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The human brain is fragile in the face of oxygen deprivation. Even a brief interruption of metabolic supply at birth challenges an otherwise
healthy neonatal cortex, leading to a cascade of homeostatic responses. During recovery from hypoxia, cortical activity exhibits a period
of highly irregular electrical fluctuations known as burst suppression. Here we show that these bursts have fractal properties, with
power-law scaling of burst sizes across a remarkable 5 orders of magnitude and a scale-free relationship between burst sizes and
durations. Although burst waveforms vary greatly, their average shape converges to a simple form that is asymmetric at long time scales.
Using a simple computational model, we argue that this asymmetry reflects activity-dependent changes in the excitatory–inhibitory
balance of cortical neurons. Bursts become more symmetric following the resumption of normal activity, with a corresponding reorga-
nization of burst scaling relationships. These findings place burst suppression in the broad class of scale-free physical processes termed
crackling noise and suggest that the resumption of healthy activity reflects a fundamental reorganization in the relationship between
neuronal activity and its underlying metabolic constraints.
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Introduction
The vulnerability of human cerebral cortex to hypoxia is of par-
amount importance. Any suspension of the brain’s continuous
metabolic inflow leaves it susceptible to damage unless supply
promptly resumes. Such interruptions occur relatively frequently
during complications at birth. Following an initial quiescent pe-
riod, scalp electroencephalography (EEG) acquired in this critical
time window exhibits an abnormal pattern termed “burst sup-
pression,” characterized by the erratic appearance of high-
amplitude irregular discharges across most cortical regions
punctuating an otherwise low-amplitude background (Nieder-
meyer et al., 1999). Individual bursts vary greatly in magnitude
and shape, ranging from very brief fluctuations barely surpassing
amplifier and physiological noise to high-amplitude waveforms
lasting several seconds. This pattern of pathophysiological pro-
cesses, arising from compromise of blood-oxygen supply to the

neonatal brain, is termed hypoxic-ischemic encephalopathy
(HIE) and is the most frequent severe neurological morbidity in
newborns. Outcomes range from complete recovery to perma-
nent neurodevelopmental disability, or even death (Grigg-
Damberger et al., 1989; Volpe, 2008). Complete recovery occurs
only in cases where burst suppression rapidly resolves and nor-
mative, continuous EEG activity resumes within a few hours
(Hellström-Westas et al., 1995; ter Horst et al., 2004). Despite its
prevalence, the underlying mechanisms of burst suppression in
HIE remain poorly understood.

Erratic, burst-like discharges occur in a wide range of physical
systems. Examples include the noise emitted by slowly crushed
plastic (Kramer and Lobkovsky, 1996), Barkhausen noise emitted
by ferromagnets (Spasojević et al., 1996), and violent clusters of
earthquakes driven by tectonic plate movements (Sethna et al.,
2001). Despite their appearance in such diverse settings, the fluc-
tuations of this “crackling noise” exhibit universal characteristics
(Sethna et al., 2001) such as power-law distributions of fluctua-
tion size, implying that they are “scale-free.” More deeply, recent
studies have shown that average shapes of crackling noise fluctu-
ations converge toward a simple, universal scaling function at all
time scales, despite tremendous diversity of fluctuation morpholo-
gies (Baldassarri et al., 2003; Papanikolaou et al., 2011). Analyzing
these features yields new insights into underlying mechanisms.

Crackling noise occurs when interactions in a system are in a
critical balance between amplification and dissipation (Colaiori
et al., 2004). Given the critical balance of excitatory and inhibi-
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tory activities in the cortex (Shu et al., 2003), crackling noise
might be expected to arise in the brain. Scale-free fluctuations in
the spatial extent of neuronal activity, also known as neuronal
avalanches, have indeed been reported in cultured tissue (Beggs
and Plenz, 2003; Friedman et al., 2012) and in vivo primate re-
cordings (Petermann et al., 2009; Shew et al., 2009). However,
despite recent progress (Sporns et al., 2004; Stam and de Bruin,
2004; Kitzbichler et al., 2009; He et al., 2010; Haimovici et al.,
2013; Shriki et al., 2013), the existence of such avalanches in
humans remains controversial (Dehghani et al., 2012). Here, we
show that the human neonatal cortex exhibits a striking example
of crackling noise during recovery from an asphyxic insult at
birth. Furthermore, the average shape and scaling relationships
of the crackling noise fluctuations exhibit a robust reorganization
upon the resumption of continuous electrical activity.

Materials and Methods
Data acquisition and preprocessing
We analyzed long-term scalp EEG recordings from all babies admitted to
the tertiary level neonatal intensive care unit in Helsinki University Cen-
tral Hospital due to perinatal asphyxia during a 30 month period from
November 2009 to April 2012. Inclusion criteria for these archived data
were high-quality EEG data with initial burst suppression within 18 h of
birth and sufficient clinical details regarding delivery, drug treatments,
other complications immediately following birth, and Apgar scores 1, 5,
and 10 min after birth. Burst suppression was identified from con-
temporaneous clinical records and verified visually by a clinical neu-
rophysiologist (S.V.). Long epochs (40 –330 min; Table 1) of relatively
artifact-free data were used in this report. Exclusion criteria included the
presence of epileptic seizures or excessive high-amplitude, non-neuronal
artifacts such as those due to respiration or physical movement. EEG data
from a total of 13 neonates (9 male) met these criteria, having presented
with either asphyxia at birth (n ! 12) or a sudden cardiorespiratory
collapse with severe asphyxia immediately following birth (n ! 1). In the
intensive care unit, clinical management included continuous EEG mon-
itoring and whole-body hypothermia. EEG was recorded using NicOne
or Olympic EEG monitors (Natus) at sampling rates 250 and 500 Hz or
256 Hz, respectively, and stored offline for later analysis. We analyzed
data from a single biparietal derivation (P3–P4), which is the most com-
mon recording configuration in use in the neonatal intensive care setting.
Although analysis of the spatial properties of posthypoxic burst suppres-
sion would likely be informative, we focus here on the temporal signa-
tures. This approach mirrors treatments of Barkhausen noise in
ferromagnets, where a single macroscopic channel is used to record a

global measure of the inaccessible microscopic dynamics (Sethna et al.,
2001; Zapperi et al., 2005; Papanikolaou et al., 2011). We exported data
from the amplifiers into either European Data Format (for NicOne) or
ASCII format (Olympic monitor). Preprocessing of data (in MATLAB)
was conducted to standardize the sampling rate of all data to 250 Hz, i.e.,
500 Hz recordings were downsampled (n ! 6) by discarding every sec-
ond point, and the 256 Hz recording was resampled (n ! 1) by using an
anti-aliasing (low-pass) filter. The amplitude envelopes of these data
were obtained using the magnitude of the Hilbert transform, which was
squared to obtain the instantaneous power. Finally, we smoothed the
power fluctuations using a 10th-order Savitzky-Golay filter (19 Hz cut-
off) to reduce noise on short time scales and assist the convergence of
average burst shapes (Papanikolaou et al., 2011). To confirm that the
results presented in this report were robust to the choice of filter settings,
we repeated all analyses with multiple choices of filter settings for both
the raw data and power fluctuations. We also studied the robustness of
burst distribution statistics across different choices of these filter settings.

