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The human alpha (8 –12 Hz) rhythm is one of the most prominent, robust, and widely studied attributes of ongoing cortical activity.
Contrary to the prevalent notion that it simply “waxes and wanes,” spontaneous alpha activity bursts erratically between two distinct
modes of activity. We now establish a mechanism for this multistable phenomenon in resting-state cortical recordings by characterizing
the complex dynamics of a biophysical model of macroscopic corticothalamic activity. This is achieved by studying the predicted activity
of cortical and thalamic neuronal populations in this model as a function of its dynamic stability and the role of nonspecific synaptic
noise. We hence find that fluctuating noisy inputs into thalamic neurons elicit spontaneous bursts between low- and high-amplitude
alpha oscillations when the system is near a particular type of dynamical instability, namely a subcritical Hopf bifurcation. When the
postsynaptic potentials associated with these noisy inputs are modulated by cortical feedback, the SD of power within each of these modes
scale in proportion to their mean, showing remarkable concordance with empirical data. Our state-dependent corticothalamic model
hence exhibits multistability and scale-invariant fluctuations— key features of resting-state cortical activity and indeed, of human
perception, cognition, and behavior—thus providing a unified account of these apparently divergent phenomena.

Introduction
Human ongoing cortical activity during resting-state recordings
is characterized by spontaneously fluctuating oscillations, partic-
ularly in the alpha (8 –12 Hz) frequency band. Fluctuations of the
alpha rhythm have traditionally been perceived as “waxing and
waning,” akin to the fluctuating behavior of a random signal with
a Gaussian amplitude distribution. Contrary to this prevailing
notion, we recently demonstrated that spontaneous alpha activity
bursts erratically between two distinct modes of activity (Freyer et
al., 2009). A biophysical mechanism for this multistability has not
been established and would have fundamental consequences for
our understanding of spontaneous activity in the cortex as well as
multistability as it occurs more generally in human perception
(Ditzinger and Haken, 1989; Lumer et al., 1998; Haynes et al.,

2005), decision making (Deco and Rolls, 2006), and behavior
(Schöner and Kelso, 1988).

Spontaneous cortical activity recorded in electroencephalo-
graphic (EEG) data reflects the local spatial average of millions of
cortical neurons. In contrast to biophysical models of synapses
and spiking neurons, elucidating the causes of such large-scale
data requires models of neuronal population dynamics that en-
gage the cortex at the macroscopic scale (Freeman, 1975; Nunez,
2000). Two widely studied neural population models that yield
alpha oscillations are the purely cortical model of Wilson and
Cowan (1972) and the corticothalamic model elaborated by
Lopes da Silva et al. (1974). These formative models established
an important precedent for the crucial role that large-scale mod-
els of cortical rhythms play in elucidating causal mechanisms
(Lopes da Silva et al., 1997). However, although they embody a
number of basic neurophysiological processes, they lack impor-
tant properties, such as conduction delays, spatial effects on the
cortical sheet, detailed physiological parameterization, and vali-
dation across a variety of experimental settings. Hence, although
they have explanatory power for particular phenomena, the po-
tential to generalize these explanations across phenomena and
hence provide a unifying framework is limited.

Recent progress in this field has focused on improving the
physiological and anatomical foundation of these models as well
as the range of healthy and pathological states that they describe
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(Deco et al., 2008). The biophysical model we study describes
local “mean field” dynamics of populations of excitatory and
inhibitory neurons in cortical gray matter interacting with neu-
rons in relay and reticular nuclei of the thalamus (Robinson et al.,
1997, 2001b). This activity is governed by physiologically based
nonlinear differential equations that incorporate synaptic and
dendritic dynamics, nonlinear firing responses, and axonal de-
lays. The model has provided a unifying explanation of evoked
potentials and a wide variety of states in wakefulness and sleep
(Robinson et al., 2001b, 2002) and successfully predicted key
features of human epileptic seizures (Robinson et al., 2002;
Breakspear et al., 2006).

Despite these successes, the mechanisms of multistable fluc-
tuations in healthy rhythmic activity have not yet been eluci-
dated. To address this problem, we present a systematic analysis
of spontaneous activity in this mean field model as a function of
its dynamical stability and the nature of its stochastic inputs,
constrained by detailed quantitative characteristics of multista-
bility in empirical EEG data.

Materials and Methods
Corticothalamic neural field model
We studied a biophysical model that describes local mean field dynamics
(Jirsa and Haken, 1996; Robinson et al., 1997; Deco et al., 2008) of pop-
ulations of excitatory and inhibitory neurons in the cortical gray matter
as they interact with neurons in the specific and reticular nuclei of the
thalamus (Robinson et al., 2001b, 2002). A schematic overview of the
model, showing the principle neural populations and their interconnec-
tions, is illustrated in Figure 1.

The activity in each neural population is described by three state vari-
ables: the mean soma membrane potentials Va(x,t) measured relative to
resting, the mean firing rate at the cell soma Qa(x,t), and the local pre-
synaptic activity �a(x,t) where the subscript a refers to the neural popu-
lation (e, excitatory cortical; i, inhibitory cortical; s, specific thalamic
nucleus; r, thalamic reticular nucleus; n, nonspecific subcortical input).
In broad terms, the differential equations that describe this model em-
body the conversion of each of these state variables into another through
synaptodendritic filtering, neuronal activation, and axonal propagation
within and between populations.

