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Correspondence should be addressed to Luca Faes, luca.faes@unitn.it

Received 28 October 2011; Revised 22 February 2012; Accepted 3 March 2012

Academic Editor: Dimitris Kugiumtzis

Copyright © 2012 Luca Faes et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This tutorial paper introduces a common framework for the evaluation of widely used frequency-domain measures of coupling
(coherence, partial coherence) and causality (directed coherence, partial directed coherence) from the parametric representation of
linear multivariate (MV) processes. After providing a comprehensive time-domain definition of the various forms of connectivity
observed in MV processes, we particularize them to MV autoregressive (MVAR) processes and derive the corresponding frequency-
domain measures. Then, we discuss the theoretical interpretation of these MVAR-based connectivity measures, showing that each
of them reflects a specific time-domain connectivity definition and how this results in the description of peculiar aspects of the
information transfer in MV processes. Furthermore, issues related to the practical utilization of these measures on real-time series
are pointed out, including MVAR model estimation and significance assessment. Finally, limitations and pitfalls arising from model
mis-specification are discussed, indicating possible solutions and providing practical recommendations for a safe computation of
the connectivity measures. An example of estimation of the presented measures from multiple EEG signals recorded during a
combined visuomotor task is also reported, showing how evaluation of coupling and causality in the frequency domain may help
describing specific neurophysiological mechanisms.

1. Introduction

Multivariate (MV) time series analysis is nowadays exten-
sively used to investigate the concept of connectivity in
dynamical systems. Connectivity is evaluated from the joint
description of multiple time series collected simultaneously
from the considered system. Applications of this approach
are ubiquitous in the analysis of experimental time series
recorded in various research fields, ranging from economics
to biomedical sciences. In neuroscience, the concept of
brain connectivity [1] plays a central role both in the
understanding of the neurophysiological mechanisms of
interaction among different areas of the brain, and in the
development of indexes for the assessment of mechanism
impairment in pathological conditions (see, e.g., [2] and
references therein). The general term “brain connectivity”
encompasses different modes, each making reference to

specific aspects of how brain areas interact. In particular,
“functional connectivity” refers to evaluation of statistical
dependencies between spatially distributed neuronal units,
while “effective connectivity” refers to the description of
networks of directional effects of one neural unit over
another [3]. In the context of time series analysis, the notions
of functional and effective connectivity can be investigated,
respectively, in terms of coupling, that is, the presence of
interactions, and of causality, that is, the presence of driver-
response relationships, between two neurophysiological time
series taken from the available MV data set.

The assessment of coupling and causality in MV pro-
cesses may be performed following either linear or nonlinear
time series analysis approaches [2, 4]. While nonlinear
methods are continuously under development [5–10] and
offer the intriguing possibility of studying complex signal
interactions, linear signal processing approaches [11] are
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extensively used in MV neurophysiological time series anal-
ysis. The main reason for the popularity of linear methods
lies in the fact that they are strictly related to the frequency-
domain representation of multichannel data [12, 13], and
thus, lend themselves to the representation of biological
signals which are rich of oscillatory content. In physiological
systems, the linear frequency-domain representation favors
the characterization of connectivity between specific oscilla-
tory components such as the EEG rhythms [14].

In the linear signal processing framework, connectivity is
very often formalized in the context of an MV autoregressive
(MVAR) representation of the available time series, which
allows to derive time- and frequency-domain pictures,
respectively, by the model coefficients and by their spectral
representation. Accordingly, several frequency-domain mea-
sures of connectivity have been introduced and applied in
recent years. Coupling is traditionally investigated by means
of the coherence (Coh) and the partial coherence (PCoh),
classically known, for example, from Kay [15] or Bendat
and Piersol [16]. Measures able to quantify causality in the
frequency-domain were proposed more recently, the most
used being the directed transfer function (DTF) [12, 17],
the directed coherence (DC) [18], and the partial directed
coherence (PDC) [19], the latter repeatedly refined after its
original formulation [20–22]. These measures are widely
used for the analysis of interactions among physiologi-
cal time series, and—in particular—to characterize brain
connectivity [23–31]. Recent studies have proposed deeper
interpretation of frequency-domain connectivity measures
[21, 32], as well as comparison on both simulated and real
physiological time series [11, 33]. Despite this large body
of work, the interpretation of frequency-domain coupling
and causality measures is not always straightforward, and
this may lead to erroneous descriptions of connectivity and
related mechanisms. Examples of ambiguities emerged in the
interpretation of these measures are the debates about the
ability of PCoh to measure some forms of causality [34, 35],
about the specific kind of causality which is reflected by the
DTF and DC measures [17, 19, 36], and about whether the
PDC could be suitably re-normalized to make its modulus
able to reflect meaningfully the strength of coupling [22, 32].

In order to settle these interpretability issues, a joint
description of the different connectivity measures, as well
as a contextualization in relation to well-defined time-
domain concepts, is required. According to this need, the
present paper has a tutorial character such that—instead of
proposing new measures—it is aimed to enhance the inter-
pretability and favour the utilization of existing frequency-
domain connectivity measures based on MVAR modelling.
To this end, we introduce a common framework for the
evaluation of Coh, PCoh, DC/DTF, and PDC from the
frequency-domain representation of MVAR processes, which
is exploited to relate the various measures to each other as
well as to the specific coupling or causality definition which
they underlie. After providing a comprehensive definition
of the various forms of connectivity observed in MV
processes, we particularize them to MVAR processes and
derive the corresponding frequency-domain measures. Then,
we discuss the theoretical interpretation of these measures,

showing how they are able to describe peculiar aspects of
the information transfer in MV time series. Further, we
point out issues related to practical estimation, limitations,
and recommendations for the utilization of these measures
on real MV time series. An example of estimation of the
presented measures from multiple EEG signals recorded
during a sensorimotor integration experiment is finally
presented to illustrate their practical applicability.

2. Connectivity Definitions in the Time Domain

2.1. Multivariate Closed-Loop Processes. Let us consider M
stationary stochastic processes ym, m = 1,. . . ,M, collected
in the multivariate (MV) vector process Y = [y1, . . . , yM]T.
Without loss of generality, we assume that the processes are
real-valued, defined at discrete time (ym = {ym(n)}; e.g.,
are sampled versions of the continuous time processes ym(t),
taken at the times tn = nT , with T the sampling period) and
have zero mean (E[ym(n)] = 0, where E[·] is the statistical
expectation operator). An MV closed loop vector process
of order p is defined expressing the present value of each
scalar process, ym(n), as a function of the p past values of all
processes, collected in Yl = {yl(n− 1), . . . , yl(n− p)} (l,m =
1, . . . ,M):

ym(n) = fm(Y1, . . . ,YM) + um(n), (1)

where um are independent white noise processes describing
the error in the representation. Note that the definition
in (1) limits to past values only the possible influences
of one process to another, excluding instantaneous effects
(i.e., effects occurring within the same lag). The absence
of instantaneous effects is denoted as strict causality of
the closed loop MV process [37, 38] and will be assumed
henceforth.

Given two processes yi and yj of the closed-loop,
the general concept of connectivity can be particularized
to the study of causality or coupling between yi and yj ,
which investigate, respectively, directional or non-directional
properties of the considered pairwise interaction. With the
aim of supporting interpretation of the frequency-domain
connectivity measures presented in Section 3, we state now
specific time-domain definitions of coupling and causality
valid for an MV closed-loop process (see Table 1). Direct
causality from yj to yi, yj → yi, exists if the prediction
of yi(n) based on {Y1, . . . ,YM} is better (i.e., yields a lower
prediction error) than the prediction of yi(n) based on
{Y1, . . . ,YM} \ Yj . Causality from yj to yi, yj ⇒ yi, exists if
a cascade of direct causality relations yj → ym · · · → yi
occurs for at least one m ∈ {1, . . . ,M}; if m = i or m = j
causality reduces to direct causality, while for m /= i, m /= j,
the causality relation is indirect. Direct coupling between yi
and yj , yi ↔ yj , exists if yi → yj or yj → yi. Coupling
between yi and yj , yi ⇔ yj , exists if yi ⇒ yj or yj ⇒ yi.
The rationale of these connectivity definitions is grounded
on the very popular notion of Granger causality, as originally
introduced by the seminal paper of Granger for a bivariate
closed loop linear stochastic process [39], and on intuitive
generalizations aimed at moving from the study of causality
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Table 1: Connectivity definitions and conditions for their existence. (See text for details).

