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Abstract In the past years, several frequency-domain
causality measures based on vector autoregressive time series
modeling have been suggested to assess directional connec-
tivity in neural systems. The most followed approaches are
based on representing the considered set of multiple time
series as a realization of two or three vector-valued processes,
yielding the so-called Geweke linear feedback measures, or
as a realization of multiple scalar-valued processes, yield-
ing popular measures like the directed coherence (DC)
and the partial DC (PDC). In the present study, these
two approaches are unified and generalized by proposing
novel frequency-domain causality measures which extend
the existing measures to the analysis of multiple blocks of
time series. Specifically, the block DC (bDC) and block PDC
(bPDC) extend DC and PDC to vector-valued processes,
while their logarithmic counterparts, denoted as multivari-
ate total feedback f m and direct feedback gm, represent
into a full multivariate framework the Geweke’s measures.
Theoretical analysis of the proposed measures shows that
they: (i) possess desirable properties of causality measures;
(ii) are able to reflect either direct causality (bPDC, gm) or
total (direct + indirect) causality (bDC, f m) between time
series blocks; (iii) reduce to the DC and PDC measures for
scalar-valued processes, and to the Geweke’s measures for
pairs of processes; (iv) are able to capture internal depen-
dencies between the scalar constituents of the analyzed vec-
tor processes. Numerical analysis showed that the proposed
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measures can be efficiently estimated from short time series,
allow to represent in an objective, compact way the infor-
mation derived from the causal analysis of several pairs
of time series, and may detect frequency domain causal-
ity more accurately than existing measures. The proposed
measures find their natural application in the evaluation of
directional interactions in neurophysiological settings where
several brain activity signals are simultaneously recorded
from multiple regions of interest.
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1 Introduction

In recent years, neuroscientists have recognized that a
detailed investigation of how brain areas functionally inter-
act is fundamental for describing the neurophysiological
processes typically engaged in cognitive and perceptive
processing, as well as for assessing several neurological dis-
orders. Such an investigation, commonly referred to as the
study of brain connectivity (Sporns 2007), is being favored by
the fast advancement of multielectrode data acquisition tech-
nologies such as electroencephalography (EEG) and mag-
netoencephalography (MEG), as well as by the continuous
development of multivariate time series analysis techniques
(Pereda et al. 2005). In the study of brain connectivity, the
issue of determining directionality of the interactions among
neural signals is of great interest because it allows revealing
pathways of information flow within the nervous system. In
this regard, measures based on vector autoregressive (VAR)
time series models have been proposed in neuroscience

123



218 Biol Cybern (2013) 107:217–232

(Baccala et al. 1998; Baccala and Sameshima 2001; Chen
et al. 2006; Kaminski and Blinowska 1991; Kaminski et al.
2001; Wang et al. 2007) and extensively applied to investi-
gate multichannel neural data (Astolfi et al. 2007; Brovelli
et al. 2004; Dhamala et al. 2008; Ding et al. 2007; Erla et al.
2009; Franaszczuk et al. 1994; Sato et al. 2009; Schelter et al.
2006; Winterhalder et al. 2005). These measures reflect the
probabilistic notion of causality provided by Granger (1969,
1980), which covers direct causal effects from one series to
another in a multivariate dataset, or related concepts taking
into account not only direct but also indirect causal effects
(Sims 1972). In spite of its widespread utilization in neuro-
science, it is noteworthy that the concept of Granger causal-
ity is formulated in terms of predictability and, as such, is
suited for empirical investigations of cause–effects relation-
ships but does not necessarily reflect the existence of true
causal effects. As there is no universally accepted definition
of causality, different concepts which provide suitable frame-
works for causal inference have been proposed and debated
(see, e.g., Eichler 2012 for an overview relevant to time series
analysis). In the context of this debate, recent works have
shown that connectivity measures based on Granger causality
quantify the information transfer from a statistical perspec-
tive which is quite distinct from the interventionist perspec-
tive that should be followed to infer effectively the existence
of causal effects (Lizier and Prokopenko 2010; Chicharro
and Ledberg 2012; Eichler 2012).

The application of Granger causality analysis to multi-
electrode neural data in which several regions of interest
are considered, with each region represented by a set of
several recording channels, presupposes to deal with mul-
tiple and vector-valued processes underlying the acquired
multiple blocks of time series. This general methodological
framework has been considered by several authors,
e.g., providing definitions for Granger (non)causality
(Boudjellaba et al. 1992; Tjostheim 1981) and measures of
feedback and conditional feedback (Geweke 1982, 1984)
valid for vector processes, and proposing graphical
approaches for modeling and interpreting Granger-causal
relationships (Eichler 2005, 2007). Within this framework,
the assessment of Granger causality between two of the mul-
tiple vector-valued processes is performed by testing for the
statistical significance of the entries of the VAR coefficient
submatrices corresponding to the two processes [typically
using Wald tests (Lutkepohl 2005)]. While this time domain
approach is straightforward and widely used, especially in
econometrics (Eichler 2007; Hsiao 1982; Toda and Phillips
1993), it does not account for the fact that strength and direc-
tion of Granger-causal relations between the modeled time
series may vary over different frequencies. The idea that a
spectral density approach would give further insights than an
overall time domain causality detection which is supposed
to encompass all periodicities in the observed series was first

suggested by Granger himself (1969). More recently, this
idea has become the basis of many neuroscience applica-
tions motivated by the fact that Granger causality analysis
performed in the frequency domain allows disclosing con-
nectivity mechanisms operating within specific frequency
bands, e.g., related to the EEG or MEG rhythms (Faes et
al. 2012; Faes and Nollo 2011). On this basis, the present
study is focused on the analysis of Granger causality and
related concepts of total causal influence performed in the
frequency domain.

Frequency domain Granger causality is expressed in terms
of measures of directional connectivity defined from the
spectral representation of the VAR model coefficients. In
neuroscience applications, two main approaches have been
followed to derive these connectivity measures. The so-called
Geweke approach is based on combining the multiple avail-
able time series into two blocks considered as representative
of two regions of interest, and then defining logarithmic spec-
tral measures of Granger causality which quantify the direc-
tional relations between the two blocks (Geweke 1982; Wang
et al. 2007). This approach was also extended considering
a third block of time series, yielding a conditional causal-
ity measure that elicits the direct causal influence between
the two blocks of interest (Chen et al. 2006; Geweke 1984).
However, the Geweke measures do not pursue a truly mul-
tivariate approach to the inference of connectivity among
multiple interacting blocks of time series, because they are
not computed from a joint simultaneous representation of all
series blocks. Therefore, their application with more chan-
nels becomes cumbersome as either many pairs or triplets of
blocks have to be tested, or the conditioning block has to be
constructed as a composite vector of the remaining data chan-
nels (see, e.g., Zhou et al. 2009). In a second approach, devel-
oped by the pioneering works of Kaminski et al. (Kaminski
et al. 2001; Kaminski and Blinowska 1991) and Baccalà et
al. (Baccala et al. 1998; Baccala and Sameshima 2001), each
single time series is considered as representative of a region
of interest, so that the number of series included in the VAR
model corresponds to the number of underlying processes.
In this way, frequency domain causality measures such as the
directed coherence (DC) and the partial DC (PDC) could be
defined between each pair of scalar time series within the full
multivariate representation. However, the resulting measures
have been set only for the study of scalar-valued processes,
so that they need to be further elaborated in an arbitrary way
when dealing with blocks of time series. As an example, if
one wants to assess causality between two regions each char-
acterized by more than one recording channel, DC or PDC
have to be computed individually between all pairs of chan-
nels and then somehow averaged over all pairs.

The aim of the present study is to unify and generalize
the above presented approaches for the frequency domain
quantification of directional connectivity, by proposing new
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causality measures which extend the DC/PDC measures to
vector-valued processes on one side, and provide a full mul-
tivariate account for the Geweke measures on the other
side. The proposed measures are defined from the VAR
representation of multiple vector-valued processes, and are
shown to possess desirable theoretical properties of causal-
ity measures, to be able to reflect either direct or total (i.e.,
direct + indirect) causality from one process to another, and
to reduce to the existing Geweke measures in the case of two
vector-valued processes or to the DC/PDC measures in the
case of multiple scalar-valued processes. The measures are
illustrated in theoretical and numerical examples of multiple
linearly interacting vector-valued processes. The Matlab�
code for computation of the frequency domain connectivity
measures defined in this paper is freely available for down-
load at: http://www.science.unitn.it/biophysicslab/research/
sigpro/block/toolbox_block.html.