Presynaptic activity �a couples through synaptic transmission to post-
synaptic potentials. The cell body potentials Va fluctuate after these post-

synaptic potentials have been filtered in the dendrites and summed at the
cell soma. For excitatory and inhibitory neurons in the cortex, this is
modeled using the second-order delay-differential equation (Robinson
et al., 1997):

DaVa (x,t) � �ae�e (x,t) � �ai�i (x,t) � �as�s(x,t � t0/2), (m1)

where a � e,i index the cortical population and the temporal differential
operator

Da �
1

��

�2

�t2 � � 1

�
�

1

�� �

�t
� 1, (m2)

incorporates synaptic and dendritic filtering of incoming signals. For a
single discrete input, this equation yields postsynaptic solutions with
(bi)exponential rise and decay (the corresponding impulse response
function is known colloquially as an alpha function). The quantities �
and � are the inverse rise and decay times of the cell body potential
produced by such an impulse at a dendritic synapse.

Note that input from the thalamus to the cortex is delayed in Equation
m1 by half the corticothalamic “return time” t0 (the time required for
axonal signals to travel from cortex to thalamus and back), hence incor-
porating finite conduction velocities (Robinson et al., 2001b). For neu-
rons within the specific and reticular nuclei of the thalamus, it is the input
from the cortex that is time delayed and hence

DaVa (x,t) � �ae�e (x, t � t0/2) � �as�s(x,t) � �ar�r (x,t), (m3)

for a � s,r. The effective synaptic strengths are given by �ab � NabSb,
where Nab is the mean number of synapses to neurons of type a from type
b, and Sb is the magnitude of the response to a unit signal from neurons
of type b.

After summation at the cell soma, changes in the local soma mem-
brane potential Va cause changes in the local firing rates Qa according to
the neuronal activation function Qa(x,t) � S[Va(x,t)], where S is a sigmoidal
function that increases from 0 to Qmax as Va increases. This is modeled as

S�V� �
Qmax

1 � exp����V 	 
�/��3�
, (m4)

where 
 is the mean neural firing threshold, and � is its SD. This incor-
porates the step-like function of an individual neural response smeared
over a Gaussian distribution of firing thresholds and neuronal states
(Marreiros et al., 2008).

The system of equations is closed by introducing the outward propa-
gation of action potentials from the soma through axons, which then
become presynaptic activity in distant regions. In the cortex, excitatory
firing rates Qe are propagated outward as �e according to the damped
wave equation (Robinson et al., 1997):

1

�e
2� �2

�t2 � 2�e
2

�

�t
� �e

2 	 ve
2�2��e (x,t) � Qe�x,t�. (m5)

The parameter �e � ve/re governs the dispersion of propagating waves,
where re and ve are the characteristic range and conduction velocity of
excitatory neurons, and ƒ 2 is the Laplacian operator (the second spatial
derivative). All other neural populations are approximated as having
axons sufficiently short that they do not support wave propagation on the
relevant scales for these populations. This gives �a � Qa for a � i, r, s
(Robinson et al., 1997).

The default values of all parameters were set to those values used in
previously published studies (Robinson et al., 2002; Breakspear et al.,
2006), which are strongly constrained by physiology (Robinson et al.,
2004). For the present purpose, we focus on the global spatial mode, i.e.,
we investigate the case of spatially uniform activity. To this end, we set the
spatial derivative ƒ 2 in Equation m5 to zero, which removes spatial
variation in the activity while still maintaining the intracortical spatial
connectivity, including the finite axonal range and conduction velocity
(elucidating the spatial properties of alpha bistability could be achieved
within the full neural field framework by allowing the spatial derivative to

Figure 1. Schema of principal neural populations and loops within the corticothalamic
model. Connectivity and loops include intracortical (ee, ei, ie, ii), corticothalamic (re, se),
thalamocortical (es, is), and intrathalamic (sr, rs). Arrows indicate excitatory feedback (blue)
and inhibitory feedback (red).
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be nonzero). This yields a set of eight first-order delay-differential equa-
tions (Robinson et al., 2002):

d�e�t�

dt
� �̇e�t�, (m6)

d�̇e�t�

dt
� �e

2�S�Ve�t�� 	 �e�t�� 	 2�e�̇e�t�, (m7)

dVe�t�

dt
� V̇e�t�, (m8)

dV̇e�t�

dt
� ����ee�e�t� � �eiS�Ve�t�� � �esS�Vs� t 	

t0

2��
	 Ve�t�� 	 �� � ��V̇e�t�, (m9)

dVs�t�

dt
� V̇s�t�, (m10)

dV̇s�t�

dt
� ����se�e� t 	

t0

2� � �srS�Vr�t�� 	 Vs�t��
	 �� � ��V̇s�t�, (m11)

dVr�t�

dt
� V̇r�t�, (m12)

dV̇r�t�

dt
� ����re�e� t 	

t0

2� � �rsS�Vs�t�� 	 Vr�t��
	 �� � ��V̇r�t�. (m13)

