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OThere are few studies on the neuroanatomical determinants of EEG spectral properties that would explain its
substantial inter-individual variability in spite of decades of biophysical modeling that predicts this type of
relationship. An exception is the negative relation between head size and the spectral position of the alpha
peak (Pα) reported in Nunez et al. (1978)—proposed as evidence of the influence of global boundary
conditions on slightly damped neocortical waves. Here, we attempt to reexamine this finding by computing
the correlations of occipital Pα with various measures of head size and cortical surface area, for 222 subjects
from the EEG/MRI database of the Cuban Human Brain Mapping Project. No relation is found (pN0.05). On
the other hand, biophysical models also predict that white matter architecture, determining time delays and
connectivities, could have an important influence on Pα. This led us to explore relations between Pα and DTI
fractional anisotropy by means of a multivariate penalized regression. Clusters of voxels with highly
significant relations were found. These were positive within the Posterior and Superior Corona Radiata for
both hemispheres, supporting biophysical theories predicting that the period of cortico-thalamocortical
cycles might be modulating the alpha frequency. Posterior commissural fibers of the Corpus Callosum
present the strongest relationships, negative in the inferior part (Splenium), connecting the inferior occipital
lobes and positive in the superior part (Isthmus and Tapetum), connecting the superior occipital cortices. We
found that white matter architecture rather than neocortical area determines the dynamics of the alpha
rhythm.

© 2009 Published by Elsevier Inc.
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In the past, detailed biophysical models have been proposed for
the generation of EEG rhythms (David and Friston, 2003; Izhikevich
and Edelman, 2008; Niedermeyer and Lopes da Silva, 2004; Nunez et
al., 1995; Robinson et al., 2003a; Valdes-Sosa et al., in press)—all
depending on neuroanatomical-based parameters. It is therefore
surprising that there are few experimental attempts to explain the
considerable inter-subject variability of the EEG on the basis of
measured individual neuroanatomical characteristics. We aim in this
paper to provide additional insights into this issue by reviewing some
of the previous results as well as providing novel findings.
Understanding such relationships would not only contribute to the
knowledge about the genesis of the electrophysiological phenomena
but would also allow the elimination of uncontrolled sources of
variance that decrease the sensitivity of experimental or clinical
studies on individual subjects.
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One important empirical work, exploring the neuroanatomical
basis of EEG duringmaturation is that ofWhitford et al. (2007), where
decreases of EEG power, especially in the slow-wave band, mirrored
gray matter volume decreases from 10 to 30 years. This was directly
confirmed by a significant regression between these two variables.
They did not report significant relations between white matter
volume and EEG power and concluded that a reduction of the
neuropil, reflected in gray matter volume decreases, would corre-
spond to the elimination of active synapses causing concurrent EEG
power reduction.

Our concern in this paper is not with changes of power within
specific EEG bands but rather of a distinctive signature of the normal
resting human EEG, the spectral position of the alpha peak or the
alpha frequency (Pα). Among the quantitative EEG parameters, Pα is
the best signature of maturation (Valdés et al., 1990); the EEG feature
with the highest heritability (Posthuma et al., 2001); and a sensitive
indicator of pathology (Valdes et al., 1992). Exploration of the
neuroanatomical determinants of Pα compels us to the examination
of the theories about the generation of the alpha rhythm. This has
been the subject of several biophysical models which could be
classified according to the neuroanatomical scales and structures
involved: (i) pacemakers, (ii) local and (iii) global and (iv) local-global
rchitecture rather than cortical surface area correlates with the EEG
30

mailto:multivac@cneuro.edu.cu
http://dx.doi.org/10.1016/j.neuroimage.2009.10.030
http://www.sciencedirect.com/science/journal/10538119
http://dx.doi.org/10.1016/j.neuroimage.2009.10.030


C

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

2 P.A. Valdés-Hernández et al. / NeuroImage xxx (2009) xxx–xxx

ARTICLE IN PRESS
UN
CO

RR
E

combinations. From another point of view, they can also be classified
as (a) thalamic, (b) cortical or (c) thalamic-cortical.

The pacemaker theory is supported by the intrinsic oscillation
properties of some neural cells, e.g. those in the thalamus (Andersen
and Andersson, 1968; Jahnsen and Llinas, 1984) or pyramidal cells in
layer V of the neocortex (Bollimunta et al., 2008; Connors and Amitai,
1997; Flint and Connors, 1996; Lopes da Silva, 1991). This theory is
unable to explain most of the global EEG phenomena, e.g. the relative
frequencies of major rhythms and sleep-wave variations (Robinson et
al., 2001b). However, the intrinsic oscillatory behavior of those cells
may probably shape the rhythmic behavior of networks to which they
belong (Lopes da Silva, 1991).

The local models of alpha oscillations comprise excitatory and
inhibitory populations of neurons interacting via dendritic response
functions and nonlinearities. These two populations can be the
thalamocortical relay and reticular neurons in the thalamus (Lopes
da Silva et al., 1974) or the pyramidal cells and interneurons in the
cortex. A local cortical model is described in Van Rotterdam et al.
(1982), where a chain of cortical excitatory–inhibitory modules
predicted intracortical alpha waves with speed of 30 cm/s, in
agreement with the experimental finding in (Lopes da Silva and
Storm van Leeuwen, 1978). Other local models deal with the
dynamics of either a single (Jansen et al., 1993) or coupled cortical
columns (Jansen and Rit, 1995), although these two have been
criticized in Grimbert and Faugeras (2006) for being unable to
reproduce alpha rhythm across the whole range of possible
physiological parameters in the model. In general, the local models,
although contributing to the global dynamics of the global alpha
rhythm, do not account for the significant spatial coherence, within
the alpha band, between distant scalp areas, reported in the literature
(Cantero et al., 1999; Niedermeyer and Lopes da Silva, 2004; Nunez et
al., 2001).

On the other hand, large-scale networks of connected neuronal
populations can generate the global alpha rhythm, as predicted by
Izhikevich and Edelman (2008), Liley et al. (1999), Liley et al. (2002),
Nunez et al. (1995), Sotero et al. (2007), Valdes-Sosa et al. (in press),
and Wright et al. (2001). In particular, purely global models ignore
dendritic response functions and finite intracortical propagation thus
depending on propagation delays between distant anatomical
structures only. The paradigmatic example of this type of modeling
is Nunez et al. (1995) for the generation of the human alpha rhythm.
This model is cortical based on the argument that only 1% of cortical
input to the human brain is from the thalamus, the rest consisting of
cortico-cortical connections. In this model, the boundary conditions
affects spectral properties of the EEG rhythms, leading to the cortical
standing wave theory of the EEG, recently reviewed in Nunez and
Srinivasan (2006), which, to our knowledge, is the only global model
that has been subjected to empirical tests. A traveling wave behavior
of electrical activity through the neocortex was also suggested by
Nunez et al. (1978). There is evidence for this in experimental reports
and reviews, based on scalp EEG (Burkitt et al., 2000; Hughes et al.,
1992; Hughes et al., 1995; Lopes da Silva, 1991; Manjarrez et al., 2007;
Massimini et al., 2004; Wingeier et al., 2001). Moreover, these waves
were recently measured directly with optical imaging in Wu et al.
(2008). In Nunez et al. (1995), traveling waves are predicted to be
slightly damped. Since the neocortex is a closed 2D surface, these
waves might interfere to form standing waves. Some patterns of scalp
EEG for visual evoked steady-states, presented in Chapter 6 of Nunez
et al. (1995), seem to support this hypothesis. According to this
theory, the eigenfrequencies of the standing waves are equal to those
of the EEG rhythms. The boundary conditions of this system are
determined by neocortical surface area (NSA) which is predicted to be
inversely proportional to the eigenfrequencies (Nunez et al., 1995).