Definition MV closed-loop process MVAR process, time domain
MVAR process,

Frequency
domain

Direct causality yj → yi
Knowledge of Yj improves

prediction of yi (n)
ai j(k) /= 0 πij( f ) /= 0

Causality yj ⇒ yi y j → ym · · · → yi amj(k) /= 0, . . . , aim(k) /= 0 γi j( f ) /= 0

Direct coupling
yi ↔ yj

yi → yj or yj → yi aji(k) /= 0 or ai j(k) /= 0
Πi j( f ) /= 0

Spurious direct
coupling

yi → ym and yj → ym ami(k) /= 0 and amj(k) /= 0

Coupling
yi ⇔ yj

yi ⇒ yj or yj ⇒ yi
ami(k) /= 0, . . . , ajm(k) /= 0

or amj(k) /= 0,. . . , aim(k) /= 0 Γi j( f ) /= 0

Spurious coupling ym ⇒ yi and ym ⇒ yj
asm(k) /= 0, . . . , ais(k) /= 0

and asm(k) /= 0, . . . , ajs(k) /= 0

to the study of coupling, and from bivariate (M = 2) to
MV (M ≥ 3) processes. Specifically, our definition of direct
causality agrees with the Granger’s original statement [39]
for bivariate processes, and with the notion of prima facie
Granger causality introduced later in [40] for multivariate
processes. The definition of causality is a generalization
incorporating both direct and indirect causal influences
from one process to another, while the coupling definitions
generalize the causality definitions by accounting for both
forward and backward interactions.

In addition to the definitions provided above, we state
the following definitions of coupling, which are referred to
as spurious because they concern a mathematical formalism
rather than an intuitive property of two interacting processes:
spurious direct coupling between yi and yj exists if yi → ym
and yj → ym for at least one m ∈ {1, . . . ,M}, m /= i,
m /= j; spurious coupling between yi and yj exists if ym ⇒
yi and ym ⇒ yj for at least one m ∈ {1, . . . ,M}, m /= i,
m /= j. These definitions suggest that two processes can be
interpreted as directly coupled also when they both directly
cause a third common process, and as coupled also when they
are both caused by a third common process, respectively, and
are introduced here to provide a formalism for explaining
a confounding property of the two common frequency-
domain coupling measures reviewed in Section 3.

An illustrative example of the described causality and
coupling relations is reported in Figure 1, showing a network
of M = 5 interacting processes where each node represents
a process and the connecting arrows represent coupling or
causality relations. The structure of the process is unam-
biguously determined by the direct causality relations set
in Figure 1(a), that is, y1 → y2, y2 → y3, y3 → y4,
y4 → y2, and y1 → y5. All other connectivity definitions
can be established from this set of direct causality effects.
Indeed, the causality relations follow from the presence of
either direct causality (Figure 1(b), black arrows) or indirect
causality (Figure 1(b), red arrows). Direct coupling exists as
a consequence of direct causality (Figure 1(c), solid arrows),
and also as a consequence of the common driving exerted
by y1 and y4 on y2, such that the spurious connection y1 ↔
y4 (Figure 1(c), dashed arrow) arises. Finally, coupling is

detected between each pair of processes: while most relations
derive from the causality effects (Figure 1(d), solid arrows),
the relations y2 ⇔ y5, y3 ⇔ y5, and y4 ⇔ y5 are spurious
as they derive from the common driving exerted by y1 on y2

and y5, on y3 and y5, and on y4 and y5 (Figure 1(d), dashed
arrows).

2.2. Multivariate Autoregressive Processes. In the linear signal
processing framework, the MV closed-loop process Y(n) =
[y1(n), . . . , yM (n)]T can be represented as the output of a
MV linear shift-invariant filter [15]:

Y(n) =
∞∑

k=−∞
H(k)U(n− k), (2)

where U(n) = [u1(n) · · ·uM(n)]T is a vector ofM zero-mean
input processes and H(k) is theM×M filter impulse response
matrix. A very common representation of (2), extensively
used in time series analysis, is the MV autoregressive (MVAR)
representation [15]:

Y(n) =
p∑

k=1

A(k)Y(n− k) + U(n), (3)

where A(k) are M × M coefficient matrices in which the
element ai j(k) describes the dependence of yi(n) on yj(n −
k) (i, j = 1, . . .M; k = 1, . . . , p). Note that (3) is a
particularization of (1) in which each function fm is a linear
first-order polynomial. The input process U(n), also called
innovation process, is assumed to be composed of white and
uncorrelated noises; this means that the correlation matrix of
U(n), RU(k) = E[U(n)UT(n− k)], is zero for each lag k > 0,
while it is equal to the covariance matrix Σ = cov(U(n)) for
k = 0. Under the assumption of strict causality, the input
white noises are uncorrelated even at lag zero, so that their
covariance reduces to the diagonal matrix Σ = diag(σ2

i).
One major benefit of the representation in (3) is that it

allows to investigate properties of the joint description of
the processes ym from the model coefficients. In fact, the
connectivity definitions provided in Section 2.1 for a general
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Figure 1: Graphical models for an illustrative five-dimensional closed loop process, denoting the scalar processes (yi, i = 1, . . . , 5) as graph
nodes and the connectivity relations between processes as connecting arrows. Graphs depict an imposed set of direct causality relations
(yj → yi, (a)), as well as the corresponding sets of causality (yj ⇒ yi, (b)), direct coupling (yi ↔ yj , (c)), and coupling (yi ⇔ yj , (d))
relations. Indirect causality relations are depicted with red arrows in (b), while spurious direct coupling and spurious coupling relations are
depicted with dashed double-head arrows in ((c) and (d)).

closed-loop MV process can be specified for an MVAR
process in terms of the elements of A(k). Conceptually,
causality and coupling relations are found when the pathway
relevant to the interaction is active, that is, is described by
nonzero coefficients in A (see Table 1). More formally, we
have that yj → yi if ai j(k) /= 0 for at least one k ∈ {1, . . . , p};
yj ⇒ yi if amlml−1 (kl) /= 0 for at least one set of L + 1 different
values for ml ∈ {1, . . . ,M} with m0 = j, mL = i, and one
set of L lags kl ∈ {1, . . . , p}(l = 1, . . . ,L; 1 ≤ L < M);
yi ↔ yj if, for at least and one pair k1, k2 ∈ {1, . . . , p}, one
of the following holds: (i) aji(k1) /= 0 or ai j(k2) /= 0 (direct
coupling), or (ii) ami(k1) /= 0 and amj(k2) /= 0 for at least
one m ∈ {1, . . . ,M} such that m /= i, m /= j (spurious direct
coupling); yi ⇔ yj if, for some ml ∈ {1, . . . ,M} and kl ∈
{1, . . . , p} one of the following holds: (i) amlml−1 (kl) /= 0 with
either m0 = i, mL = j or m0 = j, mL = i (coupling), or
(ii) amlml−1 (kl) /= 0 with both m0 = m, mL = i and m0 = m,

mL = j for at least one m ∈ {1, . . . ,M} such that m /= i, m /= j
(spurious coupling).