These deterministic delay-differential equations allow the mathematical
analysis of the attractors of the system and their bifurcations. To model the in
vivo corticothalamic system, it is necessary to add stochastic terms that can
embody a wide range of fluctuations, from thermal effects to synaptic inputs
from brain regions not specified in the model. Stochastic fluctuations were
modeled by introducing a noise term �n into the equations for the postsyn-
aptic kernels in the excitatory neurons of the cortex (Eq. m9), specific (Eq.
m11), or reticular (Eq. m13) nucleus of the thalamus. Hence, for example,
Equation m11, expressing mean voltage fluctuations in the specific nucleus
of the thalamus, becomes the stochastic delay differential equation:

dV̇s�t�

dt
� ����se�e� t 	

t0

2� � �srS�Vr�t�� � �sn�n�t� 	 Vs�t��
	 �� � ��V̇s�t�, (m14)

where �sn indicates the synaptic strength of these synaptic inputs.
Large-scale fluctuations in electrical potentials, as recorded by EEG, are

thought to primarily reflect summed synaptic currents in cortical pyramidal
dendritic arbors induced by presynaptic inputs (Lopes da Silva et al., 1974;
Nunez, 1995; Robinson et al., 2001a, 2004). Hence, we use the time series of
�e to represent the cortical sources of scalp EEG. These time series were
obtained from numerical integration of the corticothalamic model in the
presence of stochastic fluctuations over long periods of time (4200 s). Nu-
merical integration was performed using Heun’s integration scheme, which
is an extension of the Euler integration into a two-stage second-order
Runge–Kutta integration scheme (Mannella, 2002). The analysis was re-
peated with other fixed step integration schemes, including the Euler
method and the fourth-order Runge–Kutta scheme. All the phenomena re-
ported here were observed with all of these schemes for sufficiently small
time steps.

Electroencephalographic data
The activity of the model was compared with empirical distributions
derived from human EEG data. Scalp EEG data were acquired from 16
healthy subjects (11 females; mean age, 25.3 years; range, 20 –31 years)

using BrainAmp amplifiers (hardware bandpass filter, 0.1–250 Hz;
BrainAmp; Brain Products) and EEG caps (Easy-Cap; FMS) arranged
according to the International 10 –20 System, referenced against an elec-
trode centered between Cz and Pz. Impedances of all electrodes were set
below 5 k�. Written informed consent was obtained from each subject
before their participation. Subjects were requested to rest with eyes
closed while maintaining alertness. Acquisition times ranged in duration
from 14 to 30 min. For detailed description of EEG data acquisition and
preprocessing, please refer to the study by Freyer et al. (2009).

Parameter estimates for probability distribution functions and
dwell-time distributions
Important properties of complex, correlated systems, such as the brain,
can often be captured by a detailed characterization of the statistics of
their macroscopic signals (Bramwell et al., 2000). Such an approach can
uncover and constrain key underlying physical processes. Candidate
quantities include the system power fluctuations and their temporal sta-
tistics (Freyer et al., 2009). Parameter estimates for the bimodal power
fluctuations and for the cumulative distribution of the time the system
dwelled in each of these two modes were hence derived from both the
computational and empirical data to test whether the former embodied
the key dynamical mechanisms observed in the latter.

Parameter estimates for exponential probability distribution functions.
Dynamic spectrograms were obtained by convolving the data with com-
plex Morlet wavelets (center frequency, 1 Hz; bandwidth parameter,
10 s). Power at 10 Hz was estimated as the modulus squared of the
corresponding wavelet coefficients. Frequency-specific probability dis-
tribution functions (PDFs) were then obtained by partitioning the fluc-
tuations of power at 10 Hz into 200 equally sized bins and counting the
number of observations in each bin.

For processes exhibiting Gaussian fluctuations in amplitude, the func-
tional form of the corresponding power distribution follows an exponen-
tial PDF (Balakrishnan and Basu, 1996), Px(x) � e � x, where x is the
power, and  is the shape parameter that can be estimated from an
empirical distribution by taking the log of the probability and estimating
the slope of the resulting line. To gain a better insight into the functional
form of the PDF—particularly the asymptotic scaling behavior of both
tails—the fitted PDFs were formally evaluated in log–linear and log–log
coordinates. For bimodal distributions, a second exponential distribu-
tion was estimated from the residuals, obtained after subtracting the
primary mode. The resulting bimodal distribution can therefore be con-
sidered as a mixture of exponentials. As in the study by Freyer et al.
(2009), we formally compared the bimodal to a unimodal fit using the
Bayesian information criterion (BIC), which includes a penalty term for

model complexity: � � n1n�RSS

n � � k1n�n�, where RSS is the sum of

the squared residuals, n is the number of observations (discrete power
bins), and k is the number of free parameters (k � 1 for the unimodal fit
and k � 2 for the bimodal fit). Given two or more candidate models, the
“best” model will yield the lowest value of �, reflecting small residual
variance after penalization for the number of free parameters.

Parameter estimates for stretched-exponential dwell-time cumulative
distribution functions. After estimation of bimodal exponential distribu-
tion functions for the power fluctuations, the dwell-time distributions
were characterized. These are the successive durations that the system
resides in each of the two modes. Following Nakamura et al. (2007), the
dwell times can be characterized by estimating their cumulative distribu-
tion functions (CDFs). For a simple (noise dominated) stochastic pro-
cess, these can be expected to follow a simple exponential function P(X �
x) � exp(�ax). For more complex processes, these CDFs can be expected
to develop long right-hand tails (Zaslavsky, 2002; Tsallis, 2006) such as
power-law and stretched-exponential distributions. Indeed, viewing the
dwell-time CDFs in log–log coordinates (Freyer et al., 2009) shows that
the EEG data do not follow a power law distribution but rather a
stretched-exponential form P(X � x) � exp(�axb), where the right-
hand tail of the distribution becomes heavier as the shape parameter b3
0. To estimate the parameters a and b, the equation can be rewritten as
log(�log(P(X � x))) � b log(x) � log(a). The parameters a and b were
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estimated from both the empirical and model
data by means of a least-squares linear regres-
sion in log(x) � log(log( P)) coordinates.