The cortical standing wave theory has been criticized by Rennie et
al. (1999), Robinson et al. (1997, 2001a) and Wright and Liley (1996)
who suggested that the high damping rates of cortical traveling waves
Please cite this article as: Valdés-Hernández, P.A., et al., White matter a
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preclude boundary condition affecting the dynamical properties of the
alpha rhythm. Such high damping rates must produce excessively
blurred peak resonances in contrast with observations (Robinson et
al., 2001b), even though Robinson et al. (2001b) predicted a decrease
of damping due to thalamocortical resonances. To date, there is no
strong experimental evidence for “standing waves” on the neocortex.
There is only an indirect verification in Nunez et al. (1978) where a
mild negative correlation between head size and the Pα is reported, a
result replicated by Posthuma et al. (2001). Nunez et al. (1978) used
head size as a proxy for NSA due to the unavailability, at that time, of
suitable techniques to measure in vivo the latter in individuals. With
the availability of current Neuroimaging and Neuroinformatics tools
(Ashburner and Friston, 1999; Mazziotta et al., 2001; Robbins, 2003;
Smith, 2002), the relation between NSA and the Pα may now be
reexamined by using direct measurement of NSA in a large sample of
individuals. This would provide stronger support or falsification for
the actual existence of EEG neocortical standing waves. This
experimental test is one of the prime objectives of this paper.

On the other hand, there are many models in the literature with
combinations of global and local features. The inclusion of local features
results in waves that are more damped than those of the “EEG cortical
standing waves theory,” and therefore minimizes the effects of
boundaries (Robinson et al., 2001b; Wright and Liley, 1996). These
models can be cortical (Jirsa and Haken, 1997; Liley et al., 1999; Liley
et al., 2002; Nunez et al., 1995; Robinson et al., 1998;Wright and Liley,
1995) or thalamic-cortical (Robinson et al., 2001c, 2003a), depending
on the importance given to the thalamus in the generation of the
alpha rhythm. Nevertheless, the role of thalamocortical, corticotha-
lamic and corticocortical interactions appears to be determinant in the
generation of the alpha rhythm, as experimentally suggested in Lopes
da Silva et al. (1980), for the dog, with the method known as
“theoretical thalamic deafferentation,” which consists in computing
partial coherence functions. In fact, the thalamic-cortical model
treated in Robinson et al. (2003a), strikingly predicts the spectral
characteristic of the alpha rhythm, e.g. the peak width not predicted
by the “EEG cortical standing wave theory,” in addition to other EEG
phenomena such as the topographical distribution of the alpha
splitting (Robinson et al., 2003b).

Current Neuroimaging techniques allow the in vivo examination of
other neuroanatomical determinants of the Pα. The principal
ingredient added to large-scale models (global, global-local, cortical
or thalamic-cortical) is the long range connections via white matter.
Therefore, most relevant would be the neuroanatomical correlates of
axonal connectivities and time delays in thalamocortical, corticotha-
lamic and corticocortical circuitries. For example, connectivity
strength theoretically is related to the frequency of coupled cortical
areas (David and Friston, 2003; Sotero et al., 2007). Time delays
appear to be even more important (David and Friston, 2003; Jirsa,
2009; Jirsa and Haken, 1997; Robinson et al., 2003a,b; Valdes-Sosa et
al., in press). In fact, in the general equations governing the “EEG
cortical wave theory” (Nunez et al., 1995; Nunez and Srinivasan,
2006), the eigenfrequencies depend more on time delays in long
range corticocortical axons than on NSA. In particular, a theoretical
prediction that strengthens the role of the thalamus in the generation
of the alpha rhythm is that of Roberts and Robinson (2008) and
Robinson et al. (2001b) where Pα is found to be most sensitive, and
inversely proportional, to the period of corticothalamic feedback.

In the conduction, along the bundles of axons connecting two
different gray matter regions, the strength of the connectivity is
roughly determined by the number of axons (Iturria-Medina et al.,
2007) and therefore depends on fiber density, i.e. the number of fibers
per unit of cross-sectional area whereas time delay is determined by
conduction velocity which depends on myelination (Sabah, 2000), i.e.
the cross-sectional area occupied by myelin sheath as well as,
possibly, on fiber density (Reutskiy et al., 2003). Both fiber density
and myelination can be quantified locally with Neuroimaging. All the
rchitecture rather than cortical surface area correlates with the EEG
030
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above theoretical work strongly encourages exploring, firstly at the
phenomenological level, the relation of these neuroanatomical
parameters with Pα.

The Image of Diffusion Tensor Fractional Anisotropy (FA) is a
suitable candidate for the in vivo characterization of fiber density and
myelination. This is an average-in-a-voxel measure of the anisotropic
profile of water motion in a heterogeneous medium that can be easily
measured nowadays with MRI. For the particular case of a single
bundle of parallel axons, FA is theoretically directly proportional to the
fraction of cross-sectional area occupied by the axons in the
extracellular space (Hwang et al., 2003; Pabitra and Basser, 2005)
(see Appendix A) and precisely this fraction is directly proportional to
fiber density and myelination. Indeed, the experimental evidence of
the effect of fiber density on FA is reviewed in Beaulieu (2002) and Le
Bihan (2007). Moreover, FA within certain white matter tracts of the
brain has been recently found to be significantly predicted by White
Matter Fraction Images in a linear model with positive slope (Mädler
et al., 2008). Since the effect of both fiber density and myelination on
FA cannot be separated straightforwardly, we shall refer to them
jointly as White Matter Architecture of the single bundle of fibers
(WMAS).

In this work, we explore the possible neuroanatomical determi-
nants of Pα through individual subjects taken from the database of the
Cuban Human Brain Mapping Project (CHBMP). The CHBMP is
suitable for this purpose since it combines structural Magnetic
Resonance Imaging (MRI), Diffusion-Weighted Magnetic Resonance
Imaging (DT-MRI) and EEG information (Udulag et al., 2008). We
reexamine the results reported in Nunez et al. (1978), but this time by
automatically assessing head size with improved precision for 222
individuals, based on their T1-weighted MRIs. Furthermore, we
calculate NSA and we assess the relation between its logarithm and
that of the Pα, as claimed by the EEG cortical standing wave theory
(Nunez et al., 1995).