2 Background

The notation for this paper is to use italic lowercase letters,
italic capital letters, and bold capital letters for scalar, vec-
tor, and matrix variables, respectively. The superscripts T

and ∗ denote the transpose and conjugate transpose matrix
operators, respectively. For a Q × Q matrix A, |A| is the
determinant, Ai j is the i– j scalar entry, A∗

i j is the complex

conjugate of Ai j (i, j = 1, . . . Q); if A is partitioned in M2

blocks, Alm is the l–m block and A∗
lm is the conjugate trans-

pose of Alm(l, m = 1, . . . M).
Let us consider M distinct, discrete time, vector-valued

stochastic processes Y1, . . . , YM of dimensions M1, . . . ,

MM , such that the mth process, Ym , is composed of
Mm zero-mean scalar-valued stationary processes: Ym =
[ym1 · · · ym Mm]T (m = 1, . . . , M). Without loss of general-
ity we assume that all processes are defined at discrete time
(Ym = Ym(n); e.g., are sampled versions of the continuous
time processes Ym(t), taken at the times tn = nT , with T the
sampling period) and have zero mean (E[Ym(n)] = 0, where
E[·] is the statistical expectation operator). The M vector-
valued processes can also be represented in a compact form

through the overall vector Y (n) = [
Y1(n)T · · · YM (n)T

]T =
[
y1(n) · · · yQ(n)

]
of dimension Q = ∑M

m=1 Mm .
Assuming that the overall process Y (n) admits an autore-

gressive (AR) representation, it can be described by means
of the linear parametric model (Lutkepohl 2005)

Y (n) =
∞∑

k=1

A(k)Y (n − k) + U (n), (1)

where A(k) is the Q×Q matrix of the model coefficients, and
U (n) = [u1(n) · · · uQ(n)] is a vector of Q zero-mean white
and uncorrelated innovation processes with positive definite

covariance matrix � = E[U (n)U (n)T ]. Every stationary
process with AR representation as in (1) also has a moving
average (MA) representation which lets it to be described as

Y (n) =
∞∑

k=0

H(k)U (n − k), (2)

where H(k) is the Q × Q transfer matrix.
The spectral representation of the AR and MA process

representations may be obtained taking the Fourier transform
(FT) of (1) and (2), yielding Y (ω) = A(ω)Y (ω) + U (ω)

and Y (ω) = H(ω)U (ω), where Y (ω) and U (ω) are the FTs
of Y (n) and U (n), and the Q × Q coefficient and transfer
matrices are defined in the frequency domain as

A(ω) =
∞∑

k=1

A(k)e−jω kT , (3a)

H(ω) =
∞∑

k=0

H(k)e−jω kT , (3b)

where j = √−1 for ω ∈ [−π, π). Comparing the two spec-
tral representations, it is easy to show that the coefficient and
transfer matrices are linked by: H(ω) = [IQ − A(ω)]−1 =
Ā(ω)−1 (IQ is the Q × Q identity matrix). According to
a well-known spectral factorization theorem (Gevers and
Anderson 1981), the Q × Q spectral density matrix of the
overall process, S(ω), as well as its inverse, P(ω) = S(ω)−1,
can be factored in terms of the transfer and coefficient matri-
ces as

S(ω) = H(ω)�H∗(ω), (4a)

P(ω) = Ā∗(ω)�−1Ā(ω). (4b)

As we will show in the next subsections, the factorizations
in (4) provide the basis of the methods proposed so far for
the frequency domain evaluation of directional interactions
in jointly stationary processes. As of now we note that, to
be unambiguous, the factorizations need to rely on diagonal
forms for the covariance matrix � (and for its inverse �−1);
together with whiteness of U (n), the diagonality assump-
tion corresponds to full uncorrelation, even at lag k = 0, of
the scalar innovation processes. This condition is commonly
denoted as strict causality, and needs to be verified in model
validation, or properly handled by suitable modifications of
the model structure (Faes and Nollo 2010, 2011; Geweke
1982). Dealing with the effects of instantaneous correlations
is beyond the scope of the present paper; this issue deserves
a thorough analysis which is being prepared for a future sub-
mission.

2.1 Causality definitions

The AR representation of vector stochastic processes expre-
ssed in (1) can be related to the notion of Granger causality
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(1969, 1980), which was originally formulated stating the
principles that the cause precedes the effect in time, and
that the causal process contains unique information about
the caused process that is not available otherwise. Following
these principles, Granger causality is assessed in a VAR set-
ting by checking that the entries of the coefficient matrices
A(k) corresponding to the two considered processes do not
vanish uniformly for all lags k (Eichler 2006; Hsiao 1982;
Toda and Phillips 1993). It is noteworthy that, according to
this formulation, Granger causality refers to the exclusive
consideration of direct causal effects from one process to
another within the multivariate representation. On the other
hand, it has been recently shown (Eichler 2012) that the
evaluation of both direct and indirect effects between two
processes reflects the notion of causality first formulated
by Sims (1972), which indeed can be seen as a concept
for total causality. In a VAR setting, Sims causality can be
expressed in terms of the elements of the transfer matrix (see
(2) and (3b)). According to these concepts, we provide now
the following definitions of direct and total causality between
scalar-valued and vector-valued processes.

Definition Given a vector stochastic process composed
equivalently of Q scalar-valued processes and of M vector-
valued processes, Y (n) = [

y1(n) · · · yQ(n)
] = [

Y1(n)T · · ·
YM (n)T

]T
with Ym = [ym1 · · · ymMm

]T , and admitting an
AR representation as in (1), the following causality defini-
tions are stated:

• direct causality from y j to yi , y j → yi , occurs if Ai j (k)

is not uniformly zero for all k > 0(1 ≤ i, j ≤ Q, i �= j);
• total causality from y j to yi , y j ⇒ yi , occurs if at least

one cascade involving L direct causality relations and
L +1 scalar processes exists such that yq0

→ · · · → yqL
with q0 = j , qL = i , {q1 , . . . , qL−1} ∈ {1, . . . , Q}\{i, j}

• direct causality from Ym to Yl , Ym → Yl , occurs if y j →
yi for at least one j ∈ {m1, . . . , mMm } and at least one
i ∈ {l1, ..., lMl } (1 ≤ l, m ≤ M, l �= m)

• total causality from Ym to Yl , Ym ⇒ Yl , occurs if y j ⇒
yi for at least one j ∈ {m1, ..., m Mm } and at least one
i ∈ {l1, ..., lMl } (1 ≤ l, m ≤ M, l �= m);

In the time domain, testing for causality according to the
above definitions can be done in a straightforward way,
starting from the relations of direct causality between scalar-
valued processes and checking whether groups of VAR coef-
ficients are zero, e.g., using a Wald test (Lutkepohl 2005).
In the frequency domain, tests for direct and total causality
are performed by checking at different frequencies the statis-
tical significance of properly defined causality measures. In
the following sections we survey existing frequency domain
measures of Granger causality and related concepts of total
causal influence, and propose new measures valid for vector-

valued multivariate processes. Nevertheless it is important
to stress that, since the above definitions reflect the concepts
of Granger and Sims causality for scalar- and vector-valued
processes, they cannot be considered genuine descriptions
of causality unless the investigated process is—in its AR
representation—the actual data generating process. Note also
that the validity of the total causality definitions is endan-
gered by the possibility that multiple (direct and/or indirect)
effects cancel out so that the total effect vanishes. In general,
inference about the real causal structure about a multivariate
process can be safely done only under the so-called complete-
ness and faithfulness assumptions made in causal inference
(see, e.g., Spirtes et al. 2000).