Results
Multistable switching in empirically
recorded alpha activity
We sought a mechanism for multistable al-
pha activity using a neural field model of
large-scale brain dynamics (Robinson et al.,
2001b, 2002). We evaluated the fundamen-
tal properties of the alpha activity simulated
by this model according to three recently de-
scribed (Freyer et al., 2009) key empirical
observations. (1) The instantaneous power
in the alpha band jumps spontaneously and
erratically between distinct low- and high-
amplitude modes. That is, power fluctua-
tions are closely predicted as arising from
two distinct probability distributions with
partially overlapping tails (Fig. 2a,b). (2)
Fluctuations of power within each of these
modes follow an exponential probability
distribution. Crucially, the SD of each mode
scales in proportion to its mean: the widths
of both modes are hence equivalent (scale-
free) on logarithmic axes despite differences
in their means of three orders in magnitude (Fig. 2c). (3) “Dwell
times” of resting-state alpha activity within the two modes have
long-tailed stretched-exponential distributions (Fig. 2d).

Spontaneous activity in the corticothalamic model
The neural field model we studied in the present report describes
local mean field dynamics of populations of excitatory and inhibi-
tory neurons in the cortical gray matter as they interact with neurons
in the specific and reticular nuclei of the thalamus (Fig. 1). These
dynamics are governed by physiologically derived nonlinear evolu-
tion equations that incorporate synaptic and dendritic filtering, non-
linear firing responses, corticothalamic axonal delays, and synaptic
gains between presynaptic impulses and postsynaptic potentials (for
detailed description and equations, see Materials and Methods).

Simulated data are obtained by integrating the corticotha-
lamic model in the presence of nonspecific stochastic fluctuations
of various forms. We modeled the effect of synaptic noise in the
dendritic tree, because this is thought to be crucial to both back-
ground and evoked cortical responses (Faisal et al., 2008). Such
inputs also mimic synaptic bombardment from thousands of
neurons not explicitly modeled, such as from ascending subcor-
tical nuclei. Synaptic and dendritic filtering of afferent inputs in
this model are described by second-order delay differential equa-
tions that incorporate exponential rise and decay times of the cell
body potential after synaptic impulses (see Materials and Meth-
ods, Eqs. m1–m3). Stochastic fluctuations were thus modeled by
adding a noise term �n to the synaptic kernel of the equations for
the neurons of the cortex or the specific or reticular nuclei of the
thalamus (see Materials and Methods, Eq. m14). Following pre-
vious work (Robinson et al., 2004), we initially modeled �n as a
simple uncorrelated noise process:

�n � �n
(0) � �n

(1)(t), (1)

with mean �n
(0) and superimposed time-dependent fluctua-

tions �n
(1)(t) drawn from a Gaussian distribution with zero

mean and SD �n.

Consistent with previous reports (Robinson et al., 2001b), we
observed spontaneous activity with a clear alpha component in
the noise-driven model when the gains in the corticothalamic
circuit were sufficiently high. Figure 3 illustrates an exemplar
simulation using previously published parameter values for alpha
activity (Breakspear et al., 2006), with stochastic fluctuations im-
pinging on the specific thalamic nucleus. It can be seen that,
although power in the alpha band fluctuates (Fig. 3a), it is none-
theless confined to a single-exponential distribution (Fig. 3b).
Erratic jumping between low- and high-amplitude alpha was
hence not observed with these parameter values regardless of the
variance of the stochastic term, nor whether the noise impacted
on thalamic or cortical populations. The behavior of the model in
this dynamical regime thus accords with the widely held notion of
the alpha rhythm as waxing and waning but conflicts with the
more complex dynamics of actual empirical data.

Given the inevitable presence of temporal variations of under-
lying state parameters in biological systems, the question also
arises of whether a simple manipulation of these, and hence of the
nonlinear flow in the neighborhood of the fixed point, could
generate the observed phenomenon. To explore this possibility,
while keeping the parameter centered at its previous value, we
repeated the above simulation but added a mean-reverting sto-
chastic process, �, to the fixed value of �se:

d�

dt
� �

�

�
� �2 �2

�
��t�, (2)

where � is the variance, � is the correlation time of this process,
and �(t) is a zero-mean Gaussian white-noise term. We used � �
0.1 s and � � 0.006 �se, corresponding to a moderate perturba-
tion without any long-term drift. Although some additional vari-
ability was present in the fluctuations of 10 Hz power—
coincident with stochastic excursions in �se—the envelope of
these fluctuations was not qualitatively changed and hence
still yielded a simple unimodal exponential PDF. The same

Figure 2. Multistability in human EEG data. a, Exemplar time course of the power at 10 Hz (squared wavelet coefficients) shows
erratic switching between low-power (black) and high-power (red) modes. b, Corresponding time–frequency plane. c, Probability
distributions of power at 10 Hz (gray squares) are closely fitted by the sum (white line) of the two unimodal exponential distribu-
tions of low-power (black) and high-power (red) modes. A direct model comparison indicates the superiority of the bimodal fit
compared with the unimodal fit [BIC difference (unimodal � bimodal) � 532]. Note that the width of each mode is constant on
logarithmic axes, implying that the SD is scale free. The intersection of the exponential distributions provides the threshold used to
partition the time series. d, Dwell-time cumulative distributions for the low-power (black) and high-power (red) modes closely
follow long-tailed stretched-exponential forms (white lines). The parameter values of the stretched-exponential fits for the
dwell-time CDFs of the low- and high-energy mode are alow � 1.94, ahigh � 1.78, blow � 0.54, and bhigh � 0.71. The gray line
indicates a simple exponential form. Cumulative distributions were separately rescaled to have a mean value of one.