Use of these archived, de-identified EEG recordings was approved by
the Ethics Committee of the Hospital for Children and Adolescents,
Helsinki University Central Hospital.

Statistical characterization
After preprocessing the data, we analyzed each neonatal EEG time series
as follows: (1) threshold estimation; (2) burst extraction; (3) calculation
of burst areas and durations; (4) fitting burst distributions; (5) calcula-
tion of average shapes at different time scales; and (6) quantification of
variations in shapes by calculating asymmetry and flattening. Each of
these steps is described in detail, below.

Threshold estimation. We estimated a unique threshold for each time
series as that which maximized the number of identified bursts. This
heuristic is straightforward and avoids arbitrary or subjective choices.
Very low thresholds—such as below the noise level—yield very few
bursts. As the threshold rises above the noise floor, suprathreshold bursts
emerge, although for small thresholds, many of these will be artificially
merged. Very high thresholds fail to identify small bursts and, in the
extreme, fail to identify any bursts at all. Hence the number of bursts is a
simple unimodal function of threshold with a single maximum (Fig. 1A).
We hence used this maximum— unique to each dataset—as the choice of
threshold. To reduce computation time, we restricted the set of thresh-
olds tested to 50 quantiles of the data; results are insensitive to the precise
number as the relationship between threshold and number of bursts is
relatively smooth in all our datasets. Moreover, we verified that all results
are insensitive to the precise choice of threshold. Quantitative results,
such as the scaling exponent and burst shape, are stable with respect to
reasonable changes in threshold. Qualitatively, the existence of power-
law scaling and near-universal burst shapes is strongly robust to thresh-
old choice.

The present approach for threshold detection yields a single data-
driven value and hence allows independent replication, thereby over-
coming the established ambiguities associated with visual burst detection
(Palmu et al., 2010).

Burst extraction. A burst is defined as all successive suprathreshold data
points, beginning when the signal crosses the threshold from below and
ceasing when the signal next crosses the threshold from above. Figure 1B
shows an example thresholded burst. This method also yields interburst
intervals corresponding to data points between threshold crossings.
Bursts of duration "40 ms were not used for further analysis because
these bursts are only coarsely sampled by at most 10 samples at 250 Hz,
and thus likely susceptible to noise.

Calculation of burst areas and durations. After thresholding and iden-
tifying discrete bursts, we then examined burst size (suprathreshold area
under the curve) and burst duration (time between successive threshold
crossings), as illustrated in Figure 1C.

Fitting theoretical cumulative distribution functions to burst distribu-
tions. For each set of fluctuation statistics, we calculated the upper cumu-
lative distribution function [i.e., P(X # x)] and fitted candidate
distributions to these using the method of maximum likelihood. We
tested power law (the Pareto distribution), power law with exponential
cutoff, log-normal, stretched exponential (the Weibull distribution), and

Table 1. Clinical data summary

Infant Sex
Recording
length (min)

pH at
birth

Gestational
age (weeks
$ days)

Apgar
(1/5/10
min)

1 m 75 6.71 34 $ 5 0/0/6
2 m 120 6.76 40 $ 1 2/4/4
3 m 90 7.10 40 $ 3 0/0/1
4 f 120 6.89 41 $ 4 2/3/5
5 f 180 6.86 40 $ 1 1/1/1
6 f 60 6.8 41 $ 3 2/2/5
7 m 100 7.30 36 $ 1 1/4/5
8 m 330 7.02 40 $ 0 2/3/5
9 m 40 6.84 38 $ 1 1/4/5
10 m 70 7.30 36 $ 1 1/4/5
11 m 60 6.90 41 $ 0 5/6/6a

12 m 60 7.15 39 $ 3 1/1/1
13 f 160 6.68 36 $ 4 0/2/3

Gestational age refers to the number of full weeks plus the number of days. Apgar scores refer to the short standard
clinical test done immediately after birth that examines breathing effort, heart rate, muscle tone, reflexes, and skin
color. pH at birth was measured from umbilical cord blood sample. m, Male; f, female.
aInfant 11 has normal Apgar values at birth, because he presented with sudden cardiovascular collapse and ensuing
asphyxia at 33 min of age.
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exponential distributions (Fig. 1D). Following established techniques,
each theoretical distribution was fitted to the right-hand side of the em-
pirical cumulative distribution function (CDF), above a lower bound
that minimizes the Kolmogorov–Smirnov goodness-of-fit statistic be-
tween the power-law model and the data (Clauset et al., 2009). This
method of determining the range of the fit from the data strikes a balance
between fitting too wide a range (i.e., outside the power-law regime) and
too narrow a range (i.e., unnecessarily throwing away data). We used the
same fitting range for all five candidate distributions. We estimated a p
value for the fitted power law by comparing to 2500 synthetic datasets
drawn from a true power law. This estimated the likely deviation between
the data and the fitted power law due to finite sampling of a true power
law. The p value was taken to be the fraction of synthetic datasets that
deviated from the power law by at least as much as the data. A value of p #
0.1 indicates plausibility of the power-law hypothesis (Clauset et al.,
2009). We compared the fitted power law with alternative distributions
using likelihood ratio tests. Significant deviation of the likelihood ratio
from zero was tested using Vuong’s methods (Vuong, 1989). For the
nested hypothesis of power law versus power law with cutoff (the latter
family includes the former), the null hypothesis was that the power law is

the best-fitting distribution. For all other tests,
the null hypothesis was that both distributions
are equally far from the true distribution. In all
infants, the exponential distribution was
clearly an implausible fit—the CDF in Figure
1D is typical of all datasets—as verified by log-
likelihood ratios at least an order of magnitude
higher than those of all other fits.

For additional verification of our power-law
fits, we also fitted strictly truncated power laws
to the burst distributions (Deluca and Corral,
2013). We then used these fits to identify self-
consistent ranges of power-law scaling in areas
and durations. The strictly truncated power
law is essentially the Pareto distribution re-
stricted to a finite range of data bounded by
lower and upper cutoffs (cf. the Clauset et al.,
2009 method that fits the entire tail above a
lower cutoff). These cutoffs were estimated
from the data by examining a 100-by-100 grid
of logarithmically spaced ranges. For each can-
didate range, we fitted the strictly truncated
power law using maximum likelihood esti-
mates, and generated 50 synthetic datasets.
Following the method of Deluca and Corral
(2013), we chose the fitted range as the widest
(maximizing the ratio of upper and lower cut-
offs) that yielded a plausible fit, defined as re-
quiring at least 20% of the synthetic datasets to
deviate from the fit by at least as much as the
data.