2.2 Frequency domain causality measures for multiple
scalar-valued processes

When the considered processes are all scalar-valued (i.e.,
Ym(n) = ym(n), Mm = 1 for each m = 1, ..., M = Q),
the spectral density and its inverse become M × M matrices
in which each element describes cross-spectral and inverse
cross-spectral relations between two scalar-valued processes.
Under the assumption of strict causality, the decomposition
(4) becomes, for the i– j element of S(ω) and P(ω)

Si j (ω) =
M∑

m=1

σ 2
mm Him(ω)H∗

jm(ω), (5a)

Pi j (ω) =
M∑

m=1

1

σ 2
mm

Ā∗
mi (ω) Āmj (ω). (5b)

where σ 2
mm and 1/σ 2

mm are the m–m elements of the diag-
onal matrices � and �−1(σ 2

mm is the variance of ym).
The decompositions in (5) lead to the definitions the DC
(Baccala et al. 1998) and the PDC (Baccala et al. 2007;
Baccala and Sameshima 2001) from y j to yi as the complex-
valued frequency domain functions

γi j (ω) = σ j j Hi j (ω)√
Sii (ω)

(6)

and

πi j (ω) =
1

σi i
Āi j (ω)

√
Pj j (ω)

. (7)

The squared modulus of the DC and PDC defined in (6)
and (7), |γi j (ω)|2 and |πi j (ω)|2, are computed to quantify the
strength of the directed interaction occurring from y j to yi

at the frequency ω, normalized between 0 and 1. Combining
(5) and (6) one can see that the squared DC |γi j (ω)|2 mea-
sures causality as the relative amount of power of yi which is
received from y j at the frequency f , while the squared PDC
|πi j (ω)|2 measures causality as the relative amount of inverse
power of y j which is sent to yi at the frequency f . It can be
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shown (see Appendix) that the DC measures total causal-
ity (Eichler 2006), while the PDC measures direct causality
(Baccala and Sameshima 2001; Gigi and Tangirala 2010),
from one scalar-valued process to another in the multivariate
representation. Moreover, the complex-valued DC and PDC
constitute factors in the decomposition of the ordinary coher-
ence, and of the partial coherence, respectively (Faes and
Nollo 2011). Note that the quantity which we denote as PDC
was named “generalized PDC” in Baccala et al. (2007), while
the original version of the PDC (Baccala and Sameshima
2001) was not including inner normalization by the input
noise variances; the definition in (7) follows directly from
the decomposition in (5b), and satisfies the desirable prop-
erty of scale-invariance.

2.3 Frequency domain causality measures for two
vector-valued processes

When only M = 2 vector-valued processes Y1(n) and Y2(n)

of dimension M1 and M2 are considered, the analysis frame-
work becomes that introduced by Geweke (1982) and further
developed and studied later on Chen et al. (2006) and Wang
et al. (2007). In this case, the input–output representation of
the overall process may be partitioned in terms of the two
considered processes as
[

Y1(ω)

Y2(ω)

]
=

[
H11(ω) H12(ω)

H21(ω) H22(ω)

] [
U1(ω)

U2(ω)

]
, (8)

where Yi (ω) and Ui (ω) are the FTs of Yi (n) and Ui (n),
and Hi j (ω) describes the transfer from U j to Yi in the
frequency domain (i, j = 1, 2). Under the assumption
of strict causality, the spectral factorization proposed in
Gevers and Anderson (1981) holds also for the vector-valued
processes, so that (4a) can be particularized as

Si i (ω) = Hi i (ω)�i i H∗
i i (ω) + Hi j (ω)� j j H∗

i j (ω),

i, j = 1, 2(i �= j), (9)

where Si i (ω) is the spectral density matrix associated to Yi ,
and �i i is the covariance of Ui (�i i = E

[
Ui (n)Ui (n)T

]
).

The first and second term on the right hand side of (9) can
be interpreted as intrinsic power of Yi and as causal power of
Yi due to Y j , respectively. This interpretation leads to defin-
ing the linear feedback from Y j to Yi at the frequency ω as
(Geweke 1982; Wang et al. 2007)

f j→i (ω) = ln
|Si i (ω)|

∣∣Hi i (ω)�i i H∗
i i (ω)

∣∣ , i, j = 1, 2 (i �= j).

(10)

With this definition, the lower bound of the linear feedback
measure f is 0, and is achieved when the whole power at a
given frequency is intrinsic (i.e., the causal power is zero).
Note that the index has no upper bound, as f diverges when

the intrinsic power is zero (i.e., the whole power of Yi is due
to Y j ). It can be shown (see Appendix) that f measures either
direct or total causality, which in this bivariate formulation
are equivalent concepts, from one vector-valued process to
the other. We note that, in the particular case of two scalar-
valued processes (M1 = M2 = 1), the logarithmic measure
(10) is related to the DC from y j to yi . In this case we have
indeed:

f j→i (ω) = ln
Sii (ω)

σ 2
i i |Hii (ω)|2 = ln

Sii (ω)

Sii (ω) − σ 2
i j

∣∣Hi j (ω)
∣∣2

= ln
1

1 − ∣∣γi j (ω)
∣∣2 . (11)

3 Frequency domain causality measures for multiple
vector-valued processes

The frequency domain measures of causality surveyed in
Sect. 2 account for Granger causal effects either between
multiple scalar-valued processes (M > 2 but Mm = 1
for each m = 1, . . . , M ; Sect. 2.2), or between pairs of
vector-valued processes (Mm > 1 but M = 2; Sect. 2.3).
In this section we generalize the existing measures to allow
quantification of causality between multiple vector-valued
processes (M > 2, Mm > 1). The generalization will lead
to measures of direct and total causality among multiple
blocks of time series. To do this, we first generalize the
Geweke’s logarithmic measure of linear feedback (10) to
multiple processes, showing that it reflects total causality
and defining a dual logarithmic measure that reflects direct
causality only. Then, we exploit the relations between loga-
rithmic and non-logarithmic measures established for multi-
ple scalar-valued processes to provide generalized definitions
of non-logarithmic measures valid for multiple vector-valued
processes.

3.1 Logarithmic measures

In the general case of multiple vector-valued processes
all spectral, coefficient, and covariance matrices of dimen-
sion Q × Q (i.e., S(ω), P(ω), A(ω), H(ω),�,�−1) can be
expressed as composed of M2 blocks, with the i– j block hav-
ing dimension Mi × M j . Exploiting this property, the spec-
tral factorizations in (4) can be further decomposed, under
the assumption of strict causality, as

Si i (ω) =
M∑

m=1

Him(ω)�mmH∗
im(ω), (12a)

P j j (ω) =
M∑

m=1

Ā∗
mj (ω)�−1

mmĀmj (ω), (12b)
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where Si i (ω) and P j j (ω) are the spectral and inverse spectral
matrices of Yi (n) and Y j (n), Him(ω) and Āmj (ω) are the i–m
block and the m– j block of the frequency-domain transfer
and coefficient matrices, and �mm and �−1

mm are the m–m
block of the innovation process covariance matrix and of its
inverse. Based on the decompositions in (12), we provide
now definitions for logarithmic frequency domain measures
of causality which hold for multiple blocks of processes.

Definition Given two vector stationary stochastic processes
Yi and Y j taken from a multivariate set admitting AR and
MA representation as in (1) and (2), the multivariate total
linear feedback from Y j to Yi , f (m)

j→i , and the multivariate

direct linear feedback from Y j to Yi , g(m)
j→i , are defined at the

frequency ω as:

f (m)
j→i (ω) = ln

|Si i (ω)|
∣∣∣Si i (ω) − Hi j (ω)� j j H∗

i j (ω)

∣∣∣
, (13a)

g(m)
j→i (ω) = ln

∣∣P j j (ω)
∣∣

∣∣∣P j j (ω) − Ā∗
i j (ω)�−1

i i Āi j (ω)

∣∣∣
. (13b)

The properties of these two logarithmic measures of causality
are stated as follows (proofs are in the Appendix):

1. f (m)
j→i (ω) ≥ 0; in particular, f (m)

j→i (ω) = 0 if Hi j (ω) = 0.

2. g(m)
j→i (ω) ≥ 0; in particular, g(m)

j→i (ω) = 0 if Āi j (ω) = 0.

