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a b s t r a c t

We examine the performance of approximate models (AM) of the head in solving the EEG inverse prob-
lem. The AM are needed when the individual’s MRI is not available. We simulate the electric potential
distribution generated by cortical sources for a large sample of 305 subjects, and solve the inverse prob-
lem with AM. Statistical comparisons are carried out with the distribution of the localization errors. We
propose several new AM. These are the average of many individual realistic MRI-based models, such as
surface-based models or lead fields. We demonstrate that the lead fields of the AM should be calculated
considering source moments not constrained to be normal to the cortex. We also show that the imperfect
anatomical correspondence between all cortices is the most important cause of localization errors. Our
average models perform better than a random individual model or the usual average model in the MNI
EM
ead field
LORETA
NI

EG Cuban Brain Mapping Project

space. We also show that a classification based on race and gender or head size before averaging does
not significantly improve the results. Our average models are slightly better than an existing AM with
shape guided by measured individual electrode positions, and have the advantage of not requiring such
measurements. Among the studied models, the Average Lead Field seems the most convenient tool in
large and systematical clinical and research studies demanding EEG source localization, when MRI are

s not
ead
unavailable. This AM doe
achieved for any type of h

. Introduction

In Electromagnetic Source Imaging (ESI), the smallest source
ocalization error is achieved when the physical properties of the
ead are modeled with the information provided by the individual’s
agnetic Resonance Image (MRI) (Huiskamp et al., 1999; Henson

t al., 2009). However in some cases an MRI system is not available
r EEG related studies with a large number of individuals make MR
cquisition unpractical. In this work we are interested in finding the
est possible approximation of the individual head model when the
RI-based head model is unknown. We quantify the performance

f a head model by the error in the estimation of the source posi-

ion. The value of this error would be helpful to decide in which
ituations an approximate model is acceptable.

The simplest and worst approximate head model is a set of
pheres representing the boundaries of different tissue domains of
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need a strict alignment between head models, and can therefore be easily
modeling approach.

© 2009 Elsevier B.V. All rights reserved.

the head with homogeneous physical conductivities (de Munck and
Peters, 1993; Ermer et al., 2001). A further improvement is achieved
by using realistically shaped head models based on standard MRIs,
such as the average image provided by the Montreal Neurological
Institute (ICBM-152), as proposed in (Fuchs et al., 2002). However
the ICBM-152, as being an average of 9 parameter-based affine
coregistered individual MRIs, presents a coarse level of anatomical
detail. This compromises the accuracy of some volumetric piece-
wise head modeling methods such as the Finite Element Method
(FEM) (Wolters et al., 2006) and the Finite Difference Method (FDM)
(Neilson, 2003). Alternatively finer detailed standard MRIs could
be used, e.g. the average of 27 MRIs from a single individual in
MNI space (MNI-27) (Collins et al., 1998), or the average of dif-
ferent individual MRIs that have been nonlinearly coregistered to
a common stereotaxic space (ICBM-452) (Mazziotta et al., 2001).
However, these standard MRIs are far from being representative of
a target population in the sense of shape since they are registered to
the MNI space. No matter the level of anatomical detail achieved, a

wrong shaped approximation is a major cause of localization errors
in ESI, as shown in (von Ellenrieder et al., 2009). Therefore, reduc-
ing the shape differences between the approximate and individual
head models is a prime goal in improving the performance of the
approximate head models in ESI.

http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:multivac@cneuro.edu.cu
dx.doi.org/10.1016/j.jneumeth.2009.09.005
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The MNI-shape drawback has only been dealt with in (Darvas
t al., 2006), where the ICBM-152 was warped to the individual
pace through a nonlinear Thin Plate Spline (TPS) transformation.
his TPS was estimated by matching the predefined electrode posi-
ions in the scalp of the ICBM-152 (the template) to those measured
n the individual. The TPS head model has two problems: (1) the
hape improvement is, by definition, more effective toward the
calp, inheriting the defects of the chosen template model; (2) the
ndividual electrode positions have to be measured manually (de

unck et al., 1991), or with a Polhemus device (Lamm et al., 2001)
r by other methods (Le et al., 1998).