We also analyzed the scaling relationship be-
tween burst durations and burst areas. We
binned the bursts by duration into 50 logarith-
mically spaced bins and calculated within each
the median duration and median area. Scaling
relationships were insensitive to the specific
choices of the binning. Plotting these data re-
vealed a straight line in log-log coordinates, in-
dicating a power-law relationship between the
two quantities (not to be confused with a
power-law distribution of a random variable).
We estimated the scaling exponent (slope of
the linear relationship in log-log coordinates)
using a linear least-squares fit.

Calculation of average shape at different time
scales. To gain deeper insight into the nature of
neuronal activity occurring in burst suppres-
sion, we next studied the average shape of
bursts across a hierarchy of temporal scales.

Burst shape analysis is a sharper probe than analysis of size distribution
alone, because systems with the same power laws can exhibit different
average shapes (Sethna et al., 2001). Scale-dependent deviations in aver-
age shapes, such as flattening and asymmetrical skewing (Spasojević et
al., 1996; Baldassarri et al., 2003; Colaiori et al., 2004; Zapperi et al.,
2005), have been observed in both empirical data and theoretical models,
yielding new insights into the underlying mechanisms. To improve the
signal-to-noise ratio for the average shape analysis, we pooled bursts over
narrow ranges of durations and averaged within these bins (Papaniko-
laou et al., 2011), rather than averaging only over bursts of exactly the
same duration. Hence, the durations were first partitioned onto a finite
grid and the average shapes estimated over all bursts within each bin.
Here we used a logarithmically spaced partition spanning the observed
fluctuation ranges with bin edges at durations of 160 ms, 320 ms, 640 ms,
1.28 s, 2.56 s, and 5.12 s. Durations in the figure captions denote the left
endpoints of bins.

To average bursts of different durations within each bin, we first in-
terpolated all bursts onto the lowest duration within the bin. Due to the
finite temporal resolution of the data, each threshold crossing occurs

Figure 1. Data analysis. A, Data-driven heuristic method to estimate thresholds and identify bursts. The threshold chosen is that
which maximizes the number of bursts taken over a set of 50 quantiles of the instantaneous power. B, Example of a single burst
spanning 95 data points (380 ms) above threshold (red line). C, Schematic burst with its duration (time above threshold) and size
(area under the curve above threshold, shaded). D, Exemplar upper CDF of burst size with fits to Pareto (red), log-normal (blue),
Weibull (magenta), exponentially truncated power-law (green), and exponential (light gray) distributions. The exponential dis-
tribution’s poor fit here is typical of all our data. BA, Burst area. E, Example of a single burst spanning 50 data points (200 ms) above
threshold (red). To estimate precise burst start and end points, threshold crossings (red circle) were estimated by linear interpo-
lation between the sub- and superthreshold points, as illustrated in the zoomed inset. F, Two bursts of different original durations
(from B and E) interpolated onto the same uniform time axis and rescaled to have unit duration and area.
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between two samples rather than on a single
point. We estimated the precise endpoints of
each burst by linearly interpolating between
the sub- and suprathreshold points on either
side of the threshold crossing. Thus, we set each
burst to begin and end at the exact threshold,
estimated to first order (Fig. 1E). Next we res-
caled the bursts to have unit area and unit du-
ration (Colaiori et al., 2004; Fig. 1F ). Finally,
we averaged together all bursts in each bin to
obtain the average shape for that bin.

Quantification of variations in shapes by cal-
culating asymmetry (skewness) and flattening
(kurtosis). To quantify asymmetry and flatten-
ing of the average shapes, we estimated measures of skewness (Zapperi et
al., 2005) and kurtosis, respectively, as a function of duration. These
measures are not to be confused with the skewness and kurtosis (i.e.,
third and fourth standardized moments) of the time series itself. Skew-
ness % is given by
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where $y(t, T)% is the average burst shape of duration T, t! ! &1/T'

!
0

Tdt(y&t, T')t, and we evaluated the integrals using the trapezoidal rule.

The above expressions are the same as those for the theoretical skewness
and kurtosis of a probability density function given by $y(t, T )%.

To estimate skewness and kurtosis trends, we used average shapes
calculated on a finer partition of durations than was used for displaying
the average shapes (where we used fewer durations for clarity). The linear
trends as a function of duration were estimated by the ordinary least-
squares method.

Results
Scale-free distribution of burst sizes
We analyzed scalp-EEG data acquired for clinical purposes from
13 term neonates following asphyxia at birth. These data showed
the classic temporal sequence of cortical activity during recovery
from HIE, namely a period of complete inactivity during which
the EEG contains only non-neuronal noise (Fig. 2A), followed by
burst suppression (Fig. 2B,C) before the resumption of contin-
uous activity (Fig. 2D). The burst suppression period exhibits
highly variable electrical bursts erratically punctuating a low-
amplitude, “suppressed” EEG trace (Fig. 2B,C). Whereas the pe-
riods of suppression contain low-voltage amplifier noise and
non-neuronal artifacts, the bursts reflect intermittent, spontane-
ous activity in large pools of neurons (Niedermeyer et al., 1999).

Detailed visual inspection of burst power (amplitude squared)
revealed irregular size and structure extending across several or-
ders of magnitude (Fig. 3A–C). Therefore, we first analyzed the
distribution of burst sizes. Individual bursts were identified by

thresholding the data using a simple data-driven heuristic to
identify the appropriate threshold (Fig. 1). Cumulative distribu-
tions of burst sizes were then derived from the resulting suprath-
reshold bursts. These distributions were long-tailed, with broad
power-law scaling regimes spanning between 2 and 5 orders of
magnitude before exponential truncation at their far right tails
(Fig. 3D–F). Truncation is common to all natural systems where
energy and size are bounded. The complete collection of distri-
butions from all 13 neonates is provided in Figure 4. Approxi-
mately one third of our data also exhibited a “knee” before the
truncation (denoted by asterisks), which suggests the presence of
fluctuations that are larger and more numerous than the back-
ground trend. Burst duration CDFs also follow truncated power
laws, albeit over a more restricted 1–2 orders of magnitude (Fig. 5).