3. f (m)
j→i (ω) reduces to the bivariate measure f j→i (ω) of

(10) when only two vector-valued processes are present.
4. f (m)

j→i (ω) measures total causality from Y j to Yi at the
frequency ω.

5. g(m)
j→i (ω) measures direct causality from Y j to Yi at the

frequency ω.

In summary, the measure of total linear feedback (13a)
extends to the case of multiple processes the Geweke’s mea-
sure (10) which is defined only for two vector processes. The
extension is meant to include into the “intrinsic power” of the
destination process Yi all causal power contributions coming
from processes other than the source process Y j , in a way
such that causality is detected only when Yi receives power
from Y j . As to the direct linear feedback measure (13b),
its definition is based on a dual reasoning compared to that
underlying the definition (13a). In this case causality is mea-
sured in terms of inverse spectral power flowing out from the
source process, instead of spectral power flowing into the des-
tination process. Both measures are non-negative, and take
zero value in the absence of information transfer from Y j

to Yi at the frequency ω; nonzero values are attained when
the transfer matrix Hi j (ω) (quantifying direct and/or direct
effects), or the coefficient matrix Āi j (ω) (quantifying direct
effects only) have at least one nonzero entry, documenting
the existence of information transfer between at least one

pair of the scalar processes that form Y j and Yi . We note that

f (m)
j→i (ω) diverges at the frequency ω when the whole infor-

mation transferred to Yi at that frequency comes from Y j

(i.e., when Him(ω) = 0 for each m �= j), and that g(m)
j→i (ω)

diverges when the whole information flowing out from Y j

goes directly to Yi (i.e., when Āmj (ω) = 0 for each m �= i).

Besides these cases, f (m)
j→i and g(m)

j→i are well defined for a
given frequencyω when the matrices appearing in the denom-
inator of (13a) and (13b) are non-singular at that frequency.
This is the case for all frequencies when the overall process
Y (n) from which Yi and Y j are taken is of finite order, which
is a common assumption in practice.

3.2 Non-logarithmic measures

The spectral decompositions in (12) can be seen as a general-
ization of the decompositions in (5), holding for scalar-valued
processes, to multiple vector-valued processes. Pursuing this
analogy, we provide now definitions for non-logarithmic fre-
quency domain measures of direct and total causality which
hold for multiple blocks of processes.

Definition Given two vector stationary stochastic processes
Yi and Y j taken from a multivariate set admitting AR and
MA representation as in (1) and (2), the block DC (bDC)
and block PDC (bPDC) from Y j to Yi are the real-valued
measures defined as follows

γ
(b)
i j (ω) = 1 −

∣∣
∣Si i (ω) − Hi j (ω)� j j H∗

i j (ω)

∣∣
∣

|Si i (ω)| , (14a)

π
(b)
i j (ω) = 1 −

∣∣∣P j j (ω) − Ā∗
i j (ω)�−1

i i Āi j (ω)

∣∣∣
∣∣P j j (ω)

∣∣ . (14b)

The definitions of bDC and bPDC were motivated by their
relation with non-logarithmic frequency domain causality
measures for vector multivariate processes. By comparing
(13a) and (13b) with (14a) and (14b), one can indeed easily
show that

f (m)
j→i (ω) = ln

1

1 − γ
(b)
i j (ω)

, g(m)
j→i (ω) = ln

1

1 − π
(b)
i j (ω)

.

(15)

Hence, the bDC γ (b) is related to the logarithmic measure
of total causality f (m) in the same way as the bivariate DC
is related to the Geweke’s linear feedback measure particu-
larized to scalar processes (see (11)), while a dual relation
exists between the bPDC π(b) and the logarithmic measure
of direct causality g(m).

The bDC and bPDC are well defined at each frequency ω

whenever the overall process Y (n) can be represented as a
finite order stationary VAR process. As to their behavior, we
show that bDC and bPDC possess properties similar to the
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traditional DC and PDC by stating the following properties
(proofs are in the Appendix):

6. 0 ≤ γ
(b)
i j (ω) ≤ 1; in particular, γ (b)

i j (ω) = 0 if Hi j (ω) =
0 and γ

(b)
i j (ω) = 1 if Him(ω) = 0 for each m �= j .

7. 0 ≤ π
(b)
i j (ω) ≤ 1; in particular, π(b)

i j (ω) = 0 if Āi j (ω) =
0 and π

(b)
i j (ω) = 1 if Āmj (ω) = 0 for each m �= i .

8. The bDC γ
(b)
i j (ω) reduces to the squared DC |γi j (ω)|2,

and the bPDC π
(b)
i j (ω) reduces to the squared PDC

|πi j (ω)|2, when computed for two scalar processes.

9. The bDC γ
(b)
i j (ω) reduces to the cumulative squared

DC,
∑M j

m=1

∣∣γi jm (ω)
∣∣2, when the destination process Yi

is scalar.
10. The bPDC π

(b)
i j (ω) reduces to the cumulative squared

PDC,
∑Mi

m=1

∣∣πim j (ω)
∣∣2, when the source process Y j is

scalar.
11. The bDC γ

(b)
i j (ω) measures total causality from Y j to Yi

at the frequency ω.
12. The bPDC π

(b)
i j (ω) measures direct causality from Y j to

Yi at the frequency ω.

Summarizing the above properties, the bDC and bPDC mea-
sures defined in (14) generalize to vector-valued processes
the PDC and DC defined as in (6) and (7) for scalar-valued
processes. They share many important properties of fre-
quency domain measures of total causality and direct causal-
ity, while bringing the advantage coming to the fact that they
summarize into a single coupling value the many directional
interactions possibly existing among the scalar components
of two vector process taken from a multivariate set.

4 Illustrative example

In this section, the frequency domain causality measures pro-
posed for multiple vector-valued processes are illustrated by
means of the exemplary eight-dimensional VAR process:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(n) = 2ρ cos(2π f1)y1(n−1)−ρ2 y1(n−2)+u1(n)

y2(n) = k1 y1(n − 1) + u2(n)

y3(n) = 2ρ cos(2π f3)y3(n − 1) − ρ2 y3(n − 2)

+a1 y2(n − 2) + d1 y8(n − 2) + u3(n)

y4(n) = a2 y2(n − 1) + u4(n)

y5(n) = c1 y3(n − 1) + k3 y6(n − 2) + u5(n)

y6(n) = c2 y3(n − 2) + k2 y5(n − 1) + u6(n)

y7(n) = c3 y3(n − 1) + k4 y6(n − 2) + u7(n)

y8(n) = b1 y3(n − 2) + b2 y4(n − 1) + u8(n)

, (16)

where U (n) = [u1(n) · · · u8(n)]T is a vector of uncorrelated
white innovation processes of unitary variance (i.e., � = I).
In the example, autonomous oscillations are obtained for the

Fig. 1 Graphical representation of the VAR process described by (16).
The Q = 8 scalar-valued processes y1, ...y8 compose the M = 4
vector-valued processes Y1, ...Y4 as depicted by the gray areas. Direct
causal effects between two scalar-valued processes are shown by the
arrows, with the corresponding parameter representing the weight of
the connection

processes y1 and y3 representing them as second-order AR
processes described by two complex-conjugate poles with
modulus ρ and phase ±2π f1,3 (in this study, ρ = 0.9, f1 =
0.1, f3 = 0.25). Moreover, direct causality is set between
pairs of processes imposing the connections indicated in (16)
and depicted in Fig. 1.

In this example, we assume that the Q = 8 scalar-
valued processes y1, . . . , y8 are the constituents of M = 4
vector-valued processes composed as: Y1 = [y1 y2]T , Y2 =
[y3 y4]T , Y3 = [y5 y6 y7]T , Y4 = y8. As shown in Fig. 1,
interactions are set through the causal effects between pairs
of scalar processes composing two different vector processes,
i.e., from Y1 to Y2 (with parameters a1, a2), from Y2 to Y4

(with parameters b1, b2), from Y2 to Y3 (with parameters
c1, c2, c3), and from Y4 to Y2 (with parameter d1). Moreover,
the parameters k1, k2, k3, k4 determine “internal” effects for
a single vector process, i.e., causal effects between pairs of
scalar processes composing the same vector process. Except
when stated otherwise, the values assumed in the analysis
for the parameters are a1 = a2 = 0.5, b1 = b2 = 0.4, c1 =
c2 = c3 = 0.4, d1 = 0.7, k1 = −0.5, k2 = k3 = k4 = 0.5.