In this paper, we propose new approximate head models that
o not require the measurement of the electrode positions. These
ethods are also designed to be, from a statistical point of view,

loser in shape to the individual unknown head model than the
NI-shaped and TPS head models. We are interested in reducing

he localization error by modifying only the shape. Therefore, we
ork with head models consisting of a set of surfaces defining

he boundary of nested homogeneous and isotropic compart-
ents, as proposed elsewhere (Hämäläinen and Sarvas, 1989; de
unck, 1992; Ermer et al., 2001; Fuchs et al., 1998, 2001, 2002;

on Ellenrieder et al., 2009), thus adopting the Boundary Element
ethod (BEM) to solve the Forward Problem of the EEG (de Munck,

992), i.e. the calculation of the lead field matrix. The first of our pro-
osed approximate head model is an estimate of the shape centroid
f the target population built with the head models defined from
05 MRIs drawn from the Cuban Human Brain Mapping Project.
his head model is the closest in shape to all the individual head
odels. In Appendix A, we demonstrate that the simple surface

lement wise average can readily substitute for this head model.
Therefore an estimate of the centroid head model is only eas-

ly achievable for surface-based head models. This simple average
oncept cannot be extended straightforwardly to more heteroge-
eous head models, such as FEM or FDT. The centroid estimate of
hese type of head models involves complicated inter-subject reg-
stration pipelines (see for example, Guimond, 2000; Christensen
t al., 2006 and Appendix A), requiring high dimensional nonlin-
ar registration methods to achieve detailed images. Additionally,
hey are not easy to update with newer models. Therefore, as a new
lternative, we investigate the use of the direct average of the lead
elds of the subjects of the sample. This model only requires very
imple transformations to align head models before calculating the
ead fields and its use is computationally inexpensive. The Average
ead Field has to be calculated for predetermined electrode mon-
ages. This is well suited for systematical studies involving a large
ample of individuals.

Further approaches are considered in this work such as partial
ead model averages clustered according to race, sex or head size
f the individuals. With this we investigate whether the knowl-
dge of these individual externals characteristics, which are easy
o determine, can be used to decrease the source localization error.

The first idea that would come into mind when the individual’s
RI head model is not available is using any head model at hand,
hich is equivalent to taking that defined from a random disparate

ubject. In fact some works in the literature used this approach, e.g.
he Collins head in (Trujillo-Barreto et al., 2008). We also evaluate
n this work how prejudicial this can be for ESI.

We evaluate the improvement in the performance of all the pro-
osed head models, and compare them with existing approaches

n the literature, adapted to our dataset, i.e. the MNI-shaped model
nd its TPS version. Finally we also investigate a possible improve-

ent by using a TPS transformation of the Average Surface model.
e consider that this improvement should be considerable to make

he measurement of electrode positions worthwhile.
Without loss of generality, the algorithms for the EEG Inverse

roblem are chosen to yield a null expected localization error when
oscience Methods 185 (2009) 125–132

the individual MRI head models are used. In this way the local-
ization error obtained when using an approximate head model
will be caused only by its difference from the individual head
models.

2. Materials and methods

The head model we adopted has three parts: (1) the volume
conductor model, representing the physical properties of the head,
(2) the cortical surface, providing the possible location and orien-
tation of the sources of the EEG and (3) the fiducials on the outer
surface of the skin, which serve as guidelines to locate the positions
of the electrodes (where the EEG is measured). The fiducials can
include the electrode positions as is the case of the TPS-based head
models.

In this work we deal with the following hypothetical experimen-
tal situation. Someone measures the scalp electrical potential in an
individual without MRI. Since he/she wants to obtain the sources
of the measured EEG he/she is forced to use an approximate head
model for ESI. Using the fiducials as guidelines, an electrode set is
placed on the approximate scalp in an attempt to reproduce the
same anatomical locations where EEG was measured in the indi-
vidual scalp. Then the forward problem and inverse problems of the
EEG are solved. In this section we test the performance of several
approximate head models in ESI.

The test is done as follows. We simulated the expected elec-
tric potential measurements generated by known sources. This is
done with the individual’s MRI head model. Then we solve the
inverse problem, i.e. source localization, using the approximate
head model, and compare the estimated sources with the simu-
lated ones by means of the localization error. This is carried out
for a subset of 305 individuals of the Cuban Human Brain Mapping
Project (CHBMP) in a leave one out statistical procedure, i.e. each
subject is taken to simulate sources and EEG whereas the remain-
ing 304 head models are taken to achieve the approximate model.
This procedure yields 305 localization errors for each approximate
head model.

The CHBMP is composed by a large sample of subjects of the
Cuban population, randomly selected from the Cuban National ID
registry, who were submitted to neuropsychiatrical and neuropsy-
chological tests. Those who were considered by experts as healthy
subjects were included in the database, after informed consent.