To formally compare candidate probability distributions for
these data, we used a hierarchical approach that balances model
likelihood with model complexity (Clauset et al., 2009). We com-
pared the widely observed exponential distribution against the
standard power-law distribution (also known as the Pareto dis-
tribution) and three other heavy-tailed distributions: the power
law with exponential cutoff, log-normal, and stretched exponen-
tial (or Weibull) distributions (Figs. 3D–F, 4). The likelihoods of
all four heavy-tailed distributions easily exceeded that of the ex-
ponential distribution. Among the heavy-tailed candidates,
model likelihood was highest for the exponentially truncated
power-law distribution in 12 of 13 recordings. In the remaining
case, the likelihood of the stretched exponential was marginally
higher than the truncated power law, but model comparison
showed this difference to not be significant. However, when pe-
nalized for extra complexity, the simple power-law distribution
was more likely than the truncated power-law in three of the
datasets (Table 2). In many instances, the match between the
empirical and theoretical cumulative distribution functions was
extraordinary. In several cases, the fitted distributions showed a
close fit to the data #5 orders of magnitude. For the durations,
the exponentially truncated power law was also the best-fitting
distribution, with the simple power law favored in three datasets
(Table 3). Power-law scaling exponents for the fitted area distri-
butions ranged from *2.32 to *1.18 (mean, *1.59; SE, 0.11;
95% CI, *1.38 to *1.81; Table 4), consistent with classic scale-
free statistics in critically balanced complex systems (Colaiori et
al., 2004). Exponents for the fitted duration distributions ranged
from *3.32 to *1.35 (mean, *1.97; SE, 0.16; 95% CI: *2.28 to
*1.66; Table 4).

Another form of power-law distribution is the strictly trun-
cated power law (Deluca and Corral, 2013), which is restricted to
a range of data between both lower and upper cutoffs—a nar-
rower range than the tail distributions fitted above. We present
these fits overlaid on probability density functions (PDFs) of the
burst areas (Fig. 6) and durations (Fig. 7). These PDFs also ex-

Figure 2. From burst suppression to continuous cortical activity in the asphyxic newborn. A, Cortical inactivity immediately
after birth asphyxia. B, Sparse occurrences of burst suppression activity. C, Dense burst suppression activity. D, Transition toward
normal continuous cortical activity.
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hibit striking power-law scaling regimes, complementary to the
CDF findings. Burst area fits span up to 7 orders of magnitude,
and burst duration fits span up to 3 orders of magnitude. These
fits provide additional support for the existence of power-law
distributions in our data.

The relationship between median burst size and burst dura-
tion also exhibited a striking power law in all neonates, showing a
linear regime in double-logarithmic coordinates that in most
cases spanned #4 orders of magnitude of burst size (Figs. 3D–F,
Fig. 4 insets). Notably, the power-law scaling relationship be-

A

B

C

G

D

E

F

Figure 3. Scale-free distribution of burst size. A, A 25 min sample recording of burst suppression in neonatal scalp EEG data. B, C, Successive magnifications of instantaneous power show erratic
bursts punctuating a low-power noise floor revealing irregular morphology of bursts across several orders of magnitude. D–F, Exemplar upper cumulative distributions of burst area (solid circles)
showing lengthy power-law regimes. Solid lines show best-fitting candidate long-tailed distributions: power law (red), Weibull (blue), log-normal (magenta), and exponentially truncated power
law (green). Insets show scaling relationship between median burst size and burst duration in double-logarithmic coordinates. G, Scaling relationship between burst area and burst duration for burst
suppression (BS, blue) and after the resumption of continuous cortical activity (CTS, red). Crosses denote data points, circles denote means, and lines denote means + SEMs.
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Figure 4. Burst area distributions for all burst suppression recordings. A–M, Upper CDFs of burst area (BA, black) for all infants 1–13, respectively, with fits to Pareto (red), log-normal (blue),
Weibull (magenta), and exponentially truncated power-law (green) distributions. Asterisks denote “knees” showing an excess of bursts above the background trend. Insets, Scaling relationships
between burst durations and burst areas (black; points are medians after binning both axes), with least-squares linear fit in double-logarithmic coordinates (red). BD, Burst duration.
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Figure 5. Burst duration distributions for all burst suppression recordings. A–M, Upper CDFs of burst duration (BD; black) for all infants 1–13, respectively, with fits to Pareto (red), log-normal
(blue), Weibull (magenta), and exponentially truncated power-law (green) distributions.
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tween size and duration extended to very large scales without
truncation in all neonates.

Lengthy EEG recordings acquired immediately after reso-
lution of burst suppression were also available in 10 of these
neonates (see Materials and Methods). We extracted bursts
using the same thresholding method as for the burst-
suppression recordings. We compared the indices of scale-free
activity in burst suppression to those derived from the EEG

recordings acquired immediately after resumption of continuous
activity in the same neonates. Power fluctuations continued to
meet statistical criteria for truncated power-law distributions.
However, the slope of the scaling relationship between burst
size and burst duration showed a significant increase following
the transition to continuous EEG (Fig. 3G, p ! 0.017, df ! 9,
t ! 2.9, paired t test). Hence, the scaling relationship between
burst duration and burst area changes upon cessation of burst

Table 2. Burst size CDF model-likelihood tests

Infant

Power
law
p

Power law with cut-off Log-normal Stretched exponential

DistributionLLR p LLR p LLR p

1 0 *56.2 0 *24.2 1.6 , 10 *6 *28.6 5.0 , 10 *7 Power law with cut-off
2 0.16 *0.157 0.57 *0.112 0.79 *0.0282 0.97 Power law
3 0 *24.3 3.2 , 10 *12 *19.5 6.8 , 10 *5 *21.6 3.5 , 10 *5 Power law with cut-off
4 0 *31.8 1.4 , 10 *15 *29.4 5.1 , 10 *7 *31.9 1.8 , 10 *7 Power law with cut-off/stretched exponential
5 0.80 *6.34 , 10 *3 0.91 *0.746 0.11 0.207 0.50 Power law
6 0.030 *9.05 2.1 , 10 *5 *0.183 0.68 1.25 0.49 Power law with cut-off
7 0 *288 0 *201 2.2 , 10 *39 *219 1.2 , 10 *42 Power law with cut-off
8 0.034 *23.4 8.2 , 10 *12 *4.28 0.035 *4.81 0.039 Power law with cut-off
9 0.60 *6.48 , 10 *3 0.91 *0.393 0.18 0.262 0.44 Power law
10 0.028 *18.6 1.0 , 10 *9 *3.49 0.049 *3.96 0.048 Power law with cut-off
11 0 *65.9 0 *26.1 7.8 , 10 *7 *29.5 3.8 , 10 *7 Power law with cut-off
12 0 *45.7 0 *16.8 2.7 , 10 *5 *19.5 1.4 , 10 *5 Power law with cut-off
13 0.035 *15.6 2.4 , 10 *8 *6.04 0.016 *6.73 0.014 Power law with cut-off

Corresponding fits and data in Figure 4. Negative log-likelihood ratio (LLR) values favor that specific column’s distribution compared with a power-law distribution fit; e.g., for subject 1, an LLR of *56.2 favors a power law with exponential
cut-off. For the power law column, p value is for the hypothesis that the power-law distribution is a plausible fit. For the other distribution columns, p value is for the hypothesis that the corresponding LLR is zero. For subject 4, both power
law with exponential cut-off and stretched exponential are favored, with the hypothesis test unable to decide between these.