4.1 Theoretical results

The theoretical profiles for the proposed logarithmic and non-
logarithmic frequency domain causality measures, computed
analytically according to (13) and (14), are reported in Fig. 2.
First, we see that the profiles of the multivariate total feedback
measure ( f (m)

j→i , Fig. 2a) resemble those of the block DC

(γ (b)
i j , Fig. 2c), and that the profiles of the multivariate direct

feedback measure (g(m)
j→i , Fig. 2b) resemble those of the block

PDC (π(b)
i j , Fig. 2d). These similarities in shape are due to
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Fig. 2 Theoretical profiles of multivariate total causality f (m)
j→i (a), multivariate direct causality g(m)

j→i (b), bDC γ
(b)
i j (c) and bPDC π

(b)
i j (d) computed

as a function of the frequency ω from the process Y j to the process Yi (i, j = 1, . . . , 4) for the illustrative example (16)

the dependencies between logarithmic and non-logarithmic
causality measures stated in (15).

As seen in Fig. 2, all measures take non-negative values at
all frequencies; in particular, the bDC and bPDC (Fig. 2c,
d) are bounded between 0 and 1. In detail, the measures
g(m) and π(b) elicit direct causality as they exhibit a nonzero
profile only over the directions for which direct causality
between two vector-valued processes is set (i.e., Y1 → Y2,
Y2 → Y3, Y2 → Y4, Y4 → Y2, Fig. 2b, d), while being uni-
formly zero over all other directions. The measures f (m) and
γ (b) reflect total causality, being nonzero at some frequen-
cies whenever a cascade of direct causality relations is set
from one vector-valued process to another (i.e., Y1 → Y2,
Y2 → Y3, Y2 → Y4, Y4 → Y2; Y1 → Y2 → Y3, Y1 →
Y2 → Y4, Y4 → Y2 → Y3, Fig. 2a, c). This example
shows the usefulness of the proposed measures for providing
a compact representation of frequency domain causality in a
network of vector processes. Note that similar structure deter-
mination would be less straightforward to attain using the tra-
ditional measures defined for scalar processes; for instance,
the analysis of direct causality from Y j to Yi , if performed
using the PDC, would require condensing in an arbitrary way
the information provided by Mi ×M j squared PDC functions
(see, e.g., middle and right columns of Fig. 3a).

As depicted in Fig. 2, causality relations among vector
processes are reflected by the various measures with spe-
cific frequency-dependent behavior depending on the oscil-
lations set for the driving process. Indeed, the oscillation
set at ω1 = 2π f1 = π/5 rad for the scalar process y1,
belonging to the vector process Y1, is transmitted to Y2, Y3,
and Y4 according to the connections shown in Fig. 1, and is
reflected by the peaks located at ω1 for the causality mea-
sures g(m)

1→2, f (m)
1→2, f (m)

1→3 f (m)
1→4, and π

(b)
21 , γ

(b)
21 , γ

(b)
31 , γ

(b)
41 .

In a similar way, the oscillation at ω2 = 2π f3 = π/2
rad originated in Y2 is transmitted to Y3 and Y4 and
reflected by the peaks at ω1 of the causality measures
g(m)

2→3, g(m)
2→4, f (m)

2→3, f (m)
2→4 and π

(b)
32 , π

(b)
42 , γ

(b)
32 , γ

(b)
42 . This

behavior, which describes the essence of a spectral density
approach to causality analysis, may be lost if the study of a
network of vector-valued processes is performed through the
measures devised for the constituent scalar-valued variables.
As an example, we report in Fig. 3 a comparison of PDC and
bPDC analyses performed between Y1 and Y2 as in (16) with
a relatively low coupling strength imposed from Y1 to Y2 (i.e.,
with a1 = a2 = 0.2). In this case, detection of direct causal-
ity Y1 → Y2 appears a daunting task if performed on the
basis of the corresponding direct causality relations involv-
ing the constituent scalar-valued processes (i.e., y2 → y3 and
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Fig. 3 Theoretical profiles of
the twelve PDCs relevant to the
vector processes Y1 = [y1 y2]T

and Y2 = [y3 y4]T (a first
column PDCs within Y1 and Y2;
middle and right columns PDCs
between Y1 and Y2) and
corresponding bPDCs between
Y1 and Y2 (b) computed for the
illustrative example (16) with
a1 = a2 = 0.2

y2 → y4); indeed, the two PDCs |π32|2 and |π42|2 exhibit
a flat profile with values very close to zero (Fig. 3a). On
the contrary, the bPDC from Y1 to Y2, π

(b)
21 , shows a clear

nonzero profile with an evident peak at ∼π/5 rad (Fig. 3b).
We ascribe the difference to the fact that the two PDCs do not
consider the internal dynamics of the vector-valued source
process Y1, which in this case are very strong as documented
by the sharp peak of |π21|2, while the bPDC takes these
dynamics into account so that its profile from Y1 to Y2 is
magnified by the important information transfer occurring
within Y1.

Figure 4 reports representative plots of the proposed
measures computed at varying the coupling strength over
some directions of interaction in the simulated network. As
depicted in Fig. 4a, b, the measures take higher values at
increasing the parameters that determine the causal coupling
from one vector process to another. As an example, increasing
the coupling from Y2 to Y3 through variation of the parame-
ter c1 from 0 to 1 determines a progressive increase of the
bPDC from Y2 to Y3(π

(b)
32 ), as well as of the bDC from Y1 to

Y3(γ
(b)
31 , Fig. 4a). Similarly, the multivariate direct and total

feedback measures g(m)
1→2 and f (m)

1→3 are uniformly zero in the
absence of causal coupling from Y1 to Y2 (a1 = a2 = 0),
and raise progressively when the causal coupling varies up
to a1 = a2=1 (Fig. 4b). A different behavior is observed
at varying the coupling strength between two scalar-valued
processes belonging to the same vector-valued process. We
note that direct and total causality measures are not affected
by the variations of coupling parameters pertaining the des-
tination vector process; this effect is documented by the
overlapping profiles of the bPDC from Y2 to Y3 and the
bDC from Y1 to Y3 obtained varying the coupling strength

within Y3 (i.e., acting on k2 and k3, Fig. 4c). On the con-
trary, causality measures are influenced by modifications of
the causal coupling internal to the source process, as shown
by the varying profiles of g(m)

1→2 and f (m)
1→3 resulting from

coupling variations within Y3 (i.e., from modifications of k1,
see Fig. 4d).

4.2 Practical implementation

In order to test the proposed frequency domain causality mea-
sures on simulated time series, we generated multiple real-
izations of the theoretical process (16), each lasting N = 500
points. Then, assuming no knowledge of the underlying sys-
tem, a VAR model of order p = 2 was identified from each
realization using a standard vector least squares approach
(Faes et al. 2012). The estimated model coefficients and inno-
vation covariance were used for computing numerically the
logarithmic and non-logarithmic causality measures accord-
ing to (13) and (14), in order to verify their agreement with the
theoretical measures and to compare their frequency domain
profiles with those of other available causality measures.
Since the formulation of the proposed measures presupposes
strict causality, their practical estimation was performed after
forcing the input covariance � and its inverse �−1 to be diag-
onal matrices.