Additionally, we explore, for the first time, an empirical relation-
ship between WMAS and the Pα based on a multivariate penalized
regression (Vega-Hernandez et al., 2008). We present and discuss
which tracts, as defined by Regions-Of-Interest in Mori et al. (2008)
and Hua et al. (2008), might be related with the Pα.

The phenomenological findings of this paper inspire future work
exploring biophysical explanations by means of mathematical
modeling of the generation of the alpha rhythm.

Materials and methods

Notation

A lower case bold symbol, e.g. hn×1, denotes a column vector of
length n. An upper case symbol, e.g. An×m, denotes a matrix, whose
size is specified by the corresponding subscripts. Nonbold symbols
denote scalar magnitudes. The superscript T denotes transpose. ||a|| is
the Frobenius norm of a. 1n is a column vector of n ones, 1n×m=1n1mT is
an n×m matrix of ones, In×m is the identity matrix and H= Im×m

−(1/m)1m×m is the centering operator. The symbol ∧ is the logical
operator AND, while the natural logarithm of x will be denoted by
log(x).

Acquisition and preprocessing of MRI data

As part of the Cuban Human Brain Mapping Project, using a
Siemens Symphony 1.5 T, we sampled MRI data of 397 healthy
subjects from the Cuban population. They were initially a subset of a
larger sample (1574) randomly targeted from the Cuban National ID
registry that was submitted to neuropsychiatric and neuropsycho-
logical tests. Those who were considered by an expert panel as
healthy provided, after written consent, our current MRI data set
which consists of 3D MPRAGE structural T1-weighted images with
Please cite this article as: Valdés-Hernández, P.A., et al., White matter a
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1×1×1 mm3 voxel size and dimensions of 160×256×256. We used
TR/TE/TI=3000/3.93/1100 ms. After visual quality control by an
expert, the final number of selected T1-weighted images was
NT1 = 305.

We also acquired, using a single-shot EPI, six repetitions of
diffusion-weighted images (DWIs) for 12 directions of the diffusion
gradient with b=1200 s/mm2 and a nondiffusion-weighted image
(B0:b=0 s/mm2). The number of slices was adapted to cover the
whole brain, with a thickness of 3 mm, in-plane resolution of
2×2 mm2 and FOV of 128×128 mm2. TE was 160 ms. Magnitude
and phase images were also acquired using a gradient echo sequence
with TE1=7.71 ms and TE2=12.47 ms. All DWIs were visually
inspected and those which presented either technical or pathological
defects were discarded. This quality control process led to a final
sample of DWIs of 172.

Head size and cortical surface areas

We calculated four measures of head size for every subject in a
fully automated procedure. For this, we first normalized, using SPM
nonlinear registration (cutoff=25 mm) the T1 image to the MNI-152
average brain (Mazziotta et al., 2001). The linear part of this
transformation was used to map the plane z=0 in the MNI space to
the individual one.We extracted the curve defined by the intersection
between the scalp surface and the transformed plane. The scalp was
extracted using FSL (Smith, 2002). The length of this curve was
calculated as the first measure of head size. We also marked nasion,
inion and both preauricular points in theMNI-152 average brain using
IMAGIC software (Neuronic S.A www.neuronicsa.com). With the
whole transformation, these points were mapped to the individual
space and projected to the scalp surface. The distance between
individual nasion and inion and between the individual preauriculars
was calculated as the second and third measure of head size,
respectively. The fourth measure was the geometrical mean of the
first three measures, i.e. the cubic root of their product, as proposed in
Nunez et al. (1978).

The surface of the neocortex for each subject was extracted
using CLASP (http://wiki.bic.mni.mcgill.ca/index.php/CLASP) (Kim
et al., 2005), software kindly provided by the Montreal Neurological
Institute. Each cortical surface is the mean surface between the
white/gray matter interface and the gray matter/cerebrospinal fluid
interface with a tessellation of 81,920 faces and approximately
41,000 vertices. The patches joining the hemispheres in the medial
plane (initially included for obtaining closed surfaces) were
removed to calculate the total surface area as the sum of the
areas of the faces.

DTI fractional anisotropy

Amild Gibbs ringing artifact around the ventricles in the B0 images
was corrected with a Hanning filter. Eddy current and motion effects
were also corrected by linear registration of the weighted images to
the B0. With the aid of phase and magnitude images, we corrected
distortion effects due to main field inhomogeneities using the
Unwarping SPM2 toolbox (Anderson et al., 2001).

Diffusion tensors were fitted for every voxel using a robust linear
regressionmethod (Le Bihan and van Zijl, 2002). We computed the FA
images for all the subjects and, in order to achieve anatomical
correspondence among them, performed the following procedure:

1. A random FA image of the sample was normalized to the FA
template provided online by the ICBM (ICBM-DTI-81 (Mori et al.,
2008) using SPM5 with a the Discrete Cosine Transform expansion
cutoff of 25 mm (Ashburner and Friston, 1999). This was the first
reference image of an iterative procedure described in the next
steps.
rchitecture rather than cortical surface area correlates with the EEG
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2. Using a high dimensional nonlinear registration method (Thirion,
1998) based on FA intensities, all individual FA images were
normalized to the reference FA image and averaged in order to
build a new reference image.

3. Step 2 was repeated three times using, at each time, the updated
average FA image as reference.

Three further subjects were discarded after a visual quality control
of the registered images, keeping a total of NDWI=169 subjects.

Asmentioned in the Introduction, FA is used to characterizeWMAS
in single bundle profile voxels. However, theWMAS-FA dependence is
no longer valid for multiple bundle profiles, such as crossing, bending,
kissing or merging of more than one bundle in a voxel. Since multiple
bundle profile voxels are characterized by very low values of FA, we
shall only quantify WMAS in those voxels where the FA is above 0.2
(Salat et al., 2005). This condition does not eliminate all the voxels
with multiple profiles, but at least, reduces the cases where the angle
between coexisting bundles is large, which is precisely where FA is
more independent from WMAS.

For every i-th FA image, we created a binary mask, Mi, imposing a
TRUE value for the voxels satisfying the threshold condition. A final
mask M, more restrictive, was calculated as:

M = M11M21: : :1MNDWI
1WM; ð1Þ

where WM is a mask of white matter. WM is calculated as follows:

WM = ðPWM N PGMÞ1ðPWM N PCSF Þ1ðPWM N 1− PGM − PWM − PCSFÞ;
ð2Þ

with PGM, PWM and PCSF being the probabilistic images of gray matter,
white matter and cerebrospinal fluid, respectively, provided by SPM5.
The values of every warped individual FA image, corresponding to the
Nv TRUE voxels of M, were arranged into row vectors.