Table 3. Burst duration CDF model-likelihood tests

Infant

Power
law
p

Power law with cut-off Log-normal Stretched exponential

DistributionLLR p LLR p LLR p

1 0 *137 0 *107 2.7 , 10 *22 *118 3.3 , 10 *24 Power law with cut-off
2 0 *62.8 0 *46.9 7.4 , 10 *10 *50.7 3.1 , 10 *10 Power law with cut-off
3 0 *60 0 *49.7 1.5 , 10 *11 *53.6 2.2 , 10 *11 Power law with cut-off
4 0.48 *0.206 0.52 *0.107 0.77 *0.126 0.76 Power law
5 0.56 *0.598 0.27 *0.443 0.57 *0.467 0.57 Power law
6 0.058 *13.9 1.30 , 10 *7 *5.19 0.023 *5.89 0.021 Power law with cut-off
7 0 *257 0 *190 6.1 , 10 *37 *210 2.5 , 10 *39 Power law with cut-off
8 0 *41.4 0 *20.3 7.0 , 10 *6 *23.8 3.2 , 10 *6 Power law with cut-off
9 0.94 *0.121 0.62 *0.0308 0.85 *0.0229 0.94 Power law
10 0 *21.5 5.60 , 10 *11 *10.7 0.0013 *11.8 0.00088 Power law with cut-off
11 0 *79.6 0 *55.6 4.7 , 10 *12 *62.4 6.1 , 10 *13 Power law with cut-off
12 0 *57.9 0 *29.9 1.0 , 10 *7 *35.2 3.0 , 10 *8 Power law with cut-off
13 0 *12.9 3.90 , 10 *7 *8.07 0.0079 *9 0.0068 Power law with cut-off

Corresponding fits and data in Figure 5. Log-likelihood ratios and p values defined as in Table 2.

Table 4. Burst statistics

Infant
BA
exponent

Fitted range of
BA (min, max;
mV 2 s)

BD
exponent

Fitted range of BD
(min, max; s)

BA
vs BD
exponent

Skewness
slope
(s *1)

Kurtosis
slope
(s *1)

1 1.29 3.9 , 10 2, 1.8 , 10 6 1.35 1.2 , 10 *1, 2.1 , 10 1 0.49 0.09 0.03
2 2.21 8.5 , 10 3, 9.1 , 10 5 1.91 1.6 , 10 *1, 1.9 , 10 1 0.60 0.04 *0.016
3 1.66 3.6 , 10 3, 1.1 , 10 5 1.80 2.3 , 10 *1, 5.4 , 10 0 0.61 0.12 0.06
4 1.18 1.4 , 10 2, 1.5 , 10 9 2.51 2.4 , 10 1, 1.7 , 10 2 0.56 0.015 *0.03
5 2.32 2.0 , 10 5, 1.0 , 10 7 2.81 4.9 , 10 0, 6.0 , 10 1 0.54 0.04 *0.009
6 1.47 5.3 , 10 0, 1.8 , 10 6 1.75 2.1 , 10 *1, 3.2 , 10 1 0.56 0.03 0.03
7 1.32 2.2 , 10 0, 2.7 , 10 5 1.62 9.6 , 10 *2, 3.5 , 10 1 0.49 0.04 0.024
8 1.39 3.6 , 10 2, 1.0 , 10 7 1.61 3.0 , 10 *1, 4.9 , 10 1 0.53 0.006 *0.03
9 2.28 2.8 , 10 4, 2.4 , 10 6 3.32 2.1 , 10 0, 9.9 , 10 0 0.54 0.12 0.12
10 1.43 3.9 , 10 2, 2.4 , 10 6 1.80 2.2 , 10 *1, 2.3 , 10 1 0.48 0.05 0.05
11 1.36 6.4 , 10 0, 5.0 , 10 5 1.56 1.3 , 10 *1, 1.9 , 10 1 0.51 0.07 0.04
12 1.30 2.5 , 10 2, 6.9 , 10 6 1.48 1.2 , 10 *1, 2.9 , 10 1 0.51 0.04 0.03
13 1.53 1.4 , 10 3, 3.6 , 10 6 2.10 1.1 , 10 0, 5.6 , 10 1 0.52 0.05 *0.06

Burst area (BA) CDF exponent estimated from the fit to an exponentially truncated power law. BD, Burst duration.
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Figure 6. Burst area probability densities for all burst suppression recordings. A–M, Logarithmically binned PDFs of burst area (BA; black) for all infants 1–13, respectively, with fits to strictly
truncated power-law distributions (orange). Fits are maximum likelihood estimates and so do not depend on the PDF binning.
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Figure 7. Burst duration probability densities for all burst suppression recordings. A–M, Logarithmically binned PDFs of burst duration (BD; black) for all infants 1–13, respectively, with fits to
strictly truncated power-law distributions (orange). Fits are maximum likelihood estimates and so do not depend on the PDF binning.
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suppression and the resumption of continuous cortical
activity.

To study the robustness of our results to variations in the
methodological details, we tested a range of thresholds and filter
settings around the chosen values. For twofold changes in the
threshold, the overall shape of the distributions remains largely
unchanged, only slightly affecting the smallest bursts (Fig. 8A).
The main finding of lengthy scaling regimes is insensitive to the
particular choice of threshold. For changes in threshold of
+10%, we extracted the exponentially truncated power-law ex-
ponent for burst areas. For 11 of 13 of the burst suppression
datasets in Figure 4, the 20% range in threshold yields a "1%
change in exponent, showing that our results are robust to choice
of threshold. Of the remaining 2 of 13 sets (Fig. 4B, E), the expo-
nent in B changes by 7% and that in E by 20%—in both cases
because the threshold lies near a jump in the lower cutoff as
determined by the Clauset et al. (2009) algorithm. Note that these
two cases both exhibit large bursts above the background
trend. Similarly, varying the filter cutoff frequency has little
effect on the distributions (Fig. 8B). As is intuitively expected,
stronger filtering (lower cutoff frequencies) primarily elimi-
nates the smallest bursts but leaves the bulk of the distribution
unchanged.

Scaling functions of average burst shape
To gain deeper insight into the nature of neuronal activity occur-
ring in burst suppression, we next studied the average shape of
bursts across a hierarchy of temporal scales. Scale-specific shapes
and their interscale relationships give insight into the mecha-
nisms underlying burst generation (Zapperi et al., 2005; Papan-
ikolaou et al., 2011). Perfect scale invariance occurs when all
shapes collapse onto a simple inverted parabola and suggests a
critical undamped stochastic process equivalent to a Brownian
walk (Baldassarri et al., 2003; Colaiori et al., 2004). Flattening at
longer time scales arises in the presence of a simple, constant
damping effect. Shape asymmetry, which is often observed in
complex physical systems (Sethna et al., 2001; Zapperi et al.,
2005; Papanikolaou et al., 2011), has been attributed to more
complex, state-dependent effects (see Phenomenological models
of burst generation, below).