2.1. MRI-based head models

We adopted a layered model for the head, with three nested
compartments of constant isotropic conductivity representing the
brain, skull, and skin tissues. The electrical conductivity values are
0.33 S/m for the brain and skin and 0.022 S/m for the skull. The
1/15 skull/skin conductivity ratio is supported by recent studies
(Oostendorp et al., 2000; Wendel and Malmivuo, 2006; Zhang et
al., 2006). The shape of these layers was obtained from magnetic
resonance images (MRIs) of the subjects. These MRIs were obtained
using a Siemens Symphony 1.5 T system, consisting in a set of
3D MPRAGE T1-weighted images of dimensions 160 × 256 × 256,
and 1 mm × 1 mm × 1 mm voxel size, TR = 100 ms, TE = 3.3 ms, and
TI = 1100 ms.

The images were segmented into brain, skull and skin using the
best outcome, according to an expert’s criterion, between betsurf,
a tool of the FSL software package (Jenkinson et al., 2005), and

BrainSuite2 (Shattuck and Leahy, 2002). They yielded three sur-
faces, characterized by tessellations (nodes and triangles), for each
subject: inskull (brain/skull interface), outskull (skull/skin interface)
and scalp (skin/air interface). However, we discarded the extracted
inskulls for both softwares due to their very low quality, a conse-
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Fig. 1. Inskull (white), outskull (yellow) and scalp (red) extracted with (a) BrainSuite2 and (b) FSL BET2 (betsurf). The inferior part of corresponding outskulls and scalps is
d shape
a thick
w gend

q
a
t
w
T
a

n
t
l
h
p
s
s
a
t
6
t
s
t
t
t
s
a

S

w
g
(
d
a
o

n
i
s
m
i
(

ifferent for both softwares. (c) Outskull and scalp were modified to have uniform
nd skin layers below the plane defined by the fiducials by layers of 6 mm and 8 mm
as linearly smoothed. (For interpretation of the references to color in this figure le

uence of the low contrast between cerebrospinal fluid and skull in
T1-weighted image. Instead we took the inskull corresponding to

he ICBM-152 template warped to individual space. This was done
ith the transformation obtained by registering the skull-stripped

1-weighted image to the skull-stripped ICBM-152 template with
nonlinear registration method (Thirion, 1998).

The head model surfaces were registered to a common coordi-
ate system with the origin 50 mm above the intersection between
he segment joining the left and right preauricular points and a
ine perpendicular to this segment passing through the nasion. This
as two purposes. (1) Outskull and scalp provided by the software
ackages differ in the inferior part of the model, e.g. in the inclu-
ion of the neck in the model, as shown in Fig. 1. We modified these
urfaces in order to obtain a uniform shape for all the subjects. To
ccomplish this we replaced the parts of the skull and skin below
he plane defined by the fiducials by layers of constant thickness of
mm and 8 mm respectively, which are the average thicknesses of

hese tissue domains in our sample. The transition from the recon-
tructed to the unchanged parts of the layers was linearly smoothed
o avoid abrupt changes (see Fig. 1). (2) To allow a description of
he surfaces as Spherical Harmonics decompositions, facilitating
heir tessellation (van’t Ent et al., 2001) and establishing a corre-
pondence between surfaces which is mandatory for inter-subject
veraging and layer thickness calculations.

Each surface S was represented as the set of points:

≡
{

(ϕ, �, r) : r =
NA∑
l=0

l∑
m=−l

almYlm(ϕ, �)

}
(1)

here (ϕ,�,r) are the azimuth, elevation and distance to the ori-
in of the points. The functions Ylm are the Spherical Harmonics
Abramovitz and Stegun, 2009) and NA = 30 is the order of the
ecomposition which lead to (NA + 1)2 = 961 terms. The coefficients
lm are obtained by minimizing the distance between S and the set
f nodes describing the surface extracted by the software packages.

The individual positions of the preauricular points and the
asion, mentioned above, were achieved by nonlinearly transform-
ng their positions in the ICBM-152 template to the individual
pace and projecting them onto the individual scalp. The transfor-
ation was obtained by nonlinearly normalizing the T1-weighted

mage to the ICBM-152 template using SPM5 with cutoff = 25 mm
Ashburner and Friston, 1999).
irrespective of the software used. We ensured this by replacing the parts of skull
nesses respectively. The transition between the reconstructed and unchanged parts
, the reader is referred to the web version of the article.)

We assumed that the sources of electrical activity are restricted
to the neocortical layer, specifically its middle surface, as being
the most representative location of cortical activity. We extracted
this surface with the CIVET software package (Robbins, 2003;
Ad-Dab’bagh et al., 2006). The output surfaces had more than
80,000 nodes which were subsampled to 10,000. This software
provides inter-subject anatomical correspondence between sur-
faces nodes, which is needed to average head models and to
provide a meaningful anatomical localization error in our simu-
lations.