Acquisition and preprocessing of electroencephalography

Ten minutes eyes closed (condition suitable for measuring global
alpha rhythm) electroencephalographic recordings were carried out
using a MEDICID-05 (www.neuronicsa.com) from two scalp electro-
des, each located at the most occipital sites (O1 and O2) of each
hemisphere, precisely where the alpha activity is usually strongest
(Niedermeyer and Lopes da Silva, 2004). The signals were digitized
with a sampling frequency of 200 Hz. A band pass finite impulse
response filter (order=128) with a Kaiser window (β=0.5) was
applied to the channels (Oppenheim and Schafer, 1989), with cutoff
frequencies of 0.1 and 45 Hz. Filtering was performed in forward and
reverse mode to guaranty zero-phase distortion (Gustafsson, 1996).
The resulting time series, for each channel, were segmented into time
intervals (epochs) of 2.56 s, i.e. 512 points, which were assumed to
represent a large number of realizations of the same electrophysiolog-
ical process. An expert electroencephalographer eliminated, based on
visual inspection, the epochs presenting artifacts (due to drowsiness,
ocular movements or extreme noise). The remaining epochs were
multiplied with a Hamming window to improve the spectral estimates
obtained by the Fast Fourier Transform in a frequency interval of 0.39 to
29.69 Hz, with a resolution of 0.39 Hz (Nw=76 frequency values). The
average spectrum across epochs of each electrode was computed for
each subject. After the quality control described above, the number of
subjects having EEG was NEEG=232. As in Posthuma et al. (2001), we
calculated themaximumvaluewithin 7 to 14Hzof the power spectrum
of each electrode. Given the very high correlation found between the
spectra of both electrodes, the alpha frequency (Pα) was taken as the
average of the spectral positions of themaxima. Themean of the values
of Pα in our sample is 9.9416, which is close to previously reported
values (Aurlien et al., 2004), and the standard deviation is 0.8338.
Please cite this article as: Valdés-Hernández, P.A., et al., White matter a
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Ages are within the range from 18 to 45 years. We assess
correlations between both Pα and FA with age to discard the effect
of this in our analyses and results.

Final data sets

We organized the data sets obtained above by constructing the
following mathematical structures:

1. A vector hax − perim
NT1

× 1 containing the first measure of head size,
namely the axial perimeter, for the NT1 subjects.

2. A vector hant − post
NT1

× 1 containing the second measure of head size,
namely the anterior–posterior distance, for the NT1 subjects.

3. A vector hpreauric
NT1

× 1 containing the third measure of head size, namely
the distance between the preauricular points, for the NT1 subjects.

4. A vector hcubic
NT1

× 1 containing the fourth measure of head size
proposed by (Nunez et al., 1978), namely cubic root of the product
of the first, second and third head measures, for the NT1 subjects.

5. A vector SNT1
× 1 containing the neocortical surface area for the NT1

subjects.
6. A vector αNEEG × 1 containing the Pα for the NEEG subjects.
7. A 2D matrix ANDWI ×Nv with the NDWI FA images, ordered in row

vectors of Nv elements corresponding to voxels.

Relation between head size measures and the alpha frequency

In the theory presented in Nunez et al. (1995), electrical activity
propagates from one cortical region to the next (either along
collaterals or white matter axons) like traveling waves over the
neocortical surface, which is topologically spherical. This is a finite
medium so traveling waves can interfere to form standing waves. In
an exploratory analysis assuming very simple properties of the wave
medium, i.e. assuming undamped, nondispersive and free oscillations,
the eigenmodes are the Spherical Harmonics functions Ylm,
l=1,2,3,...; m=−l, −(l−1) ,..., 0,..., (l−1), l, l=1,2,3..., m=–l,
−( l−1) ,..., 0,..., ( l−1), l, and the eigenfrequencies, ω l

(corresponding to the index l), result to be inversely proportional
to the radius, R, of the neocortical equivalent sphere:

ωl~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l l + 1ð Þ

q v
R
; l = 1;2;3; N ð3Þ

where v is the wave conduction velocity. In this theory, the alpha
frequency is assumed to correspond to the first eigenmode (αF≡ωl=1)
since ωl=1 is around the typical value of 10 Hz. The proportionality
trend between spatial and temporal frequencies still holds for slightly
dampedwaves so a relation like Eq. (3) can be still used to describe the
actual brain dynamics in the cortical standing wave theory of the EEG.

Since the area of the equivalent sphere is that of the neocortex
surface (NSA), the square root of the latter can substitute for R in the
relation above. However, at the time of the original study (Nunez et
al., 1978), it was not possible to measure NSA in vivo with acceptable
precision. Therefore, they proposed to use the fourth head size
measure defined in this paper as a proxy for NSA, assuming a fixed
ratio of the NSA to the external head area (the cortical folding factor).
The significant negative correlation obtained in Nunez et al. (1978)
supported Eq. (3). However, the folding factor can vary from subject
to subject (Mangin et al., 2004). Fortunately, we are able to measure
NSA directly fromMRI. We therefore substitute its square root for R in
Eq. (3) and apply the natural logarithm to both members, obtaining:

log αFð Þ = − 1= 2log NSAð Þ + C; ð4Þ

where C is an undetermined constant.
We first investigate the validity of the relation obtained in Nunez

et al. (1978) by assessing the Pearson correlation between αNT1 − EEG ×1

and hcubicNT1 − EEG ×1, whereNT1 −EEG = 222 is the number of subjects having
rchitecture rather than cortical surface area correlates with the EEG
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both T1-weighted and EEG simultaneously. We also determine which,
among the four head size measures defined in this paper, has the
highest correlation with NSA, being the actual best representative of
the latter. Additionally, the value of this correlation quantifies the
variability of the folding factor and therefore the validity of Nunez's
assumption. We then calculate the Pearson correlation between the
NSA-representative head measure and αNT1− EEG

×1. Finally, to validate
Eq. (4), we carried out a linear univariate robust regression
(DuMouchel and O'Brien, 1989) between vectors log αNT1− EEG

×1

� �

and log sNT1− EEG
×1

� �
. This would allow comparing the estimated slope

with the theoretical value of −1/2.

RIDGE regression between fractional anisotropy and the alpha frequency

In order to study the relationship between Pα and FA, we propose
the following linear model:

αm×1 = Am×Nv
βNv ×1 + 1mβ0 + em×1; ð5Þ

where m=NEEG-DTI=89 is the number of subjects having both EEG
and DTI simultaneously, and the vector ɛ represents a multivariate
Gaussian error.

We conveniently define A ̑=HA and α̑=Hα. Both are measures of
the deviation of each individual from the average across subjects.
Given thatH (1m β0)=0 andHɛ=ɛ, Eq. (5) can be easily transformed
into:

wα = wAβ + e ð6Þ

Using a sparse discreteNv×Nv Laplacian L, as the penalizing operator,
the solution of the so-called RIDGE regression (Vega-Hernandez et al.,
2008) is given by β̂ = argmin

β
j j wα−wAβ j 2 + λj j Lβj j 2, with λ being

the regularization parameter. The analytical form of this solution is:

β̂ = XTX + λINv ×Nv

h i−1
XTwα; ð7Þ

where X=A ̑L-1. An optimal value for λ is obtained by minimizing the
generalized cross validation function (Vega-Hernandez et al., 2008).
The intercept is estimated as β̂0=1/m 1mT (α − Aβ ̂). The use of a
quadratic penalty based on the Laplacian of the coefficient copes with
the ill-posed condition of the problem in the sense of Hadamard. This
constraint imposes smoothness between the coefficients, which is
justified if we assume that the development and architecture of tissue
between neighboring voxels are a correlated process.