Average shapes in all of our burst suppression data showed clear
leftward asymmetry, increasing in extent toward longer time scales.
An exemplar (Fig. 9A) shows a symmetrical, inverted parabolic
shape at the shortest time scale (0.16–0.32 s). Thereafter, at succes-
sively longer time scales, the average shapes skew progressively to the
left. This trend was apparent in formal estimates of shape skewness
across successive time scales (Fig. 9B). In contrast, shape kurtosis was
approximately scale-invariant (Fig. 9C). Average shapes are also in-
creasingly noisy at longer time scales. This simply reflects the smaller
number of bursts in the longer time bins.

We then pooled data from all neonates in the sample and
studied the grand average of these scale-specific shapes over all
burst suppression recordings (Fig. 9D–F). These grand average
shapes exhibited a strong and statistically significant leftward
skew at longer time scales (p ! 0.012, df ! 9, t ! 5.3, one sample
t test), consistent with the effect seen in the individual recordings.
Due to the pooling of data—and hence the increase in the num-
ber of bursts—the longer average shapes were smoother in ap-
pearance in these grand averages than in shapes derived from
individual subjects.

Visual inspection of the average fluctuation shapes following
the resumption of continuous activity (Fig. 9G–I) suggested a
marked reduction in leftward asymmetry. Indeed, the grand av-
erage shapes (Fig. 9J–L) showed only a slight leftward asymmetry
at the longer time scales. We quantified this trend by calculating
the slope of the linear least-squares fit to skewness versus dura-
tion. A paired (repeated-measures) comparison of this burst
shape asymmetry effect in the 10 neonates for whom we had both
burst suppression and continuous EEG revealed this difference in
skewness to be significant (Fig. 9M, p ! 0.007, t ! 3.47, df ! 9,
paired t test).

In summary, the transition from burst suppression to contin-
uous EEG was accompanied by changes both in the scaling rela-
tionship between area and duration, and in the average shape of
electrical fluctuations. Leftward skewing at long time scales was
markedly muted following the resumption of continuous EEG.
Trends in burst shape are summarized in Table 4.

Interrelating scaling relationships
In critical systems, the various scaling exponents are often inter-
related (Sethna et al., 2001; Friedman et al., 2012). We sought to
identify a scaling relationship between the exponents for area
distributions (a), duration distributions (d), and the duration
versus area exponent (c). Theory predicts that if the distribution
of burst areas scales as -s*a, the distribution of durations scales
as -T*d, and the average size scales with duration as $s(T)%-T1/c,
then the exponents obey the relationship c ! (a * 1)/(d * 1). To

A

B

Figure 8. Robustness of burst distributions to variations in thresholds and filter settings. A,
Burst area CDFs for half (blue) and double (red) the chosen threshold (black). B, Burst area CDFs
for smoothing filters with cutoffs at 12 Hz (red), 19 Hz (black), and 37 Hz (blue).

Roberts et al. • Scale-Free Bursting in Cortex following Hypoxia J. Neurosci., May 7, 2014 • 34(19):6557– 6572 • 6567



test whether this relationship holds in our
data, we estimated the three exponents
over self-consistent ranges of the data
identified using the Deluca and Corral
(2013) method. Specifically, we used the
fitted range of areas to identify the cor-
responding range of durations, then
fitted the duration distribution and du-
ration versus area relationship to obtain
a set of three exponents for each recording.
Comparing the predicted and measured
exponents, we found good agreement
within the uncertainties of the estimates
(Fig. 10A).

Beyond exponent interrelations, an-
other important signature of criticality is
the existence of a scaling function that re-
lates the duration versus area exponent to
the average burst shape (Sethna et al.,
2001; Friedman et al., 2012). Specifically,
it is expected that $y(t,T)% - T(1/c * 1)F(t/T),
where F(t/T) is the scaling function de-
scribing the average shape independent of
scale. Indeed, we found such a scaling re-
lation in our data (Fig. 10B,C). There is
some heterogeneity in our dataset: not ev-
ery recording collapses with this method
over the same range of durations. Full ex-
ploration of the heterogeneity of scaling
regimes will be the subject of future work.

Phenomenological models of
burst generation
The processes underlying bursting phe-
nomena have been successfully elucidated
in numerous physical systems through the
use of stochastic models (Colaiori, 2008).
We analyzed several candidate stochastic
models to elucidate the basic mechanisms
underlying the average burst shapes in our
data. In particular, we sought insights into
the appearance of leftward skew at long
time scales, but did not aim to develop a
detailed model capable of reproducing all
power-law exponents or the full EEG dy-
namics. In these simple phenomenologi-
cal models, the activity of the cortex is
summarized by a single scalar term, x,
which is subject to random fluctuations.
The simplest continuous stochastic pro-
cess models fluctuations in x that are
subject to uncorrelated random perturba-
tions, given by

ẋ ! #, (3)

where # is an uncorrelated zero-mean
Gaussian process (the Wiener process). Equation 3 models a per-
fectly balanced process, where the probability of incremental
growth of a burst equals the probability of incremental decay.
Whereas Equation 3 has traditionally been used to study the mo-
tion of particles subject to random perturbations—that is,
Brownian motion—in the present setting, the value of x corre-

sponds to the voltage measured at the scalp, and the fluctuations
represent the sum total of excitatory and inhibitory influences at
any given moment. Such a process is consistent with a balance of
excitatory and inhibitory processes in underlying cortex (Shu et
al., 2003).

We generated sample solutions of this stochastic model by
numerical integration using the Heun algorithm (Rümelin,
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Figure 9. Average shape of bursts and their skewness and kurtosis. Top row: Burst suppression (BS). A, Exemplar (single
subject) average burst shape $y(t,T )% during burst suppression across a hierarchy of time scales. Colors correspond to successive
durations T (red ! 160 ms, yellow ! 320 ms, green ! 640 ms, cyan ! 1.28 s, blue ! 2.56 s). B, Trend in skewness (%). In this
case, the trend is positive, corresponding to the increasingly leftward asymmetry of the average shapes. C, Kurtosis ( K) remains
constant. Lines (in red) are linear least-squares fits. D–F, Grand average shape for burst suppression activity and corresponding
skewness and kurtosis. Bottom row: Continuous EEG (CTS). G–I, Exemplar (single subject) average burst shape following resump-
tion of continuous neocortical activity. Positive skewness is significantly muted at long time scales. J–L, Grand average shape for
continuous normal activity data with corresponding skewness and kurtosis. M, Slope of leftward skew [%1 (S *1)] as a function of
burst duration for burst suppression (blue, left) and after the resumption of continuous cortical activity (red, right). Crosses denote
data points, circles denote means, and lines denote means + SEMs.