To illustrate these time-domain connectivity definitions,
let us consider the MVAR process of dimension M = 5 and
order p = 2:

y1(n) = 2ρ1 cos
(
2π f1

)
y1(n− 1)− ρ2

1 y1(n− 2) + u1(n),

y2(n) = 0.5y1(n− 1) + 0.5y4(n− 1) + u2(n),

y3(n) = 0.5y2(n− 1) + 0.5y2(n− 2) + u3(n),

y4(n) = 2ρ4 cos
(
2π f4

)
y4(n− 1)− ρ2

4 y4(n− 2)

+ 0.5y3(n− 1) + 0.5y3(n− 2) + u4(n),

y5(n) = 0.5y1(n− 1) + 0.5y1(n− 2) + u5(n),

(4)

with ρ1 = 0.9, f1 = 0.1, ρ4 = 0.8, f4 = 0.3, where
the inputs ui(n) are fully uncorrelated and with variance
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Figure 2: Time-domain connectivity pattern for the illustrative
MVAR process of (4). Each plot depicts the values set for the
coefficients ai j(k) (i, j = 1, . . . , 5; k = 1, 2), with nonzero
coefficients evidenced in red.

σ2
i = 1(i = 1, . . . , 5). Equation (4) defines one of the pos-

sible MVAR processes realizing the connectivity patterns
depicted in Figure 1. The matrix layout plot of Figure 2,
depicting the values set for the coefficients ai j(k), provides
a straightforward interpretation of connectivity in the time
domain. In fact, non-zero values in the coefficient matrices
A(1) and A(2) determine direct causality and causality
among the processes—and consequently direct coupling and
coupling—in agreement with the definitions provided above.
In particular, we note that direct causality from yj to yi
occurs if at least one coefficient in the (i, j)th plot of the
matrix layout of Figure 2 is nonzero (red symbols). For
example, nonzero values of a21(1) and of {a32(1), a32(2)}
determine the direct causality relations y1 → y2 and
y2 → y3 when considered separately, as well as the causality
relation y2 ⇒ y3 (indirect effect) when considered together;
nonzero values of a21(1) and of a24(1) determine the direct
coupling relations y1 ↔ y2 and y2 ↔ y4, and also the
spurious direct coupling y1 ↔ y4; nonzero values of
{a21(1), a32(1), a32(2)} and of {a51(1), a51(2)} determine
the coupling relations y1 ⇔ y3 and y1 ⇔ y5, but also the
spurious coupling y3 ⇔ y5. Note that the diagonal values of
A(k) do not provide direct information on connectivity, but
rather determine autonomous oscillations in the processes.
In this case, narrow-band oscillations are generated for the
process yi by setting complex-conjugate poles with modulus
ρi and phases±2π fi (i.e., imposing aii(1) = 2ρi cos(2π fi) and
aii(2) = −ρ2

i , i = 1, 4).

3. Connectivity Definitions in the Frequency
Domain

3.1. Connectivity Measures. The derivation of connectivity
measures which reflect and quantify in the frequency
domain the time-domain definitions provided in Section 2
proceeds in two steps: first, the known correlation and
partial correlation time-domain analyses are transposed in
the frequency domain to describe the concepts of coupling
and direct coupling, respectively; second, the parametric
representation of the process is exploited to decompose the
derived spectral measures of (direct) coupling into measures
of (direct) causality. As to the first step, time-domain
interactions within the MV closed-loop process Y(n) may be
characterized by means of the time-lagged correlation matrix
R(k) = E[Y(n)YT(n − k)] and of its inverse R(k)−1, whose
elements may be used to define the so called correlation
coefficient and partial correlation coefficient between two
processes yi and yj [41]:

ρi j(k) = ri j(k)
√
rii(k)r j j(k)

,

ηi j(k) = − pi j(k)
√
pii(k)pj j(k)

,

(5)

where ri j(k) and pi j(k) are the i- j elements of R(k) and
R(k)−1. The correlation ρi j is a normalized measure of the
linear interdependence between yi(n) and yj(n − k) and, as
such, quantifies coupling in the time-domain. The partial
correlation ηi j is a measure of direct coupling, in the sense
that it quantifies the linear interdependence between yi(n)
and yj(n − k) after removing the effects of all remaining
processes, according to a procedure denoted as partialization
[42]. The frequency-domain counterpart of these measures
is obtained considering the traditional spectral analysis of
MV processes on one side [15], and the corresponding dual
analysis performed in the inverse spectral domain on the
other side [43]. Specifically, the M × M spectral density
matrix S( f ) is defined as the Fourier Transform (FT) of R(k),
while the inverse spectral matrix P( f ) = S( f )−1 results as the
FT of the partial correlation matrix R(k)−1. The elements of
the spectral matrices S( f ) and P( f ) are combined to define
the so-called coherence (Coh) and partial coherence (PCoh)
functions [44]:

Γi j
(
f
) = Si j

(
f
)

√
Sii
(
f
)
Sj j
(
f
) , (6a)

Πi j
(
f
) = − Pi j

(
f
)

√
Pii
(
f
)
Pj j
(
f
) . (6b)

When a closed-loop MV process is particularized to a
MVAR process, the spectral representation may be obtained
taking the FT of the representations in (2) and (3), which
yields Y( f ) = H( f )U( f ) and Y( f ) = A( f )Y( f ) + U( f ),
respectively, where Y( f ) and U( f ) are the FTs of Y(n) and
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U(n), and the M ×M transfer matrix and coefficient matrix
are defined in the frequency domain as:

H
(
f
) =

∞∑

k=−∞
H(k)e− j2π f kT , A

(
f
) =

p∑

k=1

A(k)e− j2π f kT .

(7)

Comparing the two spectral representations, it is easy to
show that the coefficient and transfer matrices are linked by:
H( f ) = [I− A( f )]−1 = A( f )−1. This important relation is
useful to draw the connection between the spectral density
matrix S( f ) and its inverse P( f ), as well as to decompose
the symmetric frequency-domain connectivity measures into
terms eliciting directionality. The key element is the spectral
factorization theorem [45]:

S
(
f
) = H

(
f
)
ΣHH

(
f
)
, P

(
f
) = A

H(
f
)
Σ−1A

(
f
)
, (8)

(where H stands for Hermitian transpose), which allows
to represent, under the assumption of strict causality, the
elements of the spectral density matrices as:

Si j
(
f
) =

M∑

m=1

σ2
mHim

(
f
)
H∗

jm

(
f
)
,

Pi j
(
f
) =

M∑

m=1

1
σ2
m
A
∗
mi

(
f
)
Amj

(
f
)
.

(9)

The spectral decompositions in (9) lead to decompose the
Coh and PCoh defined in (6a) and (6b) as:

Γi j
(
f
) =

M∑

m=1

σmHim
(
f
)

√
Sii
(
f
)

σmH
∗
jm

(
f
)

√
Sj j
(
f
) =

M∑

m=1

γim
(
f
)
γ∗jm
(
f
)
,

(10a)

Πi j
(
f
) = −

M∑

m=1

(1/σm)Amj
(
f
)

√
Pj j
(
f
)

(1/σm)A
∗
mi

(
f
)

√
Pii
(
f
)

= −
M∑

m=1

πmj
(
f
)
π∗mi

(
f
)
.