Statistical significance

The bootstrapping methodology suggested in Paparoditis and
Politis (2005) was used for assessing the coefficients β ̂, obtained with
Eq. (7), that are significantly different from zero. Using Eq. (6), a
vector of residuals ê = wα − wAβ̂ is estimated. Under the null
hypothesis of no linear relation, i.e.H0: β=0, pseudo-observations
are generated by adding a noise vector to the intercept, i.e. wα

4

j = e4j ,
where the components of ɛj⁎ are drawn from the empirical
distribution of the estimated residuals (vector ɛ̂). This is done for
j=1,..., 105 bootstraps. The estimators of β̂, under the null hypothesis,
say β̂

�
H0
, are also calculated for all bootstraps. Being Sθ4H0

the variance
of β̂

�
H0
, we constructed the “studentized” pivotal statistics, t̂TH0

=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NEEG−DWI

p
β̂T
H0

=
ffiffiffiffiffiffiffiffi
SθTH0

q
and t̂ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NEEG−DWI

p
β̂ =

ffiffiffiffiffiffiffiffi
SθTH0

q
, which are

suitable to maximize the power of the test (Paparoditis and Politis,
2005). To avoid the inflation of type I error, due to the experiment-
wise error for the simultaneous univariate comparisons, a negative
and a positive global multivariate threshold, based on all t̂4H0

, have to
be established in order to find those negative and positive
components of t̂ respectively for which it is possible to reject the
null hypothesis with certain probability. Thus, we define the “0.5;
Please cite this article as: Valdés-Hernández, P.A., et al., White matter a
alpha rhythm, NeuroImage (2009), doi:10.1016/j.neuroimage.2009.10.0
TE
D
PR

OO
F

99.5” statistics, which are slightly less conservative, but reliable,
versions of the min-max statistics proposed in Galán et al. (1994).
These are calculated for each bootstrap as the 0.5 and 99.5
percentile of the values of t̂4H0

. Having the distributions of both
statistics, the negative threshold, t−, is chosen as the α percentile of
the “0.5” statistic whereas the positive, t+, is set at the 100 − α
percentile of the “99.5” one. This allows for the determination of the
significant negative and positive (nonzero) components of t̂, and
therefore of β ̂. With α=1, we set to zero the nonsignificant
components to obtain a new vector, β̂0.5/1 (using the notation β̂s/α

to refer to the “s;100 − s” statistic, whereas α refers to the
percentile calculated from the “s;100 − s” statistic). Let p t=Tdcdf t
be the cumulative distribution function of the histogram of all
elements of t ̂. This is the probability of a certain test, t, to satisfy H0:
t=0. The statistical significance of both the negative and positive
values of β̂0:5=1 is therefore p−=Tcdf t− p+=1 − Tcdf t+.

The values of the elements of β̂0:5=1 can be arranged into the FA
template image with the corresponding values for each voxel. In
the resulting image, we can find clusters of significant coefficients.
To reduce possible spurious results, we also set to zero the values
of the coefficients of β̂0:5=1 corresponding to those clusters with a
volume below 150 mm3, as in Stufflebeam et al. (2008). Aided by
the ICBM-DTI-81 Atlas (Mori et al., 2008) and that presented in
Hua et al. (2008), which we shall name simply Fiber Atlas (see
Table 1), we also identify the major bundle of tracts containing
significant clusters of β̂0:5=1.

To assess whether the results of this paper hold with even more
conservative criteria, we obtained also the β̂ 0=1 estimator, by using the
min–max (i.e. “0 − 100”) statistics, which is proposed in Galán et al.
(1994), andα=1. This time, the clusters below100mm3were removed.

The regressionmethod described above is also used in this work to
assess the relation between both age and head size with FA.

RIDGE regression between head size and FA

Our sample has a considerable variation across head sizes.
According to the theoretical considerations in Appendix B, FA should
not depend on the head size. However, this has to be proven
experimentally. If head size constitutes a source of FA variance, it has
to be taken into account to decrease the percentage of unexplained
variance in the Pα-FA regression model.

We investigated the possible relation between FA and the different
size measures defined in this paper as well as the radius of the
equivalent neocortical sphere

ffiffiffi
s

p
. For this, we substituted α for the

desired measure in the RIDGE regression model described in this
subsection. We also used the logarithms of the size measures to
account for different possible forms of the FA-size relationship.

Results and discussion

No significant correlation was found between age and Pα in our
sample (pN0.05). This is in agreement with Aurlien et al. (2004).
Moreover, the coefficients of the regression between age and FA
became statistically nonsignificant (pN0.05) beyond a few iterations
of the bootstrapping procedure. In fact, for the range of ages of our
sample, very slight correlation has been found between age and FA in
some voxels (Moseley, 2002b; Salat et al., 2005; Sullivan and
Pfefferbaum, 2006). We will discard the effect of age on our data
sets for the posterior analyses.

Relation between the alpha frequency and the head size measures

Fig. 1 shows a plot of the neocortical surface area (NSA) versus
each head size measure and their corresponding correlations. The
highest correlation is with the anterior–posterior distance (the first
measure, i.e. the nasion to inion distance). Thus, this is the best
rchitecture rather than cortical surface area correlates with the EEG
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Table 1t1:1

Possible tracts and ROIs containing significant nonzero clusters of the multivariate regression estimators.
t1:2
t1:3 Fiber bundles (longitudinal fascicles,

projection or association fibers)
Statistical
significance

Sign of the
relation

ROIs with significant clusters according to the ICBM-DTI-81 (Mori et al., 2008) Atlas
and the Fiber Atlas (Hua et al., 2008)

t1:4 Thalamocortical or corticothalamic fibers
t1:5 Posterior Corona Radiata and Superior Corona

Radiata in both the right and left hemispheres
pb0.00044 Positive ICBM-DTI-81 Atlas: Posterior Corona Radiata Left (PCR-L), Superior Corona Radiata

Left (SCR-L), Posterior Corona Radiata Right (PCR-R), Superior Corona Radiata Right
(SCR-R). We suggest that this significance is associated to thalamocortical (TC)
interactions since there is no significance in the Body of the Corpus of Callosum or
corticofugal pathways, both also passing trough CR.

t1:6 Posterior Thalamic Radiation in
the right hemisphere

pb0.00045 Negative ICBM-DTI-81 Atlas: Posterior Corona Radiata Right (PCR-R).