A B C

Figure 10. Scaling interrelations. A, Scaling exponents for area (a), duration (d), duration versus area (c), and the predicted
relationship (a * 1)/(d * 1). Uncertainties are 95% confidence intervals derived for a and d from the SD of the maximum
likelihood estimator (Deluca and Corral, 2013), for c from the least-squares fit, and for (a * 1)/(d * 1) by propagating the
uncertainties from a and d. Points are plotted with small horizontal offsets for clarity. B, C, Collapse of average shapes after
rescaling raw averages by a function of duration and the duration versus area exponent, T 1 * 1/c, for exemplar burst suppression
(BS; B) and continuous (CTS; C) subjects. Colors correspond to those in Figure 9, and we estimated c by fitting over all bursts used
in the averages (i.e., 0.16 –2.56 s).
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1982). Analysis of the displacement squared of these sample
walks recapitulated the well known result (Colaiori, 2008) that
fluctuations generated by a Brownian walk exhibit a power-
law distribution in size (Fig. 11A, inset). These distributions are
truncated at the far right tail in our simulations by an upper bound
imposed by the finite sample length. We also observed that the
average shapes of these fluctuations converged at all scales toward
a single scaling function, namely an inverted parabola (Fig. 11A),
without skewing (Fig. 11B) or flattening (Fig. 11C).

Although this simple random walk captures the power-law
scaling seen in our data, none of the empirical burst suppression
recordings showed scale-invariant burst shapes. We hence con-
sidered more complex phenomenological models. The Brownian
walk generalizes to an Ornstein–Uhlenbeck (mean-reverting)
process through the introduction of a linear restoring force,

ẋ ! " $x % #, (4)

where $ is a constant. The addition of a small, negative restoring
force corresponds to a weakly damped, near-critical system, and

is a classic model for the motion of a particle within a harmonic
potential of concavity $. In the present setting, this term embod-
ies a weak constant bias toward greater inhibition than excitation
within neuronal populations, albeit not of sufficient strength to
prevent the triggering of burst activity.

This damping term leads to an exponential truncation of the
right-hand tail of the fluctuation size distribution (Fig. 11D, in-
set), together with a flattening of average fluctuation shape at
successively longer time scales (Fig. 11F) consistent with prior
analytical results (Colaiori, 2008). This flattening is indicative of
a subcritical process. However, bursts at all scales remain sym-
metric (Fig. 11E). The burst-shape asymmetry that is striking in
much of our data suggests more complex, state-dependent ef-
fects. The posthypoxic-ischemic neonatal cortex is in a state of
metabolic flux and nutrient depletion. Thus, it is reasonable to
assume that neuronal metabolites, such as extracellular calcium
(Volpe, 2008; Amzica, 2009; Ching et al., 2012), deplete rapidly
during the course of a burst and replenish during the subsequent
quiescent phase of burst suppression, thereby creating a history-
dependent effect. Resource depletion is also implicated in mech-
anisms of self-limiting disinhibited activity (Staley et al., 1998;
Tabak et al., 2006). If history-dependent effects increase the in-
hibitory bias, this could be captured by modifying the damping
term $ to vary according to recent burst activity. A model of
domain wall dynamics in Barkhausen noise (Zapperi et al., 2005;
Papanikolaou et al., 2011) has been shown to yield left-skewed
bursts at short time scales by modifying the damping term ac-
cording to the recent velocity of the system variable. Here, noting
that there is no obvious physical meaning of a “velocity” effect in
neonatal cortex, we instead modified the damping term to de-
pend upon the recent energy expended by the system,

$&t' ! &2!
*.

t

e*&1&t*''x&''2d'. (5)

This history-dependent damping term has an exponentially de-
caying memory with time constant &1 and thus relaxes back to
zero in the absence of bursting activity. Equation 5 can be recast
as a first-order differential equation,

$̇&t' ! " &1$ % &2x2, (6)

to be coupled with Equation 4. The time scale constant &2 deter-
mines how quickly burst energy, x 2, drives up the damping,
whereas &1 captures the relaxation of the damping back to zero
during suppression. Fluctuations arising from this process show
leftward asymmetry, increasing at longer time scales (Fig. 11G).
This is consistent with a fast-out/slow-return effect of activity-
dependent damping. By setting &1 ! 0.1 and &2 ! 30, we quan-
titatively recovered the trend toward positive skewness at longer
time scales observed in our burst suppression data (Fig. 11H).

Discussion
Scale-free processes have been reported in a variety of neuronal
recordings (Beggs and Plenz, 2003; Stam and de Bruin, 2004;
Kitzbichler et al., 2009; He et al., 2010; Friedman et al., 2012;
Fransson et al., 2013; Haimovici et al., 2013), although their pres-
ence is not without controversy (Dehghani et al., 2012). Distri-
butions in prior recordings rarely scale beyond 2 orders of
magnitude and often have scaling exponents well below *2, out
of the range that is classically considered critical. We find that
electrical fluctuations in neonatal cortex during burst suppres-

Figure 11. Model average shapes of bursts and their skewness and kurtosis. A–C, Symmet-
rical average burst shape given by model of Equation 5. Inset shows power-law regime in burst
size over several orders of magnitude. D–F, Symmetrical but successively flattened shapes
given by model of Equation 6. Inset shows the effect of sample damping values $ (black!0.05,
red ! 0.075, blue ! 0.1) on the upper cumulative distributions of burst area. G–I, Leftward
asymmetric shapes without flattening given by model of Equations 4 and 6. Colors correspond
to successive durations T (red ! 160 ms, yellow ! 320 ms, green ! 640 ms, cyan ! 1.28 s,
blue ! 2.56 s). Simulations used a time step of 0.04 ms, with # having SD 0.1 (in the same
arbitrary units as x), and initial conditions x(0) ! 0 and $(0) ! 0.
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sion show a striking match to a power-law distribution, with
scaling behavior consistent with criticality and spanning up to 5
orders of magnitude. Moreover, our findings in clinical human
data are arguably the most striking examples of scale-free neuro-
nal dynamics reported to date. Indeed, such a broad and striking
match to a power-law model is rare in nature (Stumpf and Porter,
2012), even in physical experiments using carefully designed and
controlled conditions, such as the study of Barkhausen noise in
ferromagnetic samples. This regularity is perhaps even more re-
markable in light of the fact that our data were acquired as part of
routine clinical care, in a noisy setting and far from ideal labora-
tory conditions.