(10b)

The last terms in (10a) and (10b) contain, respectively,
the so-called directed coherence (DC) and partial directed
coherence (PDC), which we define in this study as:

γi j
(
f
) = σjHi j

(
f
)

√∑M
m=1 σ2

m

∣∣Him
(
f
)∣∣2

, (11a)

πi j
(
f
) = (1/σi)Aij

(
f
)

√
∑M

m=1

(
1/σ2

m

)∣∣∣Amj
(
f
)∣∣∣

2
. (11b)

The DC as defined in (11a) was originally proposed by Saito
and Harashima [46], and further developed as connectivity
measure by Baccala et al. [18]. Note that the directed transfer
function (DTF) defined in [12] is a particularization of
the DC in which the input variances are all equal (σ2

1 =

σ2
2 = · · · = σ2

M) so that they cancel each other in
(11a). The quantity which we define as PDC in (11b) was
named “generalized PDC” in [20], while the original version
of the PDC [19] was not including inner normalization
by the input noise variances; our definition (11b) follows
directly from the decomposition in (10b). We note that
other variants of the PDC estimator have been recently
provided: the “information PDC” [21], which under the
hypothesis of strict causality reduces to (11a), has been
proposed as a measure bridging frequency and information
domains; the “renormalized PDC” [22] has been proposed to
allow drawing conclusion about the interaction strength by
normalization. Here, besides the meaningful dual derivation
of DC and PDC as factors in the decomposition of Coh
and PCoh, we further justify the utilization of the measures
defined in (11a) and (11b) noting that they satisfy the
desirable property of scale-invariance. On the contrary,
as shown by Winterhalder et al. [11], false detections of
causality may occur from low variance process to processes
with significantly higher variance when the original DTF and
PDC estimators are used.

The quantities γi j( f ) and πi j( f ) defined in (11a) and
(11b) can be interpreted as measures of the influence of yj
onto yi, as opposed to γji( f ) and πji( f ) which measure the
interaction occurring over the opposite direction from yi
onto yj . Therefore, the DC and the PDC, being factors in the
decomposition of Coh and PCoh, are asymmetric connec-
tivity measures which elicit the directional information from
the two symmetric measures. More detailed interpretation of
all these measures is provided in the next subsection.

3.2. Interpretation. A straightforward interpretation of the
four connectivity measures above presented may be obtained
considering that they reflect in the frequency domain the
different time-domain definitions of connectivity given in
Section 2.2. First, we note that the PDC is a measure of direct
causality, because the numerator of (11b) contains, with
i /= j, the term Aij( f ), which is nonzero only when ai j(k) /= 0
for some k and is uniformly zero when ai j(k) = 0 for each k.
Considering the DC, one can show that, expanding H( f ) =
A( f )−1 as a geometric series [36], the transfer function
Hij( f ) contains a sum of terms each one related to one of
the (direct or indirect) transfer paths connecting yj to yi;
therefore, the numerator of (11a) is nonzero whenever any
path connecting yj to yi is significant, that is, when causality
occurs from yj to yi. As to the coupling definitions, we note
from (10a) and (10b) that Γi j( f ) /= 0 when both γim( f ) /= 0
and γjm( f ) /= 0, and Πi j( f ) /= 0 when both πmi( f ) /= 0 and
πmj( f ) /= 0; this suggests that Coh and PCoh reflect respec-
tively coupling and direct coupling relations in accordance
with a frequency-domain representation of the definitions
given in Section 2. However, (10a) and (10b) explain also the
rationale of introducing a mathematical formalism to define
spurious direct coupling and spurious coupling. In fact, the
fulfillment of Πi j( f ) /= 0 or Γi j( f ) /= 0 at a given frequency
f is not a sufficient condition for the existence of direct
coupling or coupling at that frequency, because the observed
relation can be also spurious. The correspondence with the
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time-domain connectivity definitions and the frequency-
domain measures is summarized in Table 1.

The four connectivity measures defined in (6a), (6b),
(11a), and (11b) are complex-valued. In order to have real-
valued measures, the squared modulus of Coh, PCoh, DC,
and PDC is commonly used to measure connectivity in the
frequency domain. Therefore, |Γi j( f )|2, |Πi j( f )|2, |γi j( f )|2,
and |πi j( f )|2 are computed to quantify, respectively, cou-
pling, direct coupling, causality, and direct causality as
a function of frequency. All these squared measures are
normalized so that they take values between 0, representing
absence of connectivity, and 1, representing full connectivity
between the processes yi and yj at the frequency f . This
property allows to interpret the value of each squared index
as a measure of the “strength” of connectivity. While this
interpretation is meaningful for Coh and DC, it is less useful
for PCoh and PDC. Indeed, Coh and DC are defined from
the elements of the spectral matrix S( f ) (see (6a)–(11a))
and, as such, are easy to interpret in terms of power spectral
density. On the contrary, PCoh and PDC are obtained from
a dual representation evidencing the inverse spectral matrix
P( f ) (see (6b)–(11b)), which is less easy to interpret because
inverse spectra do not have a clear physical meaning. On the
other hand, PCoh and PDC are useful when one is interested
in determining the frequency-domain connectivity structure
of a vector process, as they elicit direct connections between
two processes in the MV representation. From this point of
view, Coh and DC are more confusing as they measure the
“total” connectivity between two processes, mixing together
direct and indirect effects.

Further interpretation of the directional measures of
connectivity, is provided considering the normalization
properties

∑M
m=1 |γim( f )|2 = 1 and

∑M
m=1 |πmj( f )|2 = 1, in-

dicating that the DC is normalized with respect to the
structure that receives the signal and the PDC is normalized
with respect to the structure that sends the signal [19].
Combined with (9), these properties lead to represent the
spectra and inverse spectra of a scalar process, that is, the
diagonal elements of S( f ) and P( f ), as:

Sii
(
f
) =

M∑

m=1

Si|m
(
f
)
, Si|m

(
f
) = ∣∣γim

(
f
)∣∣2

Sii
(
f
)
,

(12a)

Pj j
(
f
) =

M∑

m=1

Pj→m
(
f
)
, Pj→m

(
f
) =

∣∣∣πmj
(
f
)∣∣∣

2
Pj j
(
f
)
,

(12b)

where Si|m( f ) is the part of Sii( f ) due to ym, and Pj→m( f ) is
the part of Pj j( f ) directed to ym. Thus, the DC and the PDC
may be viewed as the relative amount of power of the output
process which is received from the input process, and the
relative amount of inverse power of the input process which
is sent to the output process, respectively. Again, inverse
power quantifies direct causality but is of difficult physical
interpretation, while power is straightforward to interpret
but includes both direct and indirect effects. Therefore, a

desirable development would be to split the DC into direct
and indirect contributions, in order to exploit the advantages
of both representations. However, such a development is not
trivial, as recently shown by Gigi and Tangirala [32] who
elicited the presence of an interference term which prevents
the separation of direct and indirect energy transfer between
two variables of a MV process.

To compare the behavior of the presented connectivity
measures and to discuss their properties, let us consider the
frequency-domain representation of the theoretical example
with time-domain representation given by (4). The trends
of spectral and cross-spectral density functions are depicted
in Figure 3. The spectra of the five processes, reported as
diagonal plots in Figure 3(a), exhibit clear peaks at the
frequency of the two oscillations imposed at ∼0.1 Hz and
∼0.3 Hz for y1 and y4, respectively, and appear also in
the spectra of the remaining processes according to the
imposed causal information transfer. On the contrary the
inverse spectra, reported as diagonal plots in Figure 3(b),
do not provide clear information about such an oscillatory
activity. Off-diagonal plots of Figures 3(a) and 3(b) depict,
respectively, the squared magnitudes of Coh and PCoh;
note the symmetry of the two functions (Γi j( f ) = Γ∗ji( f ),
Πi j( f ) = Π∗ji( f )), reflecting the fact that they cannot account
for directionality of the considered interaction. The com-
parison of Figure 3(a) with Figure 1(d), and of Figure 3(b)
with Figure 1(c), evidences how Coh and PCoh provide
a spectral representation of coupling and direct coupling:
indeed, the frequency-domain functions are uniformly zero
when the corresponding connectivity relation is absent in
the time domain. Note that the spurious direct coupling
and spurious coupling connections evidenced in Figures 1(c)
and 1(d) cannot be pointed out from the frequency-domain
representations of Figure 3: for example, the coherence
between y5 and all other processes is very high at ∼0.1 Hz
although only the coupling y1 ⇔ y5 is not spurious. Another
observation regards interpretability of the absolute values:
while Coh shows clear peaks at the frequency of coupled
oscillations (∼0.1 Hz and ∼0.3 Hz) when relevant, PCoh is
less easy to interpret as sometimes the squared modulus does
not exhibit clear peaks (e.g., |Π23( f )|2, |Π34( f )|2) or is very
low (e.g., |Π12( f )|2, |Π14( f )|2).