2.2. Source simulation

Using the MRI-based volume conductor and cortex models, we
simulated, for each subject, the “actual” electric potential generated
by a known dipolar source in each of the 10,000 nodes of the cortical
surface. The dipolar moment was oriented along the normal vector
of the cortex, according to the behavior of the electrical activity in
this surface (Dale and Sereno, 1993; Malmivuo and Plonsey, 1995).
This simulation consists in solving the forward problem of the EEG,
i.e. the quasistatic Maxwell equations in the head.

The electrical potentials are measured in a particular set of
electrodes. We use the montage (120 electrodes) shown in Fig. 2.
This montage was manually placed in the ICBM-152 template. We
wanted to achieve the same situation across subjects, avoiding pos-
sible errors in electrode positioning; thus each individual montage
was obtained by transforming the ICBM-152 montage to each indi-
vidual space and projecting onto the individual scalp. We used the
same SPM transformations previously used to obtain nasion and
preauriculars.

We solved the Forward Problem of the EEG with the BEM
(de Munck, 1992). A linear variation of the electric potential was
assumed through the triangular elements of the interlayer surfaces
(de Munck, 1992). To avoid numerical problems due to the low
electric conductivity of the skull we adopted the Isolated Problem
Approach (Meijs et al., 1989). Scalp and outskull were tessellated
into 5120 triangular elements, and the inskull tessellated in at
least 10,240 triangular elements. The procedure to tessellate inskull

included a local refinement where this surface is too close to the
cortical surface, in order to have triangle sides shorter than 1.5
times the local distance between both surfaces. This is done to keep
valid the linear approximation of the electric potential (Haueisen
et al., 1997).
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Fig. 2. Electrode montage used in this paper (120 electrodes).

.3. Source estimation

We use the approximate head models for the source estimation.
hese are described in the next subsection.

In ESI methods, the source estimation from the measurements,
.e. the inverse problem of the EEG, requires as an intermediate step
he solution of the EEG forward problem, i.e. the calculation of the
ead field matrix. We did this for the approximate head models with
EM, with a tessellation coarser than the one used to simulate scalp
lectrical potentials, i.e. with both scalp and outskull tessellated
nto 2560 triangular elements, and inskull into at least 5120 trian-
ular elements. The local refinement yielded triangle sides shorter
han two times the local distance between inskull and cortex. These
oarser tessellations are adopted to reduce the computational load
ssociated with the construction of the approximate models, as
ell as to determine if such tessellations are fine enough for good

uality ESI results.
In the actual experimental situation, the electrodes (shown in

ig. 2 for our case) should be placed in the approximate scalp
ccording to the fiducials of the approximate head model in a man-
er decided by the experimentalist, attempting to achieve the same

ndividual’s measurement positions. There might be several sets
f fiducials and strategies to place electrodes. For example, the
ducials can be the nasion, inion, vertex and preauricular points,
r measured electrode positions itself; while electrode positions
an be achieved by transforming those defined in the standard
pace (ICBM-152 for our case) to the approximate space using a
ducials-based affine transformation, a TPS transformation or a
anual procedure. Apart from the expected errors due to shape

pproximation, all of these approaches are affected by additional
rrors associated with the nature of the electrode positioning pro-
edure itself. In this work, we are not interested in evaluating
hese effects on source reconstruction errors since fortunately
he former is not much sensible to changes of the latter (Wang
nd Gotman, 2001). Therefore, in the simulations of this paper,
e deliberately take advantage of the known anatomical corre-

pondence existing between the subjects’ electrode sets of the
atabase (achieved by nonlinear registration above) to guaran-
ee the best anatomical correspondence between the approximate
nd individual electrode sets. The exact way this is achieved for
ach approximate head model is described in the next subsec-

ion.

Although a dipole was simulated with its moment constrained
o the normal of the true cortex, the lead field for the estimation
an be calculated with and without constraining the moment to the
ormals of the approximate cortex. We test both approaches since
ontage was manually placed on the ICBM-152 template scalp.

we believe the constraint might cause larger localization errors. We
explain this as follows. Although the true and the approximate cor-
tices are anatomically registered each other, their normals do not
necessarily point in the same direction with respect to the elec-
trode montage. Thus a dipole in the same node of both surfaces,
with its moment constrained to the normal direction, might yield
very different electrical potential topographies. With the moment
unconstrained, the estimated dipole can simultaneously be located
at the simulation node and have a direction that generates a scalp
electrical potential topography much more similar to the simulated
one.