Figure 5 reports the results of the practical estimation of
non-logarithmic measures of total causality (i.e., DC and
bDC) computed over an exemplary direction of interaction
between two vector process, i.e., from Y1 to Y3. The compar-
ison between theoretical functions (red lines) and range of
the estimated functions (mean ± SD over 100 realizations,
blue lines) evidences that there is good agreement between
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Fig. 4 Theoretical profiles of non-logarithmic (a,c, blue) and loga-
rithmic (b,d, red) measures computed for the illustrative example (16)
over selected representative directions, for different parameters val-
ues. For each panel, the parameters indicated in the plot were varied
from 0 to 1, step 0.2, while all other parameters were kept constant
(a1 = a2 = 0.5, b1 = b2 = 0.4, c1 = c2 = c3 = 0.4, d1 = 0.7,
k1 = −0.5, k2 = k3 = k4 = 0.5). (Color figure online)

the two. The overall DC between the two vector processes
is depicted by the ensemble of all the six functions linking
Y1 = [y1 y2]T to Y3 = [y5 y6 y7]T (Fig. 5a). To provide an
overall indication of total causality from Y1 to Y3, one has
to summarize in some way the information coming from the
multiple DC functions; a reasonable choice is to compute the
average DC, which is shown in Fig. 5b. As an alternative we
may consider the bDC from Y1 to Y3 (Fig. 5c), which is com-
puted without the need to elaborate several DC estimates; in
this case, the bDC yields also a clear indication of the total
causality relations existing at different frequencies, as docu-
mented by the more pronounced peaks exhibited in Fig. 5c
compared with Fig. 5b.

Figure 6 reports the results of the statistical analysis
testing the significance of direct causality, estimated using
non-logarithmic measures (i.e., PDC and bPDC), over an
exemplary direct connection between two vector-valued
processes, i.e., Y2 → Y3. The statistical analysis was per-
formed comparing the PDC or bPDC functions with their

Fig. 5 Theoretical profiles (red dashed) and estimated profiles (blue
lines, representing mean ± std. dev. of each function estimated over
100 process realizations) of the six DCs from Y1 = [y1 y2]T to Y3 =
[y5 y6 y7]T (a) and of their average (b), as well as of the bDC from
Y1 to Y3 (c). (Color figure online)

Fig. 6 Estimated profiles (blue lines) of the six squared PDCs from
Y2 = [y3 y4]T to Y3 = [y5 y6 y7]T (a) and of the bPDC from Y2
to Y3 (b), computed for a single realization of the illustrative process
along with their corresponding significance thresholds (black dashed
lines). The rate of detection of significant direct causality from Y2 to
Y3, expressed as the percentage of realizations for which at least one
PDC was significant at ω = π/2 (white triangles) or the percentage of
realizations for which the bPDC was significant at ω = π/2 (black cir-
cles), is reported in (c) as a function of the coupling strength (parameters
c1 = c2 = c3). (Color figure online)

corresponding frequency domain threshold for significance
determined by means of a specific procedure based on the
generation of surrogate data (Faes et al. 2010). The proce-
dure, performed with significance α, estimates the frequency
domain threshold for a given measure (PDC or bPDC) as the
100(1 − α)th percentile of the distribution of the measure
computed for multiple time series resembling the dynam-
ical properties of the original series but lacking of causal
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Fig. 7 Profiles of multivariate
total causality f (m) and
multivariate direct causality
g(m) (a), and of Geweke’s linear
dependence f and conditional
linear dependence f c (b),
estimated for three
representative directions of
interaction in the illustrative
process (top row Y1 → Y2;
middle row Y1 → Y3; bottom
row Y3 → Y4) and plotted as
mean (solid line) ± std. dev.
(dotted lines) over 100
realizations of the process

coupling over the direction of interaction; then, significant
causality was detected when, at the frequency of interest, the
measure exceeds the significance threshold. In the applica-
tion depicted in Fig. 6 the procedure was performed with
significance α = 0.05, and a Bonferroni correction for mul-
tiple comparisons was applied for the PDC because in this
case multiple PDC functions were computed between two
vector processes. An example for a single realization of (16)
is shown in Fig. 6a for the PDC (six functions) and in Fig. 6b
for the bPDC (one block function). In this example, both
approaches indicate the presence of significant direct causal-
ity at the frequency of the driving oscillation, since the PDCs
|π53|2 and |π73|2, as well as the bPDC π

(b)
32 , exceed the sig-

nificance threshold at ω2 = π/2 rad. Figure 6c reports the
results of the same statistical analysis repeated over 1000
realizations of the simulated process, and iterated at varying
the strength of the direct coupling from Y2 to Y3 (strength
variations are obtained setting c1 = c2 = c3 at increasing
values from 0 to 0.4). The analysis revealed a better perfor-
mance of the bPDC, compared with repeated evaluations of
the PDC, in detecting direct causality from Y2 to Y3, as it
exhibits a higher detection rate in the presence of causality
with weak coupling strength (0 < c1 = c2 = c3 < 0.3).

Figure 7 reports an example of computation of the pro-
posed logarithmic measures of causality, in comparison with
existing previously proposed measures, for some exemplary
directions of interaction between two vector process (i.e.,
from top to bottom, from Y1 to Y2, from Y1 to Y3, and from
Y3 to Y4). As shown in Fig. 7a, the multivariate total linear
feedback f (m) reflects both the direct effect Y1 → Y2 and
the indirect effect Y1 → Y2 → Y3, while the multivariate
direct linear feedback g(m) reflects the effect Y1 → Y2 only.
A comparison with the theoretical profiles in Fig. 2 indicates
the good agreement with expected and estimated functions.
To relate the proposed measures with existing block-based
measures of causal interdependence, we report in Fig. 7b

the corresponding estimated profiles of the Geweke’s linear
feedback measure (Geweke 1982; Wang et al. 2007, Eq. (10))
and conditional linear feedback measure (Chen et al. 2006;
Geweke 1984) in the frequency domain. The bivariate mea-
sure f differs from our multivariate measure f (m) in the fact
that it reflects not only direct and indirect causal effects, but
also spurious effects due to non modeled variables: e.g., in
our example, f3→4 has nonzero profile as a consequence of
the simultaneous influence of Y2—that is not considered in
the computation of f —on both Y3 and Y4 (Fig. 7b), while
f (m)
3→4 is uniformly zero at all frequencies. As to the con-

ditional measure f c, its profiles are similar to those of our
multivariate measure of direct causality g(m), indicating that
both measures are able to separate direct effects from indirect
and spurious ones between two vector-valued processes.

5 Discussion and conclusion

The aim of the present study was to generalize to the analy-
sis of multiple vector-valued processes existing frequency
domain measures of directional connectivity that were pro-
posed for multiple scalar-valued processes (Baccala and
Sameshima 2001; Kaminski et al. 2001) or for pairs or triplets
of vector-valued processes (Geweke 1982; Wang et al. 2007).
The main advantage of the new measures over the existing
ones lies in the fact that they provide a compact represen-
tation of the complex interaction structure of multivariate
time series when they are organized in multiple blocks. With
regard to the block DC and block PDC measures γ (b) and
π(b), this peculiarity solves the issue of arbitrariness arising
when several traditional DC or PDC functions linking the
scalar constituents of two blocks of time series need to be
summarized into a single causality measure. The way through
which the block measures summarize the information about
multiple causal relations is not only objective, but also
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non-trivial and efficient, as we have shown that bDC and
bPDC are better able than DC and PDC to capture inter-
nal dependencies between the constituent series of a block
(see, e.g., Fig. 3), exhibit more clear spectral profiles than
simple averages of multiple scalar-valued functions (see,
e.g., Fig. 5), and yield higher rates of causality detection
for weakly coupled vector processes (see, e.g., Fig. 6). As
regards the logarithmic measures, utilization of the full mul-
tivariate approach proposed in this study allows a straightfor-
ward representation of the whole structure of direct and total
Granger causal relations with only one VAR model estima-
tion, simplifying the interpretation and resulting less cumber-
some than the repeated application of the bivariate or trivari-
ate Geweke approaches (1982, 1984). Again, the full multi-
variate approach results are more efficient: the total causality
measure f (m) is free from spurious effects that may arise
using the Geweke bivariate measure f which is based on
modeling two time series blocks only (see, e.g., Fig. 7); the
direct causality measure g(m) can be computed from a single
estimated VAR model, avoiding the complications related to
the fitting of two different models which is required for com-
puting the Geweke conditional causality measure f c (Chen
et al. (2006));