6356 • J. Neurosci., April 27, 2011 • 31(17):6353– 6361 Freyer et al. • Mechanisms of Multistability in Cortical Rhythms



outcome was observed for a variety of choices of the correla-
tion time � � 0.05 s and 0.025 s.

Multistable alpha activity in the corticothalamic model
Simulations based on these previously published parameters cor-
respond to noise-driven fluctuations around a global fixed-point

attractor—that is, when all simulations
evolve toward a single asymptotically sta-
ble steady state, regardless of their initial
conditions. Hence, the lack of multistabil-
ity in this setting is not surprising. The
occurrence of multistable fluctuations
challenges the notion of noise-induced
excursions around a stable fixed point be-
cause they suggest that the system evolves
in a multi-attractor landscape (Friston,
1997; Deco et al., 2009a; Braun and Mat-
tia, 2010). In the present study, we there-

fore sought to characterize noise-driven activity in regions of
parameter space that support more complex dynamics. The dy-
namical landscape of the corticothalamic model was mapped us-
ing the default parameters given in Table 1 by systematically
exploring values of the synaptic strength parameters �ab between
pairs of neuronal populations. Following the approach adopted
by Breakspear et al. (2006), bifurcation diagrams were obtained
numerically using a continuation scheme (Engelborghs et al.,
2002), keeping the parameters �ee, �ei, �es, �sr, �re, and �rs fixed and
incrementally varying �se, which parameterizes the postsynaptic
response of thalamic neurons to (time delayed) presynaptic input
from cortical neurons.

We hence observed a variety of bifurcations, most notably
Hopf bifurcations heralding the transition from a linearly sta-
ble, damped equilibrium point to nonlinear periodic oscilla-
tions at a critical value of �se. Subsequent transitions to
aperiodic activity were also observed but are not the focus of
the present report. Supercritical Hopf bifurcations occur
when stable periodic oscillations arise at values of �se above
this critical value. Subcritical Hopf bifurcations occur in a
different region of parameter space when unstable periodic
oscillations arise at values of �se below this critical value. Sub-
critical Hopf bifurcations lead to a region of bistability in
parameter space, in which damped equilibrium behavior co-
exists with large-amplitude periodic oscillations. These two
attractors are separated in phase space by an unstable periodic
orbit (Strogatz, 1994). Canonical examples (normal forms) of
these bifurcations are shown in Figure 4, a and b.

In previous studies (Robinson et al., 2002; Breakspear et al.,
2006), seizure activity was modeled as arising from a subcritical
Hopf bifurcation with a large-amplitude periodic attractor. The
present survey of parameter space yielded a subcritical Hopf bi-
furcation with a nonpathological limit-cycle amplitude for a
physiologically plausible set of model parameters (Table 1, Fig.
4c). In the vicinity of this subcritical Hopf bifurcation, spontane-
ous switching between low- and high-amplitude activity was ob-
served for stochastic fluctuations impacting on the specific
nucleus of the thalamus (Fig. 5a). This switching corresponds to
noise-induced jumps between the limit-cycle and fixed-point at-
tractors that coexist in this region of parameter space. Bimodal
activity was not observed in the presence of a supercritical Hopf
bifurcation, nor if the stochastic term was introduced into the
thalamic reticular nucleus or the cortex.

If, as in the present case, the stochastic thalamic input is purely
additive, then the SD in the high-amplitude mode is approxi-
mately equal to the SD in the low-amplitude mode. Viewing the
distributions in log(power)–log(likelihood) coordinates—which
best illustrates the SD relative to the mean—reveals that the SD in
the high-amplitude mode is very narrow relative to its mean for
this purely additive form (Fig. 5b). That is, their means differ by
more than two orders of magnitude, but their SDs are approxi-

Figure 3. Fluctuations in alpha power in the noise-driven corticothalamic model in the presence of a global fixed point attractor.
a, Noise-induced fluctuations in the expression of spontaneous alpha power. arb. u., Arbitrary units. b, Probability distribution of
power at 10 Hz (gray squares) is closely fitted by a single-exponential distribution.

Figure 4. a, b, Canonical supercritical (a) and subcritical (b) Hopf bifurcations. Black and red
denotes fixed-point and periodic solutions, respectively. Solid and dashed lines indicate stable
and unstable solutions, respectively. Vertical gray lines indicate critical values of the tuning
parameter. c, Bifurcation diagram for �e (excitatory synaptic states) obtained from Equations
6 –13 using parameter values that yielded the main findings of this study. The instability cor-
responds to the appearance of an unstable 10 Hz mode and a range of values for �e, which are
physiologically plausible. The gray line indicates the value of �se,(the synaptic strength of ex-
citatory cortical projections to the specific thalamic nucleus) used in subsequent simulations.