In this work we use sLORETA (Pascual-Marqui, 2002) to estimate
the sources. The useful information of sLORETA is the estimated
position. Although the estimation of dipolar moment orientation
and intensity is also part of the inverse problem, we believe that
the most important quality of models and algorithms is to correctly
localize the source of brain activity. Therefore we shall only con-
sider the localization error as the measure of source reconstruction
error. We define the localization error as the Euclidean distance
between the positions of the nodes, measured in the true cortex, of
both the simulated and maximum of the estimated sources. Note
that we are measuring distances between anatomically equivalent
sources, i.e. zero localization error means that both sources have the
same anatomical “location”, even though the true source is located
in the individual cortex, and the estimated one in the approximate
cortex. We note that we could use geodesic distance between points
as a measure of localization error, which for simplicity sake was not
done in this paper.

When no noise is present in the measurements, sLORETA yields
zero localization error when using the actual head model. This sit-
uation is therefore beneficial to evaluate the performance of the
approximate head models since the only cause of localization errors
are differences between approximate and actual head models.

For a tested model we have 305 subjects and 10,000 differ-
ent source locations, yielding a total of more than three million
inverse problem results. We report in this work the mean localiza-
tion error (MLE) pooled over subjects and source positions, and the
95% quantile (q95) of these errors.

Additionally, we compare the performance of two head models
in source reconstruction by statistically comparing the distribu-
tions of 305 average localization errors (ALE) for both models.

This is a partial average through all source positions. We use the
Kolmogorov–Smirnov (KS) test at 5% significance level. The null
hypothesis is that the average error distributions are the same for
both head models. The KS is a nonparametric test which makes no
assumptions about the distributions.
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.4. Approximate head models

.4.1. Existing approaches

Random: In this paper we choose this model randomly from
the CHBM database. Consequently with the desired “electrode
anatomical correspondence” condition described above, we use
the electrode positions previously calculated for this randomly
chosen subject.
CHBM-305: Since we want to compare our proposed approximate
head models to those based on MNI-shaped standard MRIs, we
define the equivalent MNI-shaped head model (Fuchs et al., 2002)
for our database. This is an average of the 305 MRI-based models
following the same procedures followed to construct the ICBM-
152 standard MRI. The electrode montage is shown in Fig. 2.
CHBM-305 TPS: This is the Thin Plate Spline transformation of the
CHBM-305, as defined by (Darvas et al., 2006).
Random TPS: This is the Thin Plate Spline transformation of the
Random model.

.4.2. New approaches

Average surface: We provide an estimate of the centroid head
model, in the sense of shape, of the target population. It is
obtained by averaging, through subjects, the coefficients, alm, in
Eq. (1) of the Spherical Harmonics decompositions. The average
cortical surface is obtained by averaging the corresponding corti-
cal node positions. This can be done since they are in anatomical
correspondence and all the head models were previously ori-
ented to a fiducials-based coordinate system. As demonstrated
in Appendix A, the Average Surface model is an estimate of the
centroid shape of a population. The electrode positions for this
approximate head model are simply the average of all corre-
sponding electrode positions across subjects projected to the
Average Scalp. This provides an “average electrode anatomical
correspondence” between head models, as desired.
Average Lead Field: Since all the parts of our head models are
in anatomical correspondence we can average the lead fields.
Although the relation between model shape and lead field is not
linear, the head shape variations through individuals are small
enough to consider their effect on the lead field as approximately
linear. Therefore the Average Lead Field should produce similar
results to the Average Surface model. For our analyses, we only
need to define the Average Lead Field for the electrode mon-
tage considered in this work. For the lead fields with the source
moments constrained to the normal direction of the cortical sur-
face the Average Lead Field does not need a previous alignment
between head models since the lead field is theoretically invari-
ant under rigid body transformations. This is not the case of the
unconstrained case. Notwithstanding, we shall consider as suffi-
cient the landmark-based alignment previously performed to the
individuals head models to make possible the construction of the
Average Lead Field.

.4.3. Classifications according to sex, race and head size
Additionally we tried averaging models of subjects after a clas-

ification. The Average Lead Field of the group where the individual
nder study classifies is used to solve the inverse problem. We tried
wo classifications, one according to the race and gender (RGC) of
he subjects, and the other based on the “size” of the head (HSC).
or RGC we clustered the subjects in four categories; 93 women, 89

hite men, 71 black men, and 51 mulatto men. One subject from

nother race was excluded from this analysis. For HSC we used
wo features that are easy to measure: the nasion–inion distance
nd the distance between the preauricular points. We classified the
ubjects in six HSC groups, using the K-means algorithm, which
oscience Methods 185 (2009) 125–132 129

minimizes the variance in the groups. The number of subjects in
the resulting groups was 10, 45, 54, 60, 62, and 74. To determine
whether the proposed classifications improve ESI results, we tested
with control groups of the same number of subjects than in the RGC
and HSC, but drawn randomly from the database.