t1:7 Anterior Thalamic Radiation in
the right hemisphere

pb0.00045 Negative ICBM-DTI-81 Atlas: Anterior Corona Radiata Right (ACR-R).

t1:8

t1:9 Commissural fibers
t1:10 Inferior Splenium and Major Forcepsa pb0.0000025a Negative ICBM-DTI-81 Atlas: Splenium of the Corpus Callosum (SCC). Fiber Atlas: This suggests

that the significance is predominantly within the Major Forceps, i.e. fibers connecting
the inferior Occipital Lobes.

t1:11 Isthmus and Tapetuma pb0.0000028a Positive ICBM-DTI-81 Atlas: Superior part of the SCC, Tapetum Right (TAP-R) and Tapetum Left
(TAP-R). This suggests a positive significance within the commissural fibers connecting
the superior Occipital Lobes.

t1:12

t1:13 Association fibers
t1:14 Inferior Fronto-Occipital

Fascicle (IFO) in the left hemisphere
pb0.00044 Positive ICBM-DTI-81 Atlas: Sagittal Stratum Left (SS-L), the External Capsule Left (EC-L) and

the Inferior Fronto-Occipital Fasciculus Left (IFO-L), all Q2of them containing the IFO.
Fiber Atlas: This suggests that the significance is predominantly within the IFO and
ILF bundles.

t1:15 Inferior Longitudinal Fascicle (ILF)
in the left hemisphere

pb0.00044 Positive ICBM-DTI-81 Atlas: SS-L, which contains the ILF. Fiber Atlas: This suggests that the
significance is predominantly within the IFO and ILF bundles.

t1:16 Inferior Fronto-Occipital Fascicle (IFO)
in the right hemisphere

pb0.00045 Negative ICBM-DTI-81 Atlas: Sagittal Stratum Right (SS-R), the External Capsule Right (EC-R)
and the Inferior Fronto-Occipital Fasciculus Right (IFO-R), all Q3of them containing
the IFO. Fiber Atlas: This suggests that the significance is predominantly within the
IFO and ILF bundles.

t1:17 Inferior Longitudinal Fascicle (ILF)
in the right hemisphere

pb0.00045 Negative ICBM-DTI-81 Atlas: SS-R, which contains the ILF. Fiber Atlas: This suggests that the
significance is predominantly within the IFO and ILF bundles.

a Tracts with the highest significance.t1:18
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representative of NSA, instead of the fourth head size measure, which
was used in Nunez et al. (1978), namely the cubic root of the product
of the anterior–posterior distance, the preauricular distance and the
cephalic perimeter. All correlations were highly significant so the use
of a head size measure as an approximate of NSA was appropriate in
Nunez et al. (1978).

Fig. 2a shows a plot of the alpha frequency (Pα) versus the nasion
to inion distance. Contrary to Nunez et al. (1978), although still
negative, the Pearson correlation (r=−0.04) is not significantly
different from zero (p=0.55). Fig. 2b shows the log(Pα) versus log
(NSA) plot. The slope of their regression is−0.0558 with a confidence
interval of −0.123 0.005 which not only includes zero but also
excludes the theoretical value predicted by Eq. (3), which is −1/2.

Although the Eq. (3) was derived from simple linear approxima-
tions of the wave equation, for which the eigenmodes are the
Spherical Harmonics (Nunez et al., 1995), the NSA-Pα inverse relation
would still be valid even for more complicated versions of the theory
of cortical standing waves, taking into account the actual properties of
the medium and geometry of the head (Nunez et al., 1995; Nunez and
Srinivasan, 2006), which is highly nonlinear, inhomogeneous,
dispersive and with complicated connectivity patterns. Thus, the
prediction of the EEG cortical standing wave theory, at least in its
present formulation, is not supported by our results.

There are additional conceptual difficulties with the existence of a
significant NSA-Pα relation, even for the case when Eq. (3) holds. As
recognized by Nunez et al. (1995), the assumption of a constant value
of the axonal conduction velocity (CV) for all head sizes may not be
valid. Head size might conceivably be directly proportional to CV if
conduction times are biological constants. In this case, v/R=cons in
Eq. (3) predicts a constant Pα irrespective of head size. Proportionality
between CV and head size is in fact supported by evidence in the
literature: (1) the well known linear relation between CV and myelin
sheath thickness (Goldman and Albus, 1968; Rushton, 1951; Sabah,
Please cite this article as: Valdés-Hernández, P.A., et al., White matter a
alpha rhythm, NeuroImage (2009), doi:10.1016/j.neuroimage.2009.10.
TE
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2000; Waxman, 1980), 2) the possible positive relation between
myelin sheath thickness and fiber length (Chen et al., 1992; Hursh,
1939a), and finally (3) the reasonable direct proportionality between
fiber length and head size, since larger heads imply connected regions
to be one further from each other. Indeed, Hursh (1939b) experi-
mentally proved that CV increases with developing cat's head size
increases, while Eyre et al. (1991) found a constancy of time delays for
human development. Furthermore, Salami et al. (2003) suggested,
based on striking experimental results in mice, that thalamocortical
fiber length modulates myelination, and thus conduction velocity, to
keep latency constant irrespective of how distant the connected
structures are. The intra- and inter-species positive relation between
CV and brain size, by modulation of axon thickness, is experimentally
presented and discussed in Wang (2008) as a consequence of
conduction optimization.

The relation between the alpha frequency and the fractional anisotropy
image

We firstly performed the regression between head size and FA. The
coefficients became statistically nonsignificant beyond the 1000
iteration of the bootstrapping procedure. This gives experimental
evidence for the theoretical considerations in Appendix B: FA changes
are due microstructural variations not related to head size. Based on
this and the obtained results in the subsection above, we can discard a
possible effect of head size on both FA and Pα.

We then performed the regression analysis between the centered
fractional anisotropy matrix A ̂ and the centered alpha frequency
vector α̑ (Eq. (6)). The significant nonzero estimates of the coefficients
of the solution of this equation, under the smoothness condition (Eq.
(7)), i.e. both β̂0:5=1 and β̂0=1, are overlaid on the template FA image
(Fig. 3). These vectors correspond to the “0.5;99.5” and “'0;100” pairs
of statistics, respectively, with α=1. The interpretation of this image
rchitecture rather than cortical surface area correlates with the EEG
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Fig. 1. Scatter plot of (a) anterior–posterior distance (AP) vs. neocortical surface area (NSA), (b) inter-preauricular distance vs. NSA, (c) cephalic perimeter vs. NSA, (d) Nunez's head
measure

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AP × LR × CP3

p� �
vs. NSA. The correlation and p-values are shown above each scatter plot.
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Fig. 2. Scatter plot of (a) Pα vs. AP with their correlation and p-value

Please cite this article as: Valdés-Hernández, P.A., et al., White matter a
alpha rhythm, NeuroImage (2009), doi:10.1016/j.neuroimage.2009.10.0
Pα for the average FA, being closer to its mean value. Note that this
corresponds to the commonly accepted typical value of Pα in a normal
subject (≈10 Hz).
and (b) log(NSA) vs. Pα with their regression slope and p-value.