Figure 4 depicts the spectral decomposition of the MVAR
process, as well as the trends resulting for the DC function
from this decomposition. Note that the DC reflects the
pattern of causality depicted in Figure 1(b), being uniformly
zero along all directions over which no causality is imposed
in the time domain. Figure 4(a) provides a graphical rep-
resentation of (12a), showing how the spectrum of each
process can be decomposed into power contributions related
to all processes; normalizing these contributions, one gets
the squared modulus of the DC, as depicted in Figure 4(b).
In the example, the spectrum of y1 is decomposed in one
part only, deriving from the same process. This indicates that
no part of the power of y1 is due to the other processes.
The absence of external contributions is reflected by the
null profiles of the squared DCs |γ1 j( f )|2 for each j > 1,
which also entail a flat unitary profile for |γ11( f )|2. On the
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Figure 3: Spectral functions and frequency domain measures of coupling for the illustrative MVAR process of (4). (a) Power spectral density
of the process yi (Sii( f ), black) and coherence between yi and yj (|Γi j( f )|2, blue). (b) Inverse power spectral density of yi (Pii( f ), black) and
partial coherence between yi and yj (|Πi j( f )|2, red).
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Figure 4: Decomposition of the power spectrum of each process yi in (4), Sii( f ), into contributions coming from each process yj (Si| j ,
shaded areas in each plot) (a), and corresponding squared DC from yj to yi, |γi j( f )|2 (b) depicted for each i, j = 1, . . . ,M.
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Figure 5: Decomposition of the inverse power spectrum of each
process yi in (4), Pj j( f ), into contributions directed towards each
process yi (Pj→ i, shaded areas in each plot) (a), and corresponding
squared PDC from yj to yi, |πij( f )|2 (b) depicted for each i, j =
1, . . . ,M.

contrary, the decompositions of yi, with i > 1, results in
contributions from the other processes, so that the squared
DC |γi j( f )|2 is nonzero for some j /= i, and the squared

DC |γii( f )|2 is not uniformly equal to 1 as a result of the
normalization condition. In particular, we note that the
power of the peak at f1 = 0.1 Hz is due to y1 for all
processes (red areas in Figure 4(a)), determining very high
values of the squared DC in the first column of the matrix
plot in Figure 3(b), that is, |γi1( f1)|2 ≈ 1; this behavior
represents in the frequency domain the causality relations
imposed from y1 to all other processes. Note that, as a
consequence of the normalization condition of the DC, the
high values measured at ∼0.1 Hz for |γi1|2 entail very low
values, at the same frequency, for |γi j|2 computed with j > 1.

Whereas this property is straightforward when the studied
effect is direct, in the case of indirect causality, it suggests
that the DC modulus tends to ascribe the measured causal
coupling to the source process (i.e., the first process) rather
than to the intermediate processes of the considered cascade
interaction. The remaining causality relations are relevant
to the oscillation at f2 = 0.3 Hz, which is generated in
y4 and then re-transmitted to the same process through a
loop involving y2 and y3. This loop of directed interactions
is reflected by the presence of a peak at ∼0.3 Hz of the
spectra of y2, y3, and y4, as well as by the spectral
decomposition within this frequency band (Figure 4(a)).
This decomposition results, after proper normalization, in
the nonzero DCs |γ42|2, |γ23|2, |γ34|2 (direct causality) and
|γ43|2, |γ32|2, |γ24|2 (indirect causality) observed at f2.

A dual interpretation to that provided above holds for
the decomposition of the inverse spectra into absolute and
normalized contributions sent to all processes, which are
depicted for the considered example in the area plot of
Figure 5(a) and in the matrix PDC plot of Figure 5(b),
respectively. The difference is that now contributions are
measured as outflows instead as inflows, are normalized to
the structure sending the signal instead to that receiving
the signal, and reflect the concept of direct causality instead
that of causality. With reference to the proposed example,
we see that the inverse spectrum of y1 is decomposed into
contributions flowing out towards y2 and y5 (blue and gray
areas underlying P11( f ) in Figure 5(a)), which are expressed
in normalized units by the squared PDCs |π21|2 and |π51|2.
While y2, y3, and y5 interact in a closed loop (absolute units:

P2→ 3 /= 0, P3→ 4 /= 0, P4→ 2 /= 0; normalized units: |π32|2 /= 0,
|π43|2 /= 0, |π24|2 /= 0), y5 does not send information to any
process (P5→ i = 0, |πi5|2 = 0, i = 1, 2, 3, 4). As can be seen
comparing Figure 5 with Figure 1(a), the profiles of Pj→ i and

|πi j|2 provide a frequency-domain description, respectively,
in absolute and normalized terms, of the imposed pattern
of direct causality. We note also that all inverse spectra of
a process contain a contribution coming from the same
process, which describes the part of Pj j( f ) which is not sent
to any of the other processes (Pj→ j in Figure 4(a)). After
normalization, this contribution is quantified by the PDC
|πj j|2, as depicted by the diagonal plots of Figure 5(b).

4. Practical Analysis

4.1. Model Estimation. The practical application of the
theoretical concepts described in this tutorial paper is based
on considering the available set of time series measured
from the system under analysis, {ym(n),m = 1, . . . ,M;n =
1, . . . N}, as a finite-length realization of the MV stochastic
process describing the evolution of the system over time.
Hence, the descriptive equation (3) is seen as a model of
how the observed data have been generated, and model
identification algorithms have to be applied for providing
estimates of the model coefficients to be used in place of
the true unknown coefficients in the generating equations.
Obviously, the estimates will never be the exact coefficients,
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and consequently the frequency-domain measures estimated
from the real data will always be an approximation of the true
functions. The goodness of the approximation depends on
practical factors such as the data length, and on the type and
parameters of the procedure adopted for the identification of
the model coefficients. Identification of the MVAR model (3)
can be performed with relative ease by means of estimation
methods based on the principle of minimizing the prediction
error, that is, the difference between actual and predicted
data (see, e.g., [15] or [47] for detailed descriptions). A
simple estimator is the MV least-squares method, which is
based first on representing (3) in compact representation as
Y = AZ + U, where A = [A(1) · · ·A(p)] is the M × pM
matrix of the unknown coefficients, Y = [Y(p+1) · · ·Y(N)]
and U = [U(p + 1) · · ·U(N)] are M × (N − p) matrices,

and Z = [Z1
T · · ·Zp

T]
T

is a pM × (N − p) matrix having
Zi = [Y(p − i + 1) · · ·Y(N-i)] as ith row block (i = 1, . . . p).
The method estimates the coefficient matrices through the
well-known least-squares formula: Â = YZT[ZZT]

−1
, and

the innovation process as the residual time series: Û = ÂZ−
Y. As to model order selection, several criteria exist for its
determination [47]. Common approaches are to follow the
Akaike information criterion (AIC, [48]) or to the Bayesian
information criterion (BIC, [49]), based on setting the order
p at the value for which the respective figure of merit, (i.e.,
AIC(p) = N ·log(detΣ)+2M2p, or BIC(p) = N ·log(detΣ)+
log(N)M2p) reaches a minimum within a predefined range
of orders. While the model identification and order selection
methods presented here have good statistical properties,
more accurate approaches exist; for example, we refer
the reader to [50] for a comparison of different MVAR
estimators, to [51] for order selection criteria optimized for
MVAR models, and to [52] for an identification approach
combining MVAR coefficient estimation and order selection.