2.4.4. Average surface TPS
This is the Thin Plate Spline transformation to the Average Sur-

face model.

3. Results

In this section we first examine the validity of some of the
assumptions we made in the definition and construction of the
head models. Then we discuss and compare the performance of
our proposed approximate models with existing approaches in the
literature.

3.1. Validation of some of the assumptions made in this paper

3.1.1. The Spherical Harmonic approximation
To evaluate the accuracy of Spherical Harmonic (SH) approxi-

mations we first calculated the distance between the ith point of
an SH surface (ϕi, �i, ri

SH) and its corresponding point in the actual
surface (ϕi, �i, ri

ACTUAL), and then we averaged across all points:

ε =
∑

i

∣∣ri
ACTUAL − ri

SH

∣∣ , (2)

where |a| is the absolute value of a.
The values of ε are 0.53 mm, 0.25 mm and 0.09 mm for inskull,

outskull and scalp respectively. These are negligible compared to
the average radius of these surfaces in the Surface Average model,
which are 71.6 mm, 76.9 mm and 85.6 mm respectively. Also, as
demonstrated in (von Ellenrieder et al., 2006), errors below 1 mm
do not influence on the EEG Inverse Problem.

3.1.2. The coarse tessellation approximation
The lead fields for source estimation are based on a tessellation

coarser than that used for source simulation. The effect of this on
the localization error was achieved by solving the inverse prob-
lem with the actual MRI-based head model of the individual, but
using the lead field computed with the coarser tessellation. The
Mean Localization Error (MLE) across subjects and source positions,
and the 95% quantile of the localization errors (q95) were 0.13 mm
and 1.03 mm respectively. We consider these values as negligible
compared to the localization errors when using approximate head
models. This validates the use of the coarser tessellation for source
estimation.

3.1.3. The averaging approximation
It should be noted that most of the tested methods involve aver-

aging among all the individual models, i.e. including the individual
under study, which is supposed to be left out according to the jack-
knife procedure. This can be accepted if we assume that, for the
large number of subjects considered, the 305 jack-knife averages
of the 304 remaining head models are very similar to the average of
the 305 head models. Indeed, Table 1 shows very similar results for
the MLE and q95 of both approaches. Moreover the KS test shows

that the null hypothesis, of identical distributions of Average Local-
ization Errors (ALE) through source positions, cannot be discarded
(p = 0.999). We make an exception however for the groups classified
by gender, race or size, where the number of subjects is, in some
cases, much lower.
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Table 1
Mean Localization Error (MLE) and 95% quantile (q95) for the approximate head
models. Except the shadowed approximate head models, the lead fields were cal-
culated with the source moments not constrained to the normals of the cortex
model.

Head model Mean localization
error—MLE [mm]

95% quantile
e95 [mm]

Individual coarser tessellation 0.1 1.0
Average Lead Field (moments

constrained to the cortex normals)
8.2 18.9

Average Lead Field (jack-knife 304
subjects)

5.9 13.0

Average Lead Field (305 subjects) 5.9 13.0
Average surface 5.9 13.0
Random 8.8 18.2
CHBM-305 6.4 13.5
Thin Plate Spline on random 8.3 17.5
Thin Plate Spline on CHBM-305 6.0 13.1
Thin Plate Spline on average surface 5.8 12.9
Race-gender group 5.9 13.0
Race-gender control group (the same

size with randomly selected
members)

6.0 13.1

Head size group 5.9 13.0
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Head size control group (the same
size with randomly selected
members)

6.0 13.1

.1.4. Dipole moment constraint
Table 1 shows that the Average Lead Field with the dipole

oments not constrained to the normals of the approximate cortex
utperforms the constrained case. The KS test confirmed this fact
p ≈ 0). This is in agreement with the results found in (Henson et
l., 2009) for individual head models in Magnetoencephalography
MEG). In that paper, the unrestricted case showed better results
or L2-Minimum Norm inverse solutions. Note that the sLORETA
olution is precisely constructed from this type of solution (Pascual-
arqui, 2002). Based on this result we test the performance of all

he approximate head models with the unconstrained approach.

.2. Comparison between the performance of approximate head
odels in ESI

Both the MLE and q95 are presented in Table 1 for all the new

pproximate head models, i.e. the Average Surface, the Average
ead Field, the TPS of the Average Surface and for those already
eported, i.e. the CHBM-305, the Random and their corresponding
PS models. It can be seen that the performance of the Average
odels is better than that of the MNI-shaped model and the Ran-

ig. 3. Average localization error among the 305 subjects for each source location. It can
nskull.
oscience Methods 185 (2009) 125–132

dom model, as expected due to their low representativeness, in the
sense of shape, of the target population.