rchitecture rather than cortical surface area correlates with the EEG
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Fig. 3. Significant nonzero estimates of the coefficients of β ̂0q0.5/1q. The values are overlaid on the template FA image. The names of the significant clusters of β0̂
q0/1q are outlined. IFO,

Inferior Fronto-Occipital Fasciculus; ILF, Inferior Longitudinal Fasciculus; SCC, Splenium of the Corpus Callosum; PCR, Posterior Corona Radiata; SCR, Superior Corona Radiata.
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and p≤0.0002 for the “0;100” statistics (see also Table 1). A value of
α=1 corresponds to p≤0.01 corrected for multiple comparisons.
These p-values are smaller to those in Stufflebeam et al. (2008)
(p≤0.001 uncorrected and p≤0.05 corrected for multiple compar-
isons). Moreover, we used 105 iterations in the bootstrap procedure,
which is a higher value than that used in Stufflebeam et al. (2008),
whichwas 104.We are considering that work as a reference, regarding
the statistical procedure, since it is the only reporting a relation
between FA and an electrophysiological variable.

The FA, in the voxels corresponding to the significant components
of β̂ 0:5=1, only explains the 25% of the Pα variance for the linear
multivariate model. This is probably due to other sources of variance
that are not taken into account in the model. For example, according
to Appendix A and B, a change in fiber length irrespective of head size
leads to an inversely proportional change in time delays and therefore
Pα, without changing FA. Additionally other parameters, associated to
the role of greymatter local dynamics, such as dendritic rise and decay
times, nonlinearity thresholds, synaptic strength and density, number
of neurons and short and long term plasticity, could be other sources
of variance.

On the other hand, there are several neuroanatomical causes of
variability of FA, which do not necessarily affect Pα. For example,
according to the theoretical analysis in Appendix A and B, a change in
bundle thickness irrespective of head size, keeping the number of
fibers constant, leads to an inversely proportional change of fiber
density and therefore FA, without change in connectivity and time
delay and thus with no evident implications on the Pα.
Please cite this article as: Valdés-Hernández, P.A., et al., White matter a
alpha rhythm, NeuroImage (2009), doi:10.1016/j.neuroimage.2009.10.
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We are currently exploring more detailed biophysical models
relating white matter parameters, (such as those reflecting the
importance of the connectivity pattern (Izhikevich and Edelman,
2008; Jirsa, 2009; Sotero et al., 2007; Valdes-Sosa et al., in press)) and
neural mass model parameters (gray matter) to observable electro-
physiological phenomena, as well as implementing very large-scale
network simulations (Valdes-Sosa et al., in press) to test these and
other issues.

White matter tracts with significant voxels

The ROIs containing voxels corresponding to significant nonzero
coefficients of the RIDGE Pα-FA regression are summarized and
commented in Table 1. They have been divided into threemain groups
corresponding to: longitudinal ipsilateral association fibers, thalamo-
cortical projection fibers (or either corticothalamic feedbacks) and
commissural fibers. An intriguing hemispheric asymmetry appears in
the ipsilateral longitudinal tracts, with positive FA-Pα relation in the
left and negative in the right. A positive FA-Pα relation is found in the
Posterior and Superior Corona Radiata, probably associated to
interactions between thalamus and cortex. Another intriguing result
is the presence of significantly negative coefficients in the Posterior
and Anterior Radiations only in the right hemisphere. The posterior
commissural fibers of the Corpus Callosum present the most
significant clusters of FA-Pα relationship, being negative in the
inferior part (Splenium), connecting the inferior occipital lobes and
positive in the superior part (Isthmus and Tapetum), connecting the
superior occipital lobes.
rchitecture rather than cortical surface area correlates with the EEG
030

http://dx.doi.org/10.1016/j.neuroimage.2009.10.030


686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

9P.A. Valdés-Hernández et al. / NeuroImage xxx (2009) xxx–xxx

ARTICLE IN PRESS
UN
CO

RR
EC

It is worth mentioning that the use of FA, as a neuroimage-based
measure of WMAS, introduces two main disadvantages in the correct
identification of ROIs where the WMAS might significantly determine
Pα (1) the major presence of multiple fiber profiles, which could
explain why significant clusters are not spread to parts of the tracts
that are included in the mask; and (2) the masking condition, which
could eliminate parts of or entire tracts. We believe, however, that
masked FA is still an acceptable measure of WMAS, and is also easy to
acquire with standard MRI protocols. Indeed FA-based white matter
structural features have been successfully related to several variables
in the literature, such as age (Camara et al., 2007; Moseley, 2002a;
Pfefferbaum et al., 2000; Salat et al., 2005; Sullivan and Pfefferbaum,
2006), sex (Hsu et al., 2008; Szeszko et al., 2003), brain development
(Ashtari et al., 2007; Courchesne et al., 2000; De Bellis et al., 2001;
Giorgio et al., 2008; Schneiderman et al., 2007), behavioral variables
(Deutsch et al., 2005) or reaction times (Madden et al., 2004;
Stufflebeam et al., 2008). The work in Stufflebeam et al. (2008)
demonstrates that FA correlates, in task-related anatomical regions, to
electrophysiological events, as measured with MEG. As in this paper,
these works usually apply a masking condition to the FA values.

Interpretation of the results

The significant relations between Pα and FA could be interpreted in
the light of current theories of the genesis of the EEG, presented early
in this paper, related to the possible effect of connectivity and time
delay.

As mentioned before, FA is reflecting fiber density, myelination or
a contribution of both. In particular, the results in Mädler et al. (2008),
based on the voxel-wise regression between FA and Myelin Water
Fraction (MWF), support the use of FA as a correlate of myelin in the
Corona Radiata and Posterior White Matter (Splenium and Major
Forceps). Therefore, our FA-Pα relation might be reflecting, in these
ROIs, the effect of myelination on Pα, provided that the former
determines the time delay of communication of the cortical areas
connected by these tracts. It is believed that the alpha rhythms arise
from highly synchronous cortical activity driven by the thalamus
(Steriade et al., 1990). The positive feedback from cortex to thalamus
forms a thalamo-cortico-thalamic closed loop. According to the
simulations in Roberts and Robinson (2008) and Robinson et al.
(2001c), Pα is most sensitive, and inversely proportional, to the period
of this loop (twice the time delay between thalamus and cortex).
Therefore, for the case of the Superior and Posterior Corona Radiata,
the positive FA-Pα relation is expected provided that an increase in FA
implies an increase of myelination. Note that these tracts mainly
connect posterior cortices. This might be due to the following: (1) the
highest alpha power is at occipital sites and/or 2) we are measuring
the EEG at O1 and O2. To explain both cases, the posterior anatomical
structures have to be the most influential. Although the closed eyes
alpha is a global phenomenon arising from the cross-talk between
different spatial scales (Nunez et al., 2001), the contribution of
different localized structures are probably weighted by their proxim-
ity to the electrodes. In Robinson et al. (2003b), the contribution of
posterior cortico-thalamocortical circuitry to the occipital scalp EEG is
theoretically tackled by introducing spatially nonuniform corticotha-
lamic and thalamocortical time delays.

