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ling brain functioning by EEG/MEG, it is not only important to be able to identify
active areas but also to understand interference among different areas. The EEG/MEG signals result from the
superimposition of underlying brain source activities volume conducted through the head. The effects of
volume conduction produce spurious interactions in the measured signals. It is fundamental to separate true
source interactions from noise and to unmix the contribution of different systems composed by interacting
sources in order to understand interference mechanisms.
As a prerequisite, we consider the problem of unmixing the contribution of uncorrelated sources to a
measured field. This problem is equivalent to the problem of unmixing the contribution of different
uncorrelated compound systems composed by interacting sources. To this end, we develop a principal
component analysis-based method, namely, the source principal component analysis (sPCA), which exploits
the underlying assumption of orthogonality for sources, estimated from linear inverse methods, for the
extraction of essential features in signal space.
We then consider the problem of demixing the contribution of correlated sources that comprise each of the
compound systems identified by using sPCA. While the sPCA orthogonality assumption is sufficient to
separate uncorrelated systems, it cannot separate the individual components within each system. To address
that problem, we introduce the Minimum Overlap Component Analysis (MOCA), employing a pure spatial
criterion to unmix pairs of correlates (or coherent) sources. The proposed methods are tested in simulations
and applied to EEG data from human µ and α rhythms.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Non-invasive high temporal resolution functional imaging
methods, such as electroencephalography (EEG) and magne-
toencephalography (MEG), arewell suited to studybraindynam-
ics. Their millisecond temporal resolution can be exploited, in
fact, not only to follow the variation of the activation patterns in
the brain but also to track interference phenomena among brain
areas. Recently, much attention has been paid to this second
aspect (David et al., 2004; Horwitz, 2003; Lee et al., 2003), and
many techniques aimed at studying brain connectivity have
been developed and applied based on EEG potentials (Brovelli
et al., 2002; Gevins,1989) andMEG fields (Taniguchi et al., 2000;
Gross et al., 2001). Frequency-domain methods are particularly
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attractive in this sense since the activity of neural population is
often best expressed in this domain (Astolfi et al., 2007; Gross
et al., 2001; Pfurtscheller and Lopes daSilva,1999). In the present
work, a frequency domain approach is developed in which the
imaginarypart of the data cross-spectra at a frequencyof interest
is used to isolate true interference phenomena from the
measured data. The imaginary part of the data cross-spectra is,
in fact, the only part of complex cross-spectra that reflects true
non-zero-lagged interactions in the brain. Hence, this quantity is
insensitive to zero-lagged volume conduction effects (Nolte
et al., 2004; Marzetti et al., 2007) that can be particularly prob-
lematic when describing interdependencies between signals
(Gross et al., 2001;Nunez et al.,1997;Nunez et al.,1999). It can be
shown that non-interacting sources do not contribute system-
atically to the imaginary parts of cross-spectra; therefore, this
parameter is well suited to study brain interference phenomena
(Nolte et al., 2004).

On the other hand, EEG and MEG measure a signal resulting
from the superposition of the underlying brain source activities.
In order to disentangle the contribution of the various brain
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sources to the measured signal, methods for the extraction of
essential features based on linear transformations of the data
space have been widely used. Among them, the well-known
second-order methods such as principal component analysis
(PCA) (Jolliffe, 1986) and factor analysis (FA) (Kendall, 1975) as
well as methods based on higher order statistics such as inde-
pendent component analysis (ICA) (Hyvarinen et al., 2001). We
aim here at identifying the contribution of various sources and/
or systems to the interaction phenomenon by decomposing the
imaginary part of the cross-spectra. To this end, strategies for the
identification of systems composed by interacting sources are
developed in order to improve the understanding of the inter-
action phenomenon. We apply the proposed methods to simu-
lated data and to real data from human µ and α rhythms.

Materials and methods

Problem formulation

We will first introduce some terminology used in this
paper. By “source” we refer to functionally diverse neuronal
units that are active in a specific rest or task condition. Each
source has an activation time course and a specific spatial
pattern in a sensor array (i.e., a specific orientation in the
“sensor space,” in which each axis corresponds to the signal in
one sensor). In this paper, we do not consider explicit time
dependence as is possible, e.g., in event-related experiments.
To study non-stationary effects, the necessary adjustments
and re-interpretations are in principle straight forward but the
details are beyond the scope of this paper.

It is assumed that the data were measured in a task-re-
lated experiment, i.e., processes are not explicitly time de-
pendent. It is possible to generalize the concepts also to
event-related experiments, but the necessary adjustments
and re-interpretations are beyond the scope of this paper.

Let x(t) be theM-dimensional EEG/MEG data vector at time t.
In this paper, we assume that these data