Table 1. Biophysical model parameters for spontaneous multistable alpha activity

Quantity Value Unit Description

Qmax 250 s �1 Maximum firing rate

 15 mV Mean neuronal threshold
� 6 mV Threshold SD
�e 100 s �1 Ratio conduction velocity/mean range of axons
� 60 s �1 Inverse decay time of membrane potential
� 240 s �1 Inverse rise time of membrane potential
t0 80 ms Corticothalamic return time (complete return loop)
�ee 1.06 mVs Excitatory-to-excitatory (corticocortical) synaptic strength
�ie 1.06 mVs Excitatory-to-inhibitory (corticocortical) synaptic strength
��ei 1.8 mVs Inhibitory-to-excitatory (corticocortical) synaptic strength
��ii 1.8 mVs Inhibitory-to-inhibitory (corticocortical) synaptic strength
�es 2.20 mVs Specific nucleus-to-excitatory (thalamocortical) synaptic strength
�is 2.20 mVs Specific nucleus-to-inhibitory (thalamocortical) synaptic strength
�se 2.28 mVs Excitatory-to-specific nucleus (corticothalamic) synaptic strength
��sr 0.845 mVs Reticular-to-specific nucleus (intrathalamic) synaptic strength
�sn 1.20 mVs Nonspecific noise-to-specific nucleus synaptic strength
�re 0.91 mVs Excitatory-to-reticular nucleus (corticothalamic) synaptic strength
�rs 0.41 mVs Specific-to-reticular nucleus (intrathalamic) synaptic strength
�ss 0 mVs Specific nucleus self connection (intrathalamic)
�rr 0 mVs Reticular nucleus self connection (intrathalamic)
� 0.64 Ratio of multiplicative to additive noise
�n 0.56 SD of stochastic influence �n (fraction of the stable limit cycle

attractor amplitude)
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mately equal because the noise-induced
fluctuations are simply added to the states
at each integration time step. In contrast,
one of the key features of the EEG data is
that the SD of each of the distributions
scales proportionally to its mean, so that
the SD of the high-power mode should
hence be two orders of magnitude greater
than that of the low-power mode. In log–
log coordinates, this translates into two
modes with distinct centers but equiva-
lent width (Fig. 2c).

Multistability and scale-free SD with state-dependent noise
The failure of purely additive noise to adequately capture the
proportional scaling between the mean and SD of each mode
suggests the need for a state-dependent modulation of the non-
specific stochastic term. The noise term was hence modified to
include an activity-dependent (multiplicative) component as
well as the purely additive component:

�n � �n
(0) � �n

(a)(t) � ��n
(m)(t)�e(t � t0/2), (3)

where �n
(a) and �n

(m) are two independent (uncorrelated) stochas-
tic terms, each drawn from a Gaussian distribution with zero
mean and SD �n. The parameter � controls the relative influence
between the multiplicative term �n

(m) and the purely additive one
�n

(a). The purely additive stochastic scenario (Eq. 1) is recovered
for � � 0. Note that, for the multiplicative (state-dependent)
term, we used presynaptic input from the cortex �e delayed by the
appropriate corticothalamic time delay t0/2.

The biophysical correlates of these inputs are depicted sche-
matically in Figure 6. Simulated with this functional form, the SD
of the high-power mode does scale in proportion to its mean (Fig.
7c). Moreover, the dwell times of these modes both have long-
tailed stretched-exponential forms (Fig. 7d). The corticothalamic
model hence shows a striking concordance with empirical prop-
erties of the EEG (compare Figs. 2, 7). That is, across a broad
range of physiological parameters, simulations of spontaneous
activity meet all three empirical criteria: irregular switching be-
tween low- and high-amplitude alpha oscillations, proportional
scaling between the mean and SD, and long-tailed stretched-
exponential dwell-time distributions. These conditions impose
the following constraints on parameter values. (1) As in the
purely additive case, bimodal activity only occurs in the vicinity
of a subcritical Hopf bifurcation. For this to occur, the SD �n of
the stochastic influence has to be a fraction 0.1– 0.6 of the ampli-
tude of the large-amplitude limit-cycle attractor. For higher val-
ues of noise variance, the dwell times for the switching converge
to simple exponential forms, consistent with a simple noise-
dominated Poisson process. (2) Proportional scaling of the SD of
the higher-power mode with its mean is not observed if � 	 0.25.
In contrast, the SD of both modes scaled in proportion to their
respective means for 0.25 	 � 	 0.7. For � 
 0.7, the limit-cycle
attractor exhibits very-high-amplitude excursions, inconsistent
with a healthy resting-state waveform.

We also integrated the system with the same random value for
the multiplicative and additive noise terms at each time step, in
which case Equation 3 can be simplified to

�n � �n
(0) � �n

(1)(t) [1 � ��e(t � t0/2)]. (4)

Using the same parameters used in Figure 7 again yields bi-
modal activity. However, the long right-hand tails of the dwell-

time distributions are less pronounced than in the case of
independent noise terms and thus gave a poorer fit to the data in
Figure 2. This effect is expected because increasing the coherence
between the two inputs (by setting them equal) effectively increases
the noise amplitude and hence biases the switching process toward a
simple noise-dominated Poisson process, consistent with point 2
above.

Discussion
The corticothalamic field model characterized in this study pro-
vides an explanation for three key features of ongoing neuronal
activity as measured with EEG in humans during rest. When
driven by thalamic fluctuations, spontaneous and erratic jumps
between a high-amplitude 10 Hz oscillatory mode and low-
amplitude irregular activity arise only in the presence of a partic-
ular type of dynamical instability, namely a subcritical Hopf
bifurcation that emerges naturally with physiological parameters.
Multistability is not observed in the absence of a nonlinear insta-
bility nor in the vicinity of other forms of instability, such as a
supercritical Hopf bifurcation. Moreover, multistable bursting is
only observed when stochastic fluctuations are introduced in the
thalamic nucleus. Scaling of the SD of both modes in proportion
to their respective means requires activity-dependent noise. This
emerges when fluctuating presynaptic thalamic input is modulated
by backward (corticothalamic) afferents from the cortex. Long-
tailed stretched-exponential dwell-time distributions mandate low-
amplitude fluctuations: when the stochastic influence is large, the
dwell times follow a simple exponential form, consistent with a sim-
ple stochastic (e.g., Poisson) process. These findings establish a

Figure 5. Multistability in the corticothalamic model when driven by purely additive noise. a, Noise-induced switching be-
tween low- and high-amplitude fluctuations. arb. u., Arbitrary units. b, Probability distributions of power at 10 Hz (gray squares)
shows a broad low-power exponential distribution and a high-power mode that is relatively narrow in these logarithmic coordi-
nates. This is because the mean is shifted by two orders of magnitude but the SD is approximately equal to the low-power mode.