The KS test did not reject equal distributions of the ALE of the
Average Surface and the Average Lead Field models (p = 0.99992).
The MLE for both models is near 6 mm, and the q95 around 13 mm.
Fig. 3 shows, for the Average Lead Field, the average localization
error among the 305 subjects for each source location. It can be seen
that this error is lower for deeper sources, and higher for sources
near the inskull surface.

The classification of average models in RGC and HSC groups
yields no improvement in source reconstruction, as can be seen
in Table 1. The difference between these groups and their corre-
sponding random control groups is not significant, according to the
KS test (p = 0.25 and p = 0.39 for the RGC and HSC respectively).

The use of known measured electrode positions, via the
TPS transformation, improves the MLE of the CHBM-305 model
(p = 1.5 × 10−13), reproducing the results of (Darvas et al., 2006).
An additional result is elucidated from the analysis of the improve-
ments provided by the TPS transformed models with respect to
their templates (Random, CHBM-305 and Average Surface): the
better the template model, the lesser the need to apply a TPS
transformation. Indeed the TPS of the worst template, the Ran-
dom model, provides the best improvement (p = 1.8 × 10−12) and,
on the other hand, the best head model, the Average Surface, is not
significantly improved (p = 0.25).

Although the Average Surface model is significantly better than
the CHBM-305 TPS model from a statistical point of view (p = 0.03),
this improvement in localization errors is scarce in practical terms.
However, the former provides a valuable advantage since there is
no need to measure the individual electrode positions.

3.3. The possible effect of the imperfect anatomical
correspondence of cortical surfaces

The MLE of most of the approximate head models is around
6 mm despite the different shape approximations adopted. We sus-
pect that although improving shape is mandatory, another cause
of localization error, common to all models, should be dealt with
in the future. It should be noted that, even for the best of the
surface registration methods, the perfect anatomical correspon-
dence between cortices cannot be achieved since all subjects have

unavoidable differences in the sulci/gyri disposition. Therefore, for
example, the cortices of both Average Surface (which results to be
smoother than the individual one) and Random models present
anatomical locations that lack meaningful correspondence in the
actual individual cortex. We believe this is the cause of the com-

be seen that this error is lower for deeper sources, and higher for sources near the
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on baseline of localization error in the tested approximate head
odels.
To test this hypothesis we created a new set of “false” head

odels with their cortical surfaces in perfect anatomical correspon-
ence. This was achieved by warping the MNI-27 cortical surface to
ach individual space with the nonlinear transformation estimated
o create the inskulls (see Section 2). This approach is inspired in
previous work for MEG Forward and Inverse solutions (Mattout

t al., 2007). In that work, cortex models are built by warping a
anonical mesh to individual space by a diffeomorphism. One of
heir objectives was precisely ensuring anatomical correspondence
etween individual meshes, as well as with a canonical one.

The MLE and q95 were much lower for the “false” head models:
.55 mm and 5.08 mm respectively. This clearly supports the detri-
ental effect on source localization of the imperfect anatomical

orrespondence between the cortices used to asses approximate
ead models. This is in apparent contrast to (Mattout et al., 2007;
enson et al., 2009) where the performance of a warped canoni-
al mesh for MEG source localization is comparable to that of the
ctual individual’s anatomical mesh. However in our case the com-
arison in not between different proposals (actual or canonical) of
he individual’s cortical model; but between different approximate
ead models constructed from a MRI database.

. Discussions and conclusions

We presented several approximate head models that could be
sed in ESI when the head model based on the actual MRI of the

ndividual is not available. This is a problem that has already been
ddressed in the literature in the past. One of the first attempts
sed approximate models based on the standard MNI-shaped MRIs
Fuchs et al., 2002), such as the ICBM-152 or MNI-27 average heads.
ecently Darvas et al. proposed a Thin Plate Spline transforma-
ion to warp this type of models (in particular the ICBM-152) to
he individual’s space, based on matching both the individual’s and
emplate’s electrode positions (Darvas et al., 2006).

The MNI-shaped models are not representative, in the sense of
hape, of the target population, and the TPS approach depends on
lectrode measurement and template quality, with accuracy only
eliable at the closest places of the scalp. Therefore we propose
ew head models that are more representative of the target pop-
lation. These are Average Surfaces and Average Lead Field. We
dopted head models based on surfaces since we are interested
nly in evaluating an improvement in shape approximation.

Our first conclusion is that the lead field of an approximate
ead model should not be constructed with the source moments
onstrained to be normal to the cortical surface, since this yields
maller localization errors. This can be explained since there might
e a large difference in both the actual and approximate normal
irection, even when anatomical correspondence is achieved.

