar latencies, which would
be expected if both are the result of corticothalamic nega-
tive feedback loops. Additionally, several studies have shown
increased amplitudes of certain CAEP components, particula-
rly P2, during sleep (Nordby et al. 1996; Nielsen-Bohlman
et al. 1991). These findings were most pronounced in
slow-wave sleep, while CAEPs elicited during REM sleep
resemble those during waking. These studies suggest that
the mechanism by which delta activity is enhanced in sleep
may also enhance certain CAEP components.

Another similarity between slow-wave sleep and CAEPs
is a reduction in the dendritic rate constant α compared to
resting EEG (Robinson et al. 2004). Since α is a weighted
average of multiple rate constants, this difference could be
produced by changes in the relative activity of AMPA/kainate
and GABAA neurons (for which α ≈ 50–200 s−1; Hausser
and Roth 1997; Otis and Mody 1992) to NMDA and GABAB
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neurons (for which α ≈ 5–10 s−1; Spruston et al. 1995; Otis
et al. 1993). Even a small recruitment of NMDA and GABAB

neurons could reduce the effective decay rate significantly.

6 Conclusion

We have developed a physiology-based method of analyz-
ing EPs based on a quantitative corticothalamic mean-field
model. This model produced excellent fits to experimental
CAEP data, and the parameters of the fits were used to suggest
the physiological basis of CAEP generation. These parame-
ters converged to physiologically realistic values even in the
absence of external constraints, providing strong support for
the validity of the model. Furthermore, the observed differ-
ences in parameter values between resting EEG and CAEP
states agree with previous studies on CAEP generation, and
provide insights into possible similarities between CAEPs
and other brain phenomena.

The advantages of this method of EP analysis compared to
standard methods are significant, including: (i) it is objective
and automated; (ii) it is based on physiology, and the fitted
parameters provide quantitative information on underlying
brain physiology; (iii) EEG and EP data are treated in a uni-
fied manner; (iv) the entire EP waveform is used, in contrast
to standard techniques which typically use only the ampli-
tudes and latencies of a few predetermined features; and (v)
our method may allow features to be distinguished which are
too subtle to be detected using other methods.

The application of this method to experimental data has
shown that CAEPs can be generated by changes in the gains
of corticothalamic loops, due to either modulations of an
existing network, or to the recruitment of additional networks
with different parameter values. This agrees with the well-
established view that corticothalamic pathways are essential
to stimulus processing and hence CAEP generation. Addi-
tionally, similarities between CAEPs and slow-wave sleep
were observed, with both phenomena appearing to be gen-
erated by corticothalamic negative feedback loops. Future
applications of our method of EP analysis include quantita-
tive investigations of the physiology of aging and disease.
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