Figure 6. Schema of stochastic inputs �n (green) into the specific nucleus of the thalamus
and their multiplicative modulation by excitatory inputs from the cortex �e (blue). After syn-
aptodendritic filtering, these inputs cause fluctuations in Vs, the mean membrane potential of
thalamic neurons. Note that the arrows denote population projections, not single neurons: the
two nonspecific noise inputs are uncorrelated at the population level.
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single candidate neurobiological mechanism for multistability
and scale-free uncertainty—two widely studied attributes found
in human perception (Ditzinger and Haken, 1989; Lumer et al.,
1998; Haynes et al., 2005), cognition (Deco and Rolls, 2006), and
behavior (Schöner and Kelso, 1988)—and hence unify these ap-
parently divergent phenomena. They also place novel and strong
constraints on the form and parameterization of our corticotha-
lamic model. We now consider each of these three components of
our study—namely, neural field modeling, multistability, and
scale-free uncertainty—in more detail.

To our knowledge, this is the first biophysical model of the
multistable dynamics that characterize alpha activity, the domi-
nant rhythm of ongoing, or endogenous, cortical activity. The
existence of two distinct morphologies of the alpha rhythm—a
low-amplitude linear and high-amplitude nonlinear wave-
form— has been known for some time (Lopes da Silva et al., 1973,
1997; Stam et al., 1999; Breakspear and Terry, 2002). Several
studies have focused on the contribution to this phenomenon of
a nonlinear instability at 10 Hz (Robinson et al., 2002; Breakspear
et al., 2006). For example, Stam et al. (1999) and Liley et al. (2002)
were able to capture the nature of these two waveforms by simu-
lating cortical activity on either side of a supercritical Hopf bifur-
cation in a corticothalamic neural mass and purely cortical neural
field model, respectively. Valdes et al. (1999) inverted a neural
mass model from exemplars of each of these two types of alpha
activity, hence inferring the model parameters. They also argued
that these two alpha morphologies represent cortical activity on
either side of a supercritical Hopf bifurcation. This dynamical
scenario suggests that the cortex alternates between each of these
waveforms because an underlying state parameter stochastically
wanders across the Hopf bifurcation boundary. However, the
presence of burst-like switching between two completely distinct
modes of alpha activity challenges this view (Freyer et al., 2009).
Stochastic variation of an underlying state parameter in the re-
gion of a supercritical instability would yield a continuous mix-
ture of the statistics of all visited states and is certainly not
consistent with long-tailed dwell times in distinct modes sepa-
rated by two orders of magnitude in power. Indeed, we did
explore the effect of adding a mean reverting stochastic pro-
cess to the bifurcation parameter. These simulations con-
firmed that mixing the dynamics in this way continued to yield

unimodal exponential PDFs. Subcritical
Hopf bifurcations have been proposed
to account for the erratic nature of sei-
zure activity (Robinson et al., 2002; Lopes
da Silva et al., 2003; Suffczynski et al.,
2004; Breakspear et al., 2006). In the pres-
ent report, we show that a similar mecha-
nism involving a physiological limit cycle
also accounts for healthy spontaneous ac-
tivity. This is achieved without any varia-
tion of the underlying parameters and
hence spares our model of the additional
complexity that this would require. In the
setting of bistability, parameter-driven
state changes would also yield hysteresis.
Although there is evidence of this in sei-
zure activity, there is no evidence in
resting-state EEG recordings (Breakspear
et al., 2006).

The mechanism of switching we estab-
lish draws on dynamical instabilities in the
phase space of the system that are ex-

pressed by noise-driven excursions across the basin boundary
separating the two coexisting attractors. Although there is a dy-
namical instability—as a result of separation of nearby phase
space flows in the vicinity of the basin boundary—the system is
structurally stable in the sense that small perturbations do not
cause a sudden change in the overall attractor landscape. Indeed,
we have contrasted our scenario with one in which the state pa-
rameters are themselves stochastically varied, possibly causing a
sudden change in the attractor landscape and associated loss of
structural stability. We were unable to generate the necessary
bimodal dynamics in this setting and consider it an unlikely
mechanism. It is crucial to note, however, that we have estab-
lished sufficient conditions for these phenomena. There are other
candidate mechanisms. For example, weakly coupled chaotic at-
tractors exhibit a form of bursting known as intermittency (Ash-
win et al., 1996). However, the dwell times in this setting follow a
power law, not a stretched-exponential temporal pattern. In ad-
dition, although chaotic dynamics in our neural field model are
possible (Breakspear et al., 2006), they are not consistent with the
observed alpha rhythm. Also, intermittent bursting requires at
least two coupled systems, whereas the present setting requires
only one and is hence considerably more parsimonious. Noise-
driven excursions around a hetereoclinic cycle are another theo-
retical mechanism for the transient expression of different
dynamical forms (Ashwin and Field, 1999) and are closely related
to the chimera states observed by Deco et al. (2009b). However,
these dynamics, which typically require three or more coupled
attractors, have a very characteristic (i.e., narrow) dwell time that
scales logarithmically with the injected noise. Heteroclinic cycles
do not express the long-tailed forms we observe in the data. Al-
though we are confident that our sufficient conditions may also
be superior to these other dynamical candidates for multistable
alpha dynamics, a more systematic comparison may be better
undertaken in a simpler dynamical setting and is indeed to be the
subject of future work.