We have shown that the new measures are well defined
under fairly general conditions, and possess other desirable
properties of a frequency domain causality index. In partic-
ular, they are non-negative, are normalized between 0 and 1
in their non-logarithmic form, and are sensitive to variations
of the coupling strength between two vector processes. An
interesting observed feature is that the causality measures
are not affected by coupling strength variations occurring
within the destination vector process, whereas they increase
at increasing the coupling strength within the source vector
process (see Fig. 4). This is a desirable property, because
coupling variations internal to the destination process should
indicate how the incoming information flow is distributed
within the constituent scalar processes, and thus one expects
that they do not affect block causality measures. On the con-
trary, coupling variations internal to the source process are
expected to be accounted for in a properly defined block
causality measure as they correspond to variations in the
information amount to be transmitted. This property extends
to the context of time series and blocks a similar property
of the measures valid for scalar time series: for instance, as
the PDC is sensitive to the internal dynamics of the source
scalar time series (i.e., dynamics occurring within the scalar
series), the bPDC is sensitive to the internal dynamics of the
source vector time series (i.e., dynamics occurring within
and/or between the scalar constituents of the vector series).
Note that, as a result of this property, the quantification of
an indirect effect among scalar time series (e.g., performed
through the DC) may resemble the quantification of a direct
effect between vector time series (e.g., performed through

the bPDC). However, this behavior does not contradict the
interpretation of the bPDC as measures of direct causality,
because—according to the definitions provided in Sect. 2.1—
the existence of direct causality between blocks is determined
only by the existence of direct Granger causal effects between
the scalar constituents of two different blocks, and not by the
effects between the scalar constituents of the same block.

From a theoretical point of view, the generalization to
multiple vector-valued processes of logarithmic and non-
logarithmic frequency domain causality measures aids the
evaluation of their close reciprocal dependency. In fact, our
extension of Geweke feedback measures and DC/PDC mea-
sures to multiple vector processes, together with the deter-
mination of their correspondence formalized in (15), extend
relations that have been established only for pairs of scalar
processes (Takahashi et al. 2010). Moreover, this result par-
ticularizes to the analysis of causality a very recent find-
ing reported for the evaluation of coupling (i.e., non-causal
connectivity) in the frequency domain, whereby logarith-
mic and non-logarithmic coupling measures were related to
each other through the definition of the so-called “block-
coherence” (Nedungadi et al. 2011). Our result states that
the proposed causality measures provide essentially the same
information in their logarithmic or non-logarithmic form.
Specifically, f (m) and γ (b) on one side, and g(m) and π(b)

on the other side, are strictly related with each other (see
(15)) and thus exhibit similar frequency domain profiles (see,
e.g., the example of Figs. 1, 2). Besides, we have demon-
strated that the two pairs of measures capture different aspects
of the causal information flow between two vector-valued
processes belonging to a multivariate network: f (m) and γ (b)

reflect both direct and indirect causal effects, thus helping
to determine the total influence exerted by a process over
another; g(m) and π(b) reflect direct effects only, thus help-
ing to elucidate the interaction structure in complex networks
composed of many processes.

The proposed measures are multivariate instances of
Granger causality (Granger 1969, 1980) and related concepts
of total causal influence (Sims 1972) computed from a strictly
causal VAR model fitted on the observed set of time series.
Although this framework for causality assessment is the most
prominent and widely employed, especially in neuroscience,
one should remark that it is exposed to the limitations peculiar
of the specific concept of causality and model structure which
underlie the derivation of the proposed measures. Granger
causality is a probabilistic notion that differs from other
operational definitions that have been used in the context
of time series, such as intervention causality (Eichler 2012)
and structural causality (White and Lu 2010). In general,
interpreting Granger causality measures as causal effects is
not possible and additional assumptions, such as requiring
that the VAR model structure satisfies the causal Markov
and faithfulness conditions, are necessary to infer true causal
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effects from probabilistic dependencies (Spirtes et al. 2000).
In fact, a main limitation of causality analyses based on the
Granger definition is that they can lead to the inference of
spurious patterns of causality when important variables
are not modeled. Hence, as with all Granger causality
approaches, the detection of spurious causality becomes a
major problem when the frequency domain measures pro-
posed in this study are computed from systems that may be
affected by latent variables. Another aspect to be considered
is that the VAR modeling approach into which the proposed
empirical analysis of Granger causality is framed covers only
linear and time-invariant relationships between the observed
time series. Recent advances in multivariate time series
analysis have shown that modified model structures allow
to deal with the confounding effects due to instantaneous
correlations (Faes and Nollo 2010; Hyvarinen et al. 2010),
latent variables (Eichler 2010; Guo et al. 2008), nonlinear
effects (Marinazzo et al. 2011), and nonstationary behaviors
(Sommerlade et al. 2012). Therefore, future developments
should be aimed at extending the framework into which the
proposed measures are defined, in order to deal with inher-
ent properties of neurophysiological systems like the pres-
ence of instantaneous causality, time-varying relations, and
nonlinear dynamics in the measured multiple blocks of time
series.

In conclusion, the present study has established that the
proposed frequency domain causality measures constitute
a valid generalization of existing logarithmic and nonlog-
arithmic measures to multiple vector-valued processes. The
presented generalized approach finds its natural application
in the frequency-dependent characterization of directional
interactions between multiple blocks of time series. This
frame of applicability is very common in neurophysiology,
where multichannel data acquisition technologies allow the
simultaneous monitoring of several brain activity signals col-
lected from many cortical regions of interest.

Appendix

In this Appendix we prove the properties stated for the new
proposed frequency domain measures of causality for mul-
tiple vector processes. First, we demonstrate the properties
of the non-logarithmic measures (i.e., bDC and bPDC, see
(14)); then, we exploit the relation existing between logarith-
mic and non-logarithmic measures to demonstrate the prop-
erties of the measures defined in (13).

Properties 6 and 7 To determine the bounds of the bDC and
bPDC functions, we first reformulate their definitions as fol-
lows. From (12a), the spectral density matrix of the vector
process Yi can be formulated as a sum of M contributions,
Si i (ω) = ∑M

m=1 Si |m(ω), with each contribution given by
Si |m(ω) = Him(ω)�mmH∗

im(ω). This decomposition can be

expressed separating the contribution to Si i (ω) coming from
Y j from all other contributions: Si i (ω) = Si | j (ω)+Si |− j (ω),
with Si |− j (ω) = ∑

m �= j Si |m(ω). In a similar way, from
(12b) the inverse spectral matrix of the vector process Y j

can be decomposed as P j j (ω) = ∑M
m=1 P j→m(ω), where

P j→m(ω) = Ā∗
mj (ω)�−1

mmĀmj (ω), and the sum can be fur-
ther represented as P j j (ω) = P j→i (ω) + P j→−i (ω), with
P j→−i (ω) = ∑

m �=i P j→m(ω). With this notation, the block
DC and block PDC defined in (14a) and (14b) can be
expressed as

γ
(b)
i j (ω) = |Si i (ω)| − ∣∣Si |− j (ω)

∣∣

|Si i (ω)| ,

π
(b)
i j (ω) =

∣∣P j j (ω)
∣∣ − ∣∣P j→−i (ω)

∣∣
∣∣P j j (ω)

∣∣ . (17)

Now we show that all matrices involved in (17) are pos-
itive semidefinite. To this end, we recall two known matrix
properties (Berman and Shaked Monderer 2003): given two
Hermitian positive semidefinite n × n square matrices A and
B, (a) the m×m matrix C = L*AL is positive semidefinite for
any n × m matrix L, and (b) the sum D = A + B is positive
semidefinite. These properties can be proven recalling the
definition of a semidefinite positive matrix, i.e., A is posi-
tive semidefinite if X*AX ≥ 0 for any n-dimensional com-
plex vector X , and showing that (a) for any m-dimensional
complex vector Z we have that Z*CZ = Z*L*ALZ =
X*AX ≥ 0 with X = LZ ; (b) for any n-dimensional com-
plex vector X , X*DX = X*AX + X*BX ≥ 0. In our case,
Si |m(ω) and P j→m(ω) are positive semidefinite according to
property (a) since for strictly causal VAR processes the diag-
onal matrices �mm and �−1

mm
have all positive diagonal ele-

ments, and thus are positive definite, for each m = 1, . . . , M .
It follows that, according to property (b), the matrix sums
leading to Si|− j (ω) and P j→−i (ω), as well as the total sums
resulting in the matrices Si i (ω) and P j j (ω), are positive
semidefinite.