After model identification, validation steps are necessary
to guarantee a correct interpretation of the obtained results.
Model validation refers to the use of a range of diagnostic
tools which are available for checking the adequacy of
the estimated structure. In particular, identification of the
MVAR model (3) should result in temporally uncorrelated
and mutually independent residuals Û(n). These assump-
tions may be checked, for example, using the Ljung-
Box portmanteau test for whiteness and the Kendall’s τ
test for independence [47]. Mutual independence of the
residuals has to be checked particularly at zero lag, because
the existence of correlated model innovations violates the
assumption of strict causality. Although these tests are often
skipped in practical analysis, we stress the importance of
performing model validation, because failure to satisfy the
model assumptions is a clear indication of model mis-
specification (see Section 5 for a more detailed description
of this problem).

4.2. Statistical Significance of Connectivity Measures. Besides
confirming the suitability of the estimated model, another
issue of great practical importance is the assessment of the
statistical significance of the derived connectivity measures.
Due to practical estimation problems, nonzero values are

indeed likely to occur at some frequencies even in the case
of absence of a true interaction between the two considered
processes. This problem is commonly faced by means of
statistical hypothesis testing procedures based on setting a
threshold for significance at the upper limit of the confidence
interval of the considered index, where confidence intervals
are based on the sampling distribution of the index com-
puted under the null hypothesis of absence of connectivity.
Comparing at each specific frequency the estimated index
with the threshold allows rejection or acceptance of the
null hypothesis according to the predetermined level of
significance. The sampling distribution in the absence of
connectivity may be derived either theoretically or empiri-
cally: theoretical approaches are elegant and computationally
more efficient, empirical ones are more general and free
of analytical approximations. While the statistical analytical
threshold for the Coh estimator can be found in classic
time series analysis books (e.g., [53]), recent theoretical
studies have provided rigorous asymptotic distributions for
the PDC [54, 55] and its renormalized version [22], as
well as for the DC/DTF [36]. As to the determination of
empirical significance levels, the most popular approaches
consist in applying permutation statistics [56] when the
data matrix can be partitioned in many windows from
which multiple values of the connectivity measure may be
computed, and in applying surrogate data analysis [57]
when only one value of the measure is computed. In the
latter case, the most followed approach is the generation
of the so-called FT surrogate series, which are obtained by
a phase randomization procedure applied independently to
each series of the considered MV data set. This approach
has been proposed to assess the significance of the Coh
estimator [58], and has been used also with the causality
estimators [17, 59]. A recent development of the FT method
is that leading to the generation of the so-called “causal
FT” (CFT) surrogates [60]. CFT surrogates were devised
specifically for the detection of the significance of causality
and direct causality in the frequency domain, and have
been shown to outperform FT surrogates as regards the
empirical detection of a zero-level for the DC or the PDC
[60]. However, it has to be remarked that the computational
burden of this new method is significantly larger than that
required for the generation of FT surrogates, and this may
make very demanding, or even intractable, the assessment
of significance when high-dimensional MVAR models are
analyzed.

4.3. Practical Illustrative Example. In this section, we report
a practical application of the presented connectivity analysis
to MV neurophysiological time series. Specifically, we con-
sidered electroencephalographic (EEG) recordings collected
from a subject performing a visuomotor task combining
precise grip motor commands with sensory visual feedback.
Briefly, the subject was asked to track the variations in size
of a square target displayed on a monitor by acting on a
pinch grip through his right hand thumb and forefinger.
Visual feedback about his performance was provided to
the subject by displaying on the monitor another square



Computational and Mathematical Methods in Medicine 11

0 2 4 6 8 10

(sec)

y1

(left-c)

y2

(right-c)

y3

(par)

y4

(occ)

Figure 6: Time series considered for the neurophysiological
application: EEG signals recorded at left-central (y1), right-central
(y2), parietal (y3), and occipital (y4) scalp locations during the
execution of a visuomotor task (see text for details).

reflecting the exerted force (the task required to continuously
match the two rectangles). EEG signals were acquired
(earlobes common reference; sampling rate: 576 Hz) during
the experiment according to the standard 10–20 electrode
placement enlarged with intermediate positions in scalp
areas of interest for the specific task performed. Full details
about the experimental protocol can be found in [28].

Here, we present the results of frequency-domain con-
nectivity analysis performed for M = 4 EEG signals sel-
ected as representative of the cortical areas involved in
visuomotor integration processes, that is, left and right
central areas (motor cortex, electrodes C3 and C4) and
posterior-parietal regions (visual area and parietal cortex,
electrodes Pz and Oz) [61]. The signals were bandpass
filtered (3–45 Hz) to remove power supply noise and extract
information about the brain rhythms of interest, and then
downsampled to 72 Hz to reduce redundancy. Pre-processed
EEGs were carefully inspected to identify possible artifacts,
and a stationary window of ten seconds (N = 720 samples)
was then selected for the analysis. The four analyzed signals
are shown in Figure 6.

The coefficients and input covariance of the MVAR
model describing the four time series were estimated using
the MV least-squares method; the model order, determined
as the minimum of the Akaike figure of merit within
the range (1, 30), was p = 8. Model validation was
performed checking whiteness and independence of the
estimated model residuals by means of the Ljung-Box test
and the Kendall test, respectively. The estimated coefficients
and input covariance were used to estimate the frequency-
domain coupling and causality functions according to (6a),
(6b), (11a), and (11b), respectively. Each estimated con-
nectivity function was evaluated inside the beta band of
the frequency spectrum (13–30 Hz), in order to investigate

connectivity mechanisms related to medium-range interac-
tions among communicating brain areas [28]. The statistical
significance of the various connectivity measures computed
in the beta band for each specific direction of interaction was
assessed by means of an approach based on the generation
of surrogate data. The test, which is described in detail in
[60], was performed generating a set of 100 surrogate series
by means of a phase randomization procedure that preserves
the modulus of the Fourier transform of the original series
and alters the Fourier phases in a way such that connectivity
is destroyed only over the direction of interest; note that the
method is specific for each connectivity measure, so that it
specifically destroys coupling, direct coupling, causality, or
direct causality between two series, respectively, when the
significance of Coh, PCoh, DC, or PDC is going to be tested.
For each connectivity measure, the threshold for significance
was obtained as the 95th percentile (corresponding to 5%
significance) of the distribution of the measure computed
over the 100 surrogate series.

The results of the analysis are reported in Figures 7
and 8 for coupling and causality measures, respectively. The
analysis of coupling indicates that the network of the four
interacting signals is fully connected inside the beta band,
as documented by the Coh values exceeding the significance
threshold for each pair of time series (Figure 7(a)). When this
information is particularized to the study of direct coupling
through the PCoh, we observe that direct connections are set
in the beta band between y3 and y4, y1 and y3, y1 and y4,
and y1 and y2 (though the PCoh exceeds the significance
threshold only slightly in this last case). This suggests a
major involvement of the left hemisphere in the connectivity
network activated by the visuomotor task, likely due to the
dominant role of the left-motor cortical area (signal y1,
electrode C3); the EEG recorded from this area, which is
contra-lateral to the moving right hand, is mainly linked to
that recorded from the parietal (signal y3, electrode Pz) and
occipital (signal y4, electrode Oz) areas which are expected
to reflect processing of the visual information. The causality
analysis depicted in Figure 8 shows how the information
about the direction of interaction may be elicited for this
application. In particular, the peaks shown inside the beta
band by the squared DC computed from yj to y1 ( j = 2, 3, 4;
first row plots of Figure 8(a)), which are small but exceed
the threshold for significance, indicate that a significant part
of the power spectrum of y1 is due to the other channels.
Considering also the significant DC from y4 to y3, we can
infer the presence of a non negligible information transfer
from the occipital to the left-central cortical regions. This
finding is confirmed by the analysis of direct causality
performed through the PDC (Figure 8(b)), which indicates
that both the direct pathway y4 → y1 and the indirect
pathway y4 → y3 → y1 are active in determining causality
from the occipital to the left-central areas, as documented
by the significant values of |π14|2, |π34|2, and |π13|2 inside
the beta band. The unidirectional nature of the information
flow is confirmed by the fact that both the DC (Figure 8(a))
and the PDC (Figure 8(b)) resulted non significant over all
directions from yj to yi with j < i. Taken together, all these
results suggest the existence of a functional link between
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Figure 7: Spectral functions and frequency-domain measures of coupling for the exemplary neurophysiological application (y1: left central
EEG; y2: right central EEG; y3: parietal EEG; y4: occipital EEG). (a), Power spectral density of the process yi(Sii( f )) and coherence between