Nevertheless, we believe that the largest cause of localization
rror is the imperfect anatomical correspondence between cortices.
his might be due to (1) the unavoidable inter-individual differ-
nces in the human cortex and (2) the inaccuracy of the registration
ethods. We think that overcoming the second issue by defining

ewer anatomical correspondence criteria specifically tailored to
ecrease the localization error might improve the performance of
ur proposed average approximate head models.

The Average Surface (which, as demonstrated, is the estimate
f the shape centroid of the target population) and the Average

ead Field significantly outperformed the MNI-shaped and Random
odel. As shown in Fig. 3 the localization error for our average
odels is lower for deeper sources while higher for sources near the

kull. A classification by race, gender or head size before averaging,
oes not improve ESI.
oscience Methods 185 (2009) 125–132 131

Although our average models are not remarkably better than
Darvas’s CHBM-TPS model, they provide the advantage of not
requiring the measurement of electrode positions which has to be
done either by hand (de Munck et al., 1991) or by using a Polhe-
mus device (Lamm et al., 2001). We speculate that the differences
between the performance of centroid head models and either MNI-
shaped or TPS-MNI models might be even larger for FEM/FDM
models since this type of head modeling is probably much more
sensitive to the approximations achieved at finer levels of detail
of the image. This is beyond the scope of this paper and has to be
tested in future work. A separate conclusion is that TPS models are
not necessary if the template model is good enough.

Finally we acknowledge that a very promising line of research
is to evaluate the Bayesian evidence of different approximate head
models in the context of ESI. The evidence could be used for select-
ing an optimal approximate head model as (Henson et al., 2009)
did for individual ones or for Bayesian Model Averaging (BMA)
(Trujillo-Barreto et al., 2004) of head models.

In this regard we introduce an approximate to BMA of head
models: the Average Lead Field, which represents a promising tool
for ESI when the individual’s MRI is not available. We think that
the Average Lead Field might be the appropriate approach when
adopting any type of head modeling since it only needs a rough
alignment between individual MRIs prior its calculation. This model
can be used in large clinical studies where the electrode montage
is predetermined.
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Appendix A. The Average Surface model: the centroid
estimate

The Average Surface model is intended to be an estimate of the
shape centroid of the target population. This is based on N = 305
MRIs randomly sampled from the Cuban Population. A proposal
for the estimation of the centroid of a set of MRIs can be found
in (Guimond, 2000). It consists of averaging all images after regis-
tering them all to a single individual, arbitrarily chosen from the
set. This average is then warped with the average of the estimated
registration transformations. To achieve a highly detailed image,
these transformations have to be nonlinear and high dimensional.
This method, as well as others in the literature (Kochunov et al.,
2001; Christensen et al., 2006), is computationally demanding and
not easy to update.

The steps followed in (Guimond, 2000) to calculate the centroid
MRI estimate, A(x), being x the coordinate variable, can be written
in a single step:

A(x) =
N∑

I (h (x)),
j=1

j j

hj(x) = tj ·
(

N∑
m=1

tm

)−1

(x),

(3)



1 f Neur

w
n
t
t

w

o
s
a
w
w
c
i
(
i
c
i
i
A
p

R

A

A

A

C

C

D

D

d

d

d

E

F

F

F

G

32 P.A. Valdés-Hernández et al. / Journal o

here Ij(x) and tj(x), for j = 1,. . .,305, are the individual MRIs and
onlinear transformations respectively. The set of surfaces, Sj, of
he same type, e.g. inskull, can be submitted to the same procedure
o obtain the centroid surface estimate:

S̃j = h−1
j (Sj),

SA =
N∑

j=1

S̃SH
j ,

(4)

here S̃SH
j

is the SH representation of the warped surface S̃j .
In this work we applied this algorithm to obtain the estimate

f our head model centroid rigorously. The nonlinear high dimen-
ional registration method is described in (Thirion, 1998). We
ligned the surfaces of the average centroid model, as obtained
ith Eq. (4), to the fiducial-based system, and represented them
ith the SH expansion. This allowed us to compare the surface

entroid estimate with the Average Surface model by calculat-
ng the distance between their corresponding surfaces using Eq.
2). These were 1.54 mm, 0.90 mm, 0.90 mm, 0.92 mm for cortex,
nskull, outskull and scalp respectively. These values are very low
ompared to the differences between true and approximate models
n this work; they also yield to almost identical localization errors
n ESI. This justifies the use of a simple surface averages (the Surface
verage model) as an estimate of the centroid shape of the target
opulation.
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