Therefore, since the determinant of positive semidefi-
nite matrices is always non-negative, we have |Si i (ω)| ≥
0, |P j j (ω)| ≥ 0, |Si |− j (ω)| ≥ 0, |P j→−i (ω)| ≥ 0. These
conditions set the upper bound for the bDC and bPDC, i.e.,
γ

(b)
i j (ω) ≤ 1, π

(b)
i j (ω) ≤ 1. Moreover, exploiting the prop-

erty |A + B| ≥ |A| + |B|, valid for positive semidefinite
matrices [derived from the Minkowski determinant theorem
(Mirsky (1955)], we have also that |Si i (ω)| ≥ ∣∣Si |− j (ω)

∣∣
and

∣
∣P j j (ω)

∣
∣ ≥ ∣

∣P j→−i (ω)
∣
∣; these last conditions set

the lower bound for bDC and bPDC, i.e., γ
(b)
i j (ω) ≥ 0,

π
(b)
i j (ω) ≥ 0.

From the definitions in (14a) and (14b) it follows imme-
diately that Hi j (ω) = 0 entails γ

(b)
i j (ω) = 0 and Āi j (ω) = 0

entails π
(b)
i j (ω) = 0. Moreover, combining the definitions

in (14) with the discussion above we see that the condition
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Him(ω) = 0 for each m �= j entails Si|− j (ω) = 0, and thus

γ
(b)
i j (ω) = 1, and that the condition Āmj (ω) = 0 for each

m �= i entails P j→−i (ω) = 0, and thus π
(b)
i j (ω) = 1. This

completes the proof of properties 6 and 7.

Properties 8, 9, and 10 These properties describe how the
bDC and bPDC can be expressed in terms of the correspond-
ing traditional scalar causality measures, i.e., the DC and
PDC, when one or both the interacting processes Yi and Y j are
scalar. In particular, when the destination process Yi is scalar,
its dimension is Mi = 1, so that its spectral density is scalar
(i.e., Si i (ω) = Sii (ω)) and the product Hi j (ω)

∑
j j H∗

i j (ω)

becomes the scalar quantity
∑M j

m=1 σ 2
jm jm

∣∣Hi jm (ω)
∣∣2, where

σ 2
jm jm

and Hi jm (ω) denote here the innovation variance of
the m-th scalar process composing the input vector process
Y j , and the transfer function from such scalar process to the
scalar output process Yi . In this case, comparing (14a) with
(6) we see that the bDC reduces to the cumulative squared
DC:

γ
(b)
i j (ω) =

∑M j
m=1 σ 2

jm jm

∣∣Hi jm (ω)
∣∣2

Sii (ω)
=

∑M j

m=1

∣∣γi jm (ω)
∣∣2

.

(18)

thus proving property 9. In a similar way, when the source
process Y j is scalar (i.e., M j = 1), its inverse spec-
tral density is also scalar (P j j (ω) = Pj j (ω)) and the
product Ā∗

i j (ω)
∑−1

i j Āi j (ω) becomes the scalar quantity
∑Mi

m=1

∣
∣ Āim j (ω)

∣
∣2

/
σ 2

imim
. Hence, in this case the bPDC

reduces to the cumulative squared PDC from Y j to the
scalar processes that compose the output vector process
Yi :

π
(b)
i j (ω)=

∑Mi
m=1

∣∣ Āim j (ω)
∣∣2
/

σ 2
im im

Pj j (ω)
=

∑Mi

m=1

∣∣πim j (ω)
∣∣2

,

(19)

thus proving property 10. In the case in which both the source
process Y j and the destination process Yi are scalar (i.e.,
Mi = M j = 1), it follows immediately from (18) and (19)
that the bDC and bPDC reduce to the squared modulus of
the traditional DC and PDC, i.e., γ

(b)
i j (ω) = ∣∣γi j (ω)

∣∣2 and

π
(b)
i j (ω) = ∣∣πi j (ω)

∣∣2, thus proving property 8.

Properties 11 and 12 These properties state that the bPDC
measures direct causality, while the bDC measures total
causality, from one vector-valued process to another. First,
we show that similar properties hold for the scalar-valued
PDC and DC function. According to the definition of direct
causality stated in Sect. 2.1, y j → yi when Ai j (k) is nonzero
for at least one value of k(i �= j); this entails, for some fre-
quency ω, Āi j (ω) = −Ai j (ω) �= 0 and thus, according to

(7), πi j (ω) �= 0. As to the DC γi j (ω), it is possible to show
that its numerator term Hi j (ω) can be expanded as a geo-
metric series resulting in a sum of terms each one related
to one of the (direct or indirect) transfer pathways connect-
ing y j to yi (Eichler 2006). Therefore, γi j (ω) is nonzero
whenever at least one path connecting y j to yi is signif-
icant, i.e., when y j ⇒ yi . These properties, when com-
bined with the direct and total causality definitions stated
for vector-valued processes, extend readily to the bPDC and
bDC functions. Indeed, Y j → Yi entails that the matrix
Ai j (k), of dimension Mi × M j , is nonzero for at least one
value of k, so that Āi j (ω) = −Āi j (ω) �= 0 for some fre-
quency ω (see (3)) and thus, recalling that Pj→i (ω) is pos-

itive semidefinite,
∣∣P j→i (ω)

∣∣ =
∣
∣∣Ā∗

i j (ω)�−1
mmĀi j (ω)

∣
∣∣ > 0.

This determines
∣∣P j→−i (ω)

∣∣ <
∣∣P j j (ω)

∣∣ and, according to

(17), π
(b)
i j (ω) > 0. On the contrary, in the absence of direct

causality from Y j to Yi we have Ai j (k) = 0 for each k,
so that Āi j (ω) = 0, P j→i (ω) = 0, P j→−i (ω) = P j j (ω),

and hence π
(b)
i j (ω) = 0, thus completing the proof of prop-

erty 11. Following a dual reasoning, property 12 is proved
considering that total causality Y j ⇒ Yi occurs when sim-
ilar total causality relations are present between the con-
stituent scalar processes of Y j and Yi , so that the transfer
matrix Hi j (ω) has at least one nonzero entry for some fre-
quency ω. Therefore, the presence of total causality entails
|Si | j (ω)| = |Hi j (ω)

∑
j j H∗

i j (ω)| > 0, in a way such

that |Si |− j (ω)| < |Si i (ω)| and, from (17), γ
(b)
i j (ω) > 0.

On the contrary, in the absence of total causality we have
Hi j (ω) = 0 for all ω, Si | j (ω) = 0, Si |− j (ω) = Si i (ω) and

hence γ
(b)
i j (ω) = 0.

Properties 1–5 The properties of the proposed logarithmic
frequency domain causality measures can be deduced from
the corresponding properties of the non-logarithmic mea-
sures, recalling the relationships between the two types of
measures derived in (15). The conditions f (m)

j→i (ω) ≥ 0 and

g(m)
j→i (ω) ≥ 0 (properties 1 and 2) follow from (15) and

from the fact that 0 ≤ γ
(b)
i j (ω) ≤ 1 and 0 ≤ π

(b)
i j (ω) ≤ 1;

in particular, when Hi j (ω) = 0 we have that γ
(b)
i j (ω) = 0

(property 6) and thus f (m)
j→i (ω) = ln 1 = 0 . while, when

Āi j (ω) = 0 we have that π
(b)
i j (ω) = 0 (property 7) and thus

g(m)
j→i (ω) = ln 1 = 0. Properties 4 and 5 follow directly

from properties 11 and 12 and from the fact that f (m)
j→i is

zero (respectively, nonzero) if and only if γ
(b)
i j (ω) is zero

(nonzero), while g(m)
j→i is zero (nonzero) if and only if when

π
(b)
i j (ω) is zero (nonzero). Finally, property 3 derives from

the observation that when only M = 2 vector processes are
present (12a) reduces to (9), and thus (13a) reduces to (10)
(i.e., f (m)

j→i = f j→i ).
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