The most significant clusters of Pα-FA relation are found in the
occipito-occipital contralateral connections, precisely the circuitry
connecting contralateral occipital cortices. This is coincidently the
region where FA is more related with MWF in Mädler et al. (2008),
giving further support to the possible role of myelin on Pα. However,
the modulation of fiber density in connectivity cannot be discarded
(Sotero et al., 2007). As can be seen in Table 1, there is evident sign
variability in the Pα-FA relation among these contralateral connec-
tions. This might have several possible explanations. For example, we
can consider that our measured Pα is the joint frequency of two neural
Please cite this article as: Valdés-Hernández, P.A., et al., White matter a
alpha rhythm, NeuroImage (2009), doi:10.1016/j.neuroimage.2009.10.0
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masses in the “alpha regimen,” each located at either posterior side of
the brain. The simulations of David and Friston (2003) demonstrate
that the correlation between the joint frequency and the time delay
mediating their communication changes sign for different value
ranges of the latter. Provided that there is a large variability of fiber
lengths and myelination in the contralateral connections of the
Corpus Callosum, time delays can fall in very different values ranges.
On the other hand, the dual inhibitory and excitatory role described
for the Corpus Callosum, involved in brain function integration and
lateralization, respectively (Bloom and Hynd, 2008), might offer an
alternative explanation for this sign variability. Also, it might be a
possible negative influence of fiber density on conduction velocity due
to an ephaptic interaction between fibers within a bundle, provoking
an increase in time delay for higher couplings (Reutskiy et al., 2003).
The Splenium of the Corpus Callosum might be particularly sensitive
to this phenomenon since it presents a high fiber density (Barazany et
al., 2009).

Although difficult to explain, the hemispheric asymmetry of the
relation in the inferior longitudinal ipsilateral tracts and the Anterior
and Posterior Thalamic Radiations might be due to the inter-
hemispheric asymmetry of white matter (Buchel et al., 2004).

Conclusions

No correlation was found in a combined EEG/MRI data set (Cuban
Human Brain Mapping Project) between head size and the spectral
position of the alpha peak (Pα). This contrasts with the previous
reports of Nunez et al. (1978) and Posthuma et al. (2001) where such
a relation was found. Head size was considered by these authors to be
proportional to the cortical surface area (NSA). However, the NSA is
the actual variable that should best correlate with the EEG alpha
rhythm according to a cortical standing wave theory of the EEG
(Nunez et al., 1995), which predicts slightly damped traveling waves
through the neocortex making the effect of boundaries on the
dynamics of the alpha rhythm important. Our data allowed, for the
first time, a direct validation of this theory by examining the relation
between Pα and NSA due to the possibility for extracting the
individual cortical surfaces. Even for this variable, there is no
significant relation, as shown by the regression between the
logarithms of both NSA and Pα. It therefore seems that, at least in its
present form, the cortical standing wave theory of EEG generation is
not supported by our data.

However, in our analysis of current biophysical models (e.g.
Robinson et al., 2001b; Wright and Liley, 1996), the combination of
global and local models predicts more damped alpha waves thus
boundary conditions make little effect on Pα. Since large-scale
interactions impinge the global character to the alpha rhythm, Pα
should be more likely related to those white matter neuroanatomical
determinants of connectivities and time delays. In fact, we found
highly significant correlations between Diffusion Tensor Fractional
Anisotropy (FA) and Pα, with no effect of head size on FA. This relation
is significant for the ipsilateral longitudinal tracts, being positive in the
left and negative in the right hemisphere. It is positive in the Posterior
and Superior Corona Radiata, probably associated to interactions
between thalamus and cortex. However, it is the posterior commis-
sural fibers of the Corpus Callosum that present the most significant
relations, being negative in the inferior part (Splenium), connecting
the inferior occipital lobes and positive in the superior part (Isthmus
and Tapetum), connecting the superior occipital lobes.

The results reported demonstrate that the use of large combined
EEG/MRI databases allows empirical falsification of biophysical
models of electrophysiological phenomena. Work in progress will
provide more detailed biophysical models as well as large-scale
network simulations, based on individual neuroanatomical measure-
ments, in order to explore the nature of the relation between white
matter architecture and the EEG spectrum in individual subjects.
rchitecture rather than cortical surface area correlates with the EEG
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Studies of the neuroanatomical determinants of the EEG not only
shed light on the basic mechanisms underlying electrophysiological
processes, but also may serve to partial out spurious sources of
variance for EEG spectral data allowing more insightful experimental
findings and enhanced sensitivity in the evaluation of patients.
Indeed, a reachable objective seems to be the integration of
morphological and electrophysiological information in order to
explain individual functional characteristics of a given subject.
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Appendix A. A theoretical analysis of the effects of white matter
microstructure on both the fractional anisotropy and the
frequency of the alpha rhythm

Several studies have claimed that FA might be proportional to fiber
density and myelination in the single bundle (Beaulieu, 2002; Hwang
et al., 2003; Le Bihan, 2007). Indeed, according to simulations (Pabitra
and Basser, 2005), FA is a monotonically increasing function, say
FA=Φ f, of the fraction of sectional area, f≡ND2/B2, occupied by N
fibers of thickness Dwithin a bundle of thickness B. Precisely nuN = B2

is the fiber density, and D reflects myelination (an increase of D is
associated to an increase of the myelin sheath thickness if we assume
a fixed value of axon diameter).

The connection of these microstructural parameters with the
possible variables determining the alpha rhythm (connectivity and
time delay) is straightforward. A rough estimate of connectivity is
C0=N whereas time delay is t = L = v, where L is the fiber length and
v is the conduction velocity, which is proportional to D (Goldman and
Albus, 1968; Rushton, 1951; Sabah, 2000; Waxman, 1980), i.e. v=kD,
being k an arbitrary constant.

This suggests that FA might be directly related to connectivity and
inversely related to time delay.

Appendix B. A theoretical analysis of the effects of head size on
both the fractional anisotropy and the frequency of the
alpha rhythm

Let us follow the notation in Appendix A and assume that the
linear dimensions of any brain structure, e.g. the axonal fibers, are
directly proportional to head size (Wang, 2008) (which we shall
denote by R) and N is unchanged for different R (which is reasonable
according to the inverse proportionality of fiber density and the
square root of brain volume; Braintenberg, 2001; Wang, 2008). Then
D=k1R, B=k2R and L=k3R, with k1, k2, k3 being arbitrary constants.
This leads to time delays and FA values which are independent of R,
i.e. FA=Φ Nk2R/k1R=cons and t=L/kD=k2R/k k1R=cons. This
suggests that only those changes in the microstructural neuroana-
tomical parameter not linearly proportional related to head size
variations lead to variations in FA, time delay or connectivity.
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