yi and yj (|Γi j( f )|2) plotted together with its corresponding threshold for significance (|Γth
i j ( f )|2). (b), Inverse power spectral density of

yi(Pii( f )) and partial coherence between yi and yj(|Πi j( f )|2) plotted together with its corresponding threshold for significance (|Πth
i j ( f )|2).

Vertical dashed lines in each off-diagonal plot denote the bounds of the beta frequency band (13–30 Hz).

motor and visual cortices during the performed visuomotor
task, and lead to hypothesize an active role of the visual
feedback in driving the beta oscillations measured in the
motor cortex. A full analysis of this experiment, performed
on more subjects and leading to a deeper interpretation of the
involved sensorimotor integration mechanisms, is reported
in [62].

5. Limitations and Challenges

In spite of its demonstrated usefulness and widespread
utilization, MVAR-based connectivity analysis is often chal-
lenged by a number of issues that need to be taken into
serious account to avoid an improper utilization of this
tool. A key issue in this regard is that of model mis-
specification, which occurs when the developed MVAR
model does not adequately capture the correlation structure
of the observed dataset. There are several factors which may
determine model mis-specification, including utilization of
an inappropriate model structure, incorrect model order
selection, effects of non-modeled latent variables, and aspects
not accountable by the traditional MVAR structure such as
nonstationarity and nonlinearity. Most of these factors are
typically reflected in the structure of the model residuals,

resulting in a failure for the model to fulfill the assump-
tions of whiteness and independence of the innovations
(see Section 4.1). When the MVAR model is mis-specified,
utilization of the related frequency-domain connectivity
measures is potentially dangerous and is generally not
recommended, because it may lead to infer misleading or
inconsistent connectivity patterns, and thus to erroneously
interpret the physiological mechanism under investigation.
In the following, we discuss the limitations posed on MVAR-
based connectivity analysis by each of the factors listed above,
and we outline recent work that may address, at least in part,
the related pitfalls.

5.1. Appropriateness of Model Structure. A common cause
for model mis-specification is the inadequacy of the MVAR
model structure to fully describe the observed set of MV time
series. Validation tests (see Section 4.1) provide objective
criteria on whether the model has the capability of resolving
the measured dynamics and dynamical interactions. The
requirements of whiteness and independence of the model
residuals can be understood considering that, if the model
has captured the whole temporal structure of the data, what
remains after modeling (i.e., the residuals) has no temporal
structure. Failure of fulfilling the white noise assumption
means that the spectral properties of the signals are not
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Figure 8: Frequency-domain measures of causality for the exemplary neurophysiological application (y1: left central EEG; y2: right central
EEG; y3: parietal EEG; y4: occipital EEG). (a) Squared DC from yj to yi, (|γi j( f )|2) plotted together with its corresponding threshold

for significance (|γth
i j ( f )|2). (b) Squared PDC from yj to yi, (|πij( f )|2) plotted together with its corresponding threshold for significance

(|π th
i j ( f )|2). Vertical dashed lines in each off-diagonal plot denote the bounds of the beta frequency band (13–30 Hz).

fully described by the autoregression so that, for example,
important power amounts in specific frequency bands could
not be properly quantified. When the whiteness test is
not passed, the experimenter should consider moving to
different model structures, such as MV dynamic adjustment
forms having the general structure of MVAR networks fed
by individual colored AR noises at the level of each signal
[37, 38].

Failure of fulfilling the requirement of mutual inde-
pendence of the residuals corresponds to violating the
assumption of strict causality of the MVAR process. This is
an indication of the presence of significant instantaneous
causality, and occurs anytime the time resolution of the
measurements is lower than the time scale of the lagged
causal influences occurring among the observed series. This
situation is common in the analysis of neural data, such
as fMRI where the slow dynamics of the available signals
make rapid causal influences appearing as instantaneous, or
EEG/MEG where instantaneous effects are likely related to
signal cross-talk due to volume conduction [56]. In this case,
the spectral decompositions leading to the definition of DC
and PDC do not hold anymore, and this may lead to the
estimation of erroneous frequency-domain connectivity pat-
terns like spurious nonzero DC and PDC profiles indicating
causality or direct causality for connections that are actually
absent [29, 63]. A possible solution to this problem is to

use a higher sampling rate, but this would increase the data
size and—most important—would introduce redundancy
that might hamper model identification [64]. A recently
proposed approach is to incorporate zero-lag interactions in
the MVAR model, so that both instantaneous and lagged
effects are described in terms of the model coefficients
and may be described in the frequency domain [29, 63,
65]. This approach is very promising but introduces non-
trivial identification issues which could limit its practical
utilization. In fact, ordinary least-squares identification,
though recently proposed for identification of the extended
model [65], is not feasible because it forces arbitrarily the
solution; to guarantee identifiability without prior con-
straints, additional assumptions such as non-gaussianity of
the residuals have to be posed [63, 66].

5.2. Model Order Selection. Even when the most suitable
model structure is selected for describing the available
MV dataset, model mis-specification may still occur as a
consequence of an inappropriate selection of the model
order. Model order selection is in fact an issue in real
data analyses where the true order is usually unknown. In
general, a too low model order would result in the inability
to describe essential information about the MV process,
while a too high-order would bring about overfitting effects
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implying that noise is captured in the model together with
the searched information. Therefore, a tradeoff needs to be
reached between good data representation and reasonably
low model complexity. While information criteria like AIC or
BIC are very popular (see also Section 4.2), a correct model
order assessment is rather difficult because the estimated
order may not meet the user expectations (in terms of
spectral resolution when it is too low, or in terms of
interpretability of highly variable spectral profiles when it
is too high), or may even remain undetermined as the
AIC/BIC figures of merit do not reach a clear minimum
within the range searched [25, 29, 67]. Simulation studies
have shown that both underestimation and overestimation
of the correct model order may have serious implications
on connectivity analysis, with an increasing probability of
missed and false-positive connections [68, 69]. A recent
interesting result is the apparent asymmetry in the adverse
effects on connectivity analysis of choosing a wrong model
order, with more severe effects for underestimation than
overestimation [69], which suggests to prefer higher orders
while tuning this parameter in practical MVAR analysis.
Adopted with the proper cautiousness, this choice would be
good as it is also known to increase frequency resolution
of connectivity estimates and to favor the achievement of
whiteness for the model residuals.