Whereas the scale-free distribution of burst size is a classic
hallmark of crackling noise, recent research has moved toward
the characterization of average burst shape (Zapperi et al., 2005;
Papanikolaou et al., 2011; Friedman et al., 2012). We note that the
average shapes previously reported for both Barkhausen noise
(Zapperi et al., 2005; Papanikolaou et al., 2011) and neuronal
tissue cultures (Friedman et al., 2012) span approximately half an
order of magnitude. We were able to reliably extract average burst
shapes across 1.5 orders of magnitude. The leftward skew of the
average shape of bursts in our clinical data is consistent with
observations in some physical systems, such as Barkhausen noise
(Spasojević et al., 1996; Zapperi et al., 2005; Papanikolaou et al.,
2011). However, the broader scaling range of our data gives
greater confidence in the progressive increase in skewness at long
time scales. The marked reduction in this leftward skew following
the resumption of continuous activity suggests that this feature of
burst shapes is sensitive to recovery from HIE. To explain the origin
of skewing, we developed a novel stochastic model incorporating
state-dependent nutrient depletion so that recent energy expendi-
ture drives an increase in damping (Eqs. 5, 6). This hence introduces
an activity-driven bias toward greater inhibition than excitation that
is activated during the evolution of each burst. This model yielded a
distribution of average pulse shapes that skewed increasingly left-
ward at longer time scales, consistent with our data. Our model
therefore provides greater insight into the generation of bursts in
hypoxic data and, in particular, the interaction between neuronal
activity and recovering metabolic resources.

The signatures of criticality in our data suggest that the tran-
sition from complete quiescence immediately following the HIE
insult, through burst suppression and finally to continuous EEG
activity, may reflect a non-equilibrium phase transition in neo-
natal cortex. We therefore position neuronal activity in neonatal
HIE within a broad class of irregular physical processes, known as
avalanches (Bak et al., 1987), crackling noise (Sethna et al., 2001),
or Barkhausen noise (Spasojević et al., 1996), depending on
where they are observed. The current findings suggest a novel
means of monitoring recovery from neonatal HIE in the clinical
setting, while also yielding key quantitative predictions that could
be tested with combined neurophysiological and metabolic re-
cordings in a nonclinical, experimental setting. Such experi-
ments, coupled with detailed physiologically based modeling,
will be crucial for explaining the differences in dynamics between
burst suppression and the recovery phase. Ideally, such modeling
would also uncover a physiological control parameter whose tra-
jectory explains the transitions into and out of burst suppression.
The precise physiological mechanisms remain to be determined that
explain how the dynamics reorganize from burst suppression, ex-
hibiting lengthy power laws in burst area with duration-dependent
average burst shapes, to the recovery period where the burst shapes
are symmetrical and scale-invariant. Further analysis of the contin-
uous phase will be important in this regard. Scale-free dynamics in

the recovery period are also consistent with the existence of long-
range correlations as identified using detrended fluctuation analysis
in adult EEG (Linkenkaer-Hansen et al., 2001; Palva et al., 2013).
Such analyses will be the subject of future work.

Our finding of scale-free dynamics in burst suppression EEG
provides dynamical constraints on computational models of this
phenomenon. In particular, models should be poised at the cusp
of a phase transition where scale-free dynamics emerge, as found
in studies of neural networks (Buice and Cowan, 2007; Peter-
mann et al., 2009; Shew et al., 2009) and branching processes
(Beggs and Plenz, 2003; Friedman et al., 2012). In contrast, anal-
ysis of burst suppression in propofol anesthesia suggests that it
exhibits characteristic oscillatory time scales (Ching et al., 2012),
including alpha activity and tightly bounded burst amplitudes,
for which we do not find evidence in our HIE burst suppression
data. Our findings thus exclude models that generate sequences
of alternating bursts and suppression by switching between high-
amplitude and low-amplitude oscillatory dynamics, as occurs in
models positioned close to critical points such as Hopf bifurca-
tions. Informing detailed neuronal models of the cortex at the
microscopic scale with insights from bifurcations in biophysical
and phenomenological models at the macroscopic scale has been
previously achieved for seizures (Lopes da Silva et al., 2003;
Breakspear et al., 2006) and the human alpha rhythm (Freyer et
al., 2009, 2011, 2012; Roberts and Robinson, 2012). Extending
this approach to model burst suppression in HIE is to be the
subject of future work.

Burst suppression arising in the unconscious state following a
profound metabolic disturbance in cortex can be contrasted to
epilepsy, a constellation of diverse neurological disorders in
which paradoxical electrical activity arises during sleep or wak-
ing, often throughout life, and which may or may not disturb
consciousness. Epileptic seizures typically show strong rhythmic
content reflecting pathological synchronization, rather than the
erratic alternating periods of bursting and quiescence seen in
burst suppression. Seizures have been subjected to numerous
computational analyses, which typically suggest they reflect a
nonlinear bifurcation (Robinson et al., 2002; Lopes da Silva et al.,
2003; Breakspear et al., 2006), offering novel opportunities for
seizure control (Kramer et al., 2006; Kim et al., 2009). In contrast,
there has been little computational treatment of burst suppres-
sion following hypoxia, leaving clinical innovation to be guided
principally by trial and error. Similar to studies of epilepsy, it is
likely that physiologically based modeling of posthypoxic burst
suppression will improve our basic understanding, as has begun
for anesthetic-induced burst suppression (Ching et al., 2012),
and potentially inform clinical interventions.

Our analysis of single-channel EEG—reflecting the mass ac-
tion of large neural populations—mirrors the analysis of crack-
ling noise in magnets, where typically a single pick-up coil is used
to record the mass action of microscopic ferromagnetic domains
(Sethna et al., 2001). Although the analysis of the spatial proper-
ties of posthypoxic neonatal burst suppression would likely be
informative, we focused on temporal properties because inspec-
tion of other electrode locations suggested that bursts typically
appeared in all scalp locations. Characterization of the spatiotem-
poral dynamics of posthypoxia burst suppression would require a
far denser array of scalp electrodes than is usually used in neona-
tal intensive care settings (Odabaee et al., 2013). Recent analysis
of invasive recordings of burst suppression induced by propofol
anesthesia indeed uncovered intriguing spatiotemporal dynam-
ics (Lewis et al., 2013). However, burst suppression following
propofol exhibits characteristic scales during both the active and
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quiescent phases (Ching et al., 2012) and, thus, is categorically
different in nature from that following perinatal hypoxia, sug-
gesting different underlying mechanisms.

Our neonatal EEG data provide a dynamic picture of how an
otherwise healthy cortex responds to an abrupt interruption of its
metabolic supply. It thus provides a unique window into the
coupling between neuronal activity and its metabolic underpin-
ning, a phenomenon of very broad importance (Raichle, 2006).
The crackling noise that we presently report likely reflects a pu-
tative homeostatic response to metabolic depletion, not unlike
the erratic, bursty activity observed in other systems faced with
resource scarcity as diverse as animal foraging (Viswanathan et
al., 1999), gaze allocation in human vision (Brockmann and
Geisel, 2000), and financial market volatility (Plerou et al., 2002).
Burst suppression also arises in response to a broad variety of
other neurophysiological challenges (Ching et al., 2012). Hence,
these clinical neurophysiological data may greatly inform our
understanding of scale-free dynamics and energy constraints in
the human brain which, in turn, holds potential for advancing
clinical diagnosis and management (Iyer et al., 2014).
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