Our study also advances the rapidly emerging understanding
of stochastic processes in the brain (Faisal et al., 2008; Ghosh et
al., 2008; Deco et al., 2009a). For example, stochastic fluctuations
in combination with time delays and empirically derived patterns
of cortical connectivity endow simulated resting-state neuronal
activity with fluctuations across a hierarchy of timescales, mirror-

Figure 7. Multistability in the corticothalamic model when driven by state-dependent thalamic input. The characteristics of the
model outcome show a remarkable concordance with empirical EEG data (panels as for Fig. 2). As in the data, the PDF (c) shows a
clear bimodal distribution [BIC difference (unimodal � bimodal) � 323]. The parameter values of the stretched-exponential fits
for the dwell-time CDFs of the low- and high-energy mode are alow � 1.53, ahigh � 1.29, blow � 0.66, and bhigh � 0.75, closely
resembling the fitting parameters of the EEG data. arb. u., Arbitrary units.
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ing high-frequency oscillations in electrophysiological data as
well as slow fluctuations (	0.1 Hz) of hemodynamic signals ev-
ident in functional neuroimaging data (Ghosh et al., 2008; Deco
et al., 2009b). Interactions between stochastic processes and non-
linear dynamics have also been proposed to underlie many active
cognitive processes such as decision making, perceptual multista-
bility, and working memory (Friston, 1997; Wang, 2002; Deco et
al., 2007; Braun and Mattia, 2010).

An important and novel contribution of the present study
is that the proportional scaling of mean and SD observed em-
pirically mandates a multiplicative interaction in the thalamus
between nonspecific stochastic inputs and feedback from the
cortex. This multiplicative term implies an interaction be-
tween stochastic and cortical inputs in the dendritic tree of
thalamic neurons such as occurs when voltage-dependent
NMDA receptors are effectively gated by fast AMPA receptors
(Stephan et al., 2008). Such a proposed mechanism is consistent
with known glutamate-mediated modulation of corticothalamic
activity (McCormick, 1992) as well as functional accounts of
feedforward and feedback circuits in the brain (Friston, 2005).
The specific role of cortical feedback in our model also accords
with a proposed network-wide “synaptic barrage” causing simul-
taneous increases in gain and variance at the scale of the cell
membrane (Shu et al., 2003).

The proportional scaling of the SD and the mean (a constant
coefficient of variation) mirrors several fundamental psycho-
physical processes from perceptual thresholds to optimal motor
performance in the presence of uncertainty. As early as 1834,
Ernst Weber observed that the relationship between the percep-
tual threshold for detecting change in a stimulus scales in a con-
stant ratio with the stimulus intensity (Weber, 1834). In other
words, the threshold of perceptual uncertainty is scale free. Such
“signal-dependent” noise has also been proposed as a key feature
of motor planning (Harris and Wolpert, 1998). If uncertainty in
perceptual inference and motor planning is coded by the SD in
states of the underlying neuronal population (Dayan and Abbott,
2001; Friston and Dolan, 2010), then “scale-free cognitive uncer-
tainty” implies precisely the fixed ratio between mean and SD in
neuronal states that we report. Although our study focuses on
spontaneous activity, the central role of cortical feedback to the
thalamus in our model argues that the same mechanism could
underlie scale-free uncertainty in perception and behavior
(Buonomano and Maass, 2009).

Although switching in the model and data both follow the
same functional form, more frequent switching in the data marks
a subtle deviation between the two (compare Figs. 2a, 7a). In this
regard, it is interesting to note that switching between the fixed
point and the limit cycle in the model was achieved with uncor-
related noise. However, because the stochastic term was intro-
duced as a presynaptic input, and not added directly to the states
Va at each time step, it introduces a mean-reverting stochastic
process [a relaxation process, a well-known example of which is
the Ornstein–Uhlenbeck process (Uhlenbeck and Ornstein,
1930)]. The synaptic timescale constants � and � (Table 1) hence
ensure that, at the level of the states Vs, the stochastic fluctuations
are effectively autocorrelated and hence make an important con-
tribution to slowing the mean switching rate. The other primary
contribution comes from the strength of the nonlinear forcing
term (deeper attractor basins would also slow the switching pro-
cess). This affords an additional opportunity to more strongly
constrain the parameters of the mean field model and hence ex-
ploit non-invasive data to make model-driven inferences on un-
derlying physiology.

In summary, this neural field model exhibits three key empir-
ical features of the human alpha rhythm, namely multistability,
long-tailed dwell-time distributions, and proportional scaling
between mean activity and its SD. This is achieved through a
multiplicative interaction between stochastic inputs to the thala-
mus and nonlinear feedback from the cortex in the presence of a
system instability (a subcritical Hopf bifurcation) that produces a
bistable regime. Our findings further resolve the paradoxical co-
existence between high-dimensional stochastic and low-
dimensional nonlinear processes in large-scale neuronal systems:
although moment-to-moment states are primarily driven by sto-
chastic fluctuations— hence explaining their dominant role in
the character of time series data (Stam et al., 1999; Breakspear and
Terry, 2002) —these operate in a global nonlinear landscape con-
taining multiple basins of attraction. The multiplicative interac-
tion between these two processes plays a key role in our
biophysical model of spontaneous cortical activity and provides
an intriguing possibility to unify important features of human
perception, cognition, and behavior.
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