5.3. Selection of Variables. The tools surveyed in this study
to measure connectivity are fully multivariate, in the sense
that they are based on MVAR analysis whereby all the
considered time series (often more than two) are mod-
eled simultaneously. This approach overcomes the known
problems of repeated bivariate analysis applied to multiple
time series, consisting, for example, in the detection of false
coupling or causality between two series when they are both
influenced by a third series [13, 70]. Nevertheless, in practical
experimental data analysis, it is often not possible to have
access to the complete set of variables which are relevant to
the description of the physiological phenomena of interest.
This issue goes back to the requirement of completeness
of information stated for causality analysis [40], and raises
the problem that unmeasured latent variables—often called
unobserved confounders—can lead to detection of apparent
connectivity patterns that are actually spurious, even when
multivariate tools are at hand. Dealing with latent variables
seems a daunting challenge, because there is no unique
way to determine the information set relevant for a given
problem. However, recent developments have started giving
a response to this challenge through the proposition of
approaches to causality analysis based on the idea that latent
variables may give rise to zero-lag correlations between the
available modeled series, and thus can be uncovered, at least
in part, by further analyzing such a correlation [71].

A different but related problem to that of completeness
is the redundancy in the group of the selected variables.
Historically, the issue of redundant variables has been
viewed more as a problem of increased model complexity
and related decrease of parameter estimation accuracy in
the modeling of massively MV data sets (such as those

commonly recorded in fMRI or high resolution EEG-
MEG studies). This problem has been tackled through the
introduction of network reduction approaches (e.g., [72])
or sparse (regularized/penalized) regression techniques (e.g.,
[73]), which allow to perform efficient high-dimensional
MVAR analysis. More recent works have introduced a
general formalism to recognize redundant variables in time
series ensembles, showing that the presence of redundant
variables affects standard connectivity analyses, for example,
leading to underestimation of causalities [74, 75]. An elegant
solution to this problem, proposed in [74], consists in
performing a block-wise approach whereby redundancy is
reduced grouping the variables in a way such that a properly
defined measure of total causality is maximized.

5.4. Nonstationarity and Nonlinearity. The MVAR-based
framework for connectivity analysis is grounded on the basic
requirement that the set of observed multiple time series
is suitably described as a realization of a vector stochastic
process which is both linear and stationary. Despite this,
nonlinear and nonstationary phenomena are abundant in
physiological systems, and it is well known that MVAR-
model analysis performed or nonlinear and/or nonstationary
data may lead to a range of erroneous results [76]. In
general, nonlinear methods are necessary to perform a
thorough evaluation of connectivity whenever nonlinear
dynamics are expected to determine to a non-negligible
extent the evolution over time of the investigated time
series. Analogously, when nonstationary data are expected
to reflect connectivity patterns exhibiting physiologically
relevant changes over time, it makes sense to use time-
varying methods for the detection of coupling or causality. In
these situations, several nonlinear/nonstationary time series
analysis approaches may be pursued. Nonlinear methods
range from local linear MVAR models exploited to perform
local nonlinear prediction [6, 77] to nonlinear kernels
[5] and to model-free approaches based on information
theory [7, 78], phase synchronization [79], and state-
space interdependence analysis [80]. As to nonstationary
analysis, one simple approach is to study short-time windows
which may be taken as locally stationary [67], while more
complex but potentially more efficient approaches include
spectral factorization of wavelet transforms [81] and the
combination of state space modeling and time-dependent
MVAR coefficients [82].

On the other hand, linear time-invariant analyses like
the MVAR-based approach presented in this study remains
of great appeal for the study of physiological interactions,
mainly because of their simplicity, well-grounded theoretical
basis, and shorter demand for data length in practical
analysis. The problem of non-stationarity may be dealt with
following common practical solutions like, for example,
looking for analysis windows in which the recorded signals
are stable and satisfy stationarity tests, and filtering or
differentiating the data if necessary (though this has to be
done cautiously [83]). The problem of nonlinearity may be
faced looking for experimental setups/conditions in which
the system dynamics may be supposed as operating, at the
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level of the recorded signals, according to linear mechanisms.
In fact, based on the observation that nonlinear systems
often display extensive linear regimes, many neuroscience
studies have shown that the linear approximation may suffice
for describing neurophysiological interactions, especially at
a large-scale level (see, e.g., the reviews [56, 84]). Even in
circumstances where nonlinear behaviors are manifest, such
as simulated chaotic systems or real EEG activity during
certain phases of epileptic seizure, linear techniques have
been shown to work reasonably well for the detection of
connectivity patterns [11, 85]. In addition, we remark that
the large majority of nonlinear methods used in the MV
analysis of neurophysiological signals do not provide specific
frequency-domain information [2]. The existing bivariate
nonlinear frequency-domain tools, such as cross-bispectrum
and cross-bicoherence [86], are useful to characterize depen-
dencies between oscillations occurring in different frequency
bands. However, analysis of coupling and causality between
iso-frequency rhythms observed in different signals is intrin-
sically linear, and this further supports utilization of the
linear framework for this kind of analysis.

6. Conclusions

In this tutorial paper, we have illustrated the theoretical inter-
pretation of the most common frequency-domain measures
of connectivity which may be derived from the parametric
representation of MV time series, that is, Coh, PCoh, DC,
and PDC. We have shown that each of these four measures
reflects in the frequency domain a specific time-domain
definition of connectivity (see Table 1). In particular, while
Coh and PCoh are symmetric measures reflecting the cou-
pling between two processes, they can be decomposed into
non-symmetric factors eliciting the directional information
from one process to another, these factors being exactly
the DC and the PDC. Moreover, PCoh and PDC measure
direct connectivity between two processes, while Coh and
DC account for both direct and indirect connections between
two processes in the MV representation.

We have pointed out the existence of a dual description
of the joint properties of an MVAR process such that Coh
and DC on one side, and PCoh and PDC on the other
side, may be derived from the spectral matrix describing
the process and from its inverse, respectively. This duality
relationship highlights advantages and disadvantages of the
various connectivity measures. Being related to spectral
densities, Coh and DC provide meaningful quantification
of coupling and causality in terms of (normalized) power
shared by the two considered processes; on the contrary,
PCoh and PDC are derived through an analysis performed
in the inverse spectral domain which cannot provide evident
physical information for the absolute values of the resulting
indexes. On the other side, the procedure of “partialization”
implicit in the computation of the inverse spectral matrix
lets PCoh and PDC elicit the structural information of the
MV process, so that they reflect direct connections only; this
ability is not shared by Coh and DC, which mix together
direct and indirect transfer pathways and thus cannot

provide a straightforward representation of the connectivity
structure of the process. Another interesting observation
comes from the decomposition of Coh (or, dually, of PCoh)
between two processes into DC (or PDC) terms involving
a third process (10a) and (10b); these relationships indicate
that spurious (direct) coupling may be detected when the two
processes under analysis, though not being truly connected,
are connected to another common process.

The picture emerging from these results provides sugges-
tions for the utilization of the various connectivity measures
in the analysis of MV processes. First, measures of causality
should be preferred to measures of coupling, as the latter can-
not provide directional information and may be confusing as
they are sensitive to spurious connectivity. Second, both DC
and PDC should be considered as causality measures because
they complement each other in terms of advantages and
drawbacks: DC measures causality in meaningful physical
terms as power contributions, but cannot separate direct
effects from indirect ones; PDC determines the correct
interaction structure in terms of direct causal effects, but
its absolute values lack of straightforward interpretability.
As to recommendations for the practical analysis of real
MV time series, we remark the importance of validation
tests, which constitute important safeguards against drawing
erroneous inferences consequently to model misspecifica-
tion, and of assessing the significance of each estimated
connectivity measure, which is fundamental to provide
statistical validity to the estimated MV process structure.
Taking all these aspects into account, we have shown the
practical applicability of the presented frequency-domain
connectivity measures in neurophysiology. In the reported
example, the simultaneous computation of Coh, PCoh, DC,
and PDC, and of their specific significance thresholds, from
multiple EEG recorded during the execution of a combined
visuomotor task led us to infer the existence of a specific
network subserving sensorimotor integration. This network
was characterized by a significant coupling between visual
and motor cortical regions, which was particularized into
significant causality from the occipital to the left central
cortex, suggesting a driving role of the visual feedback on the
EEG activity of the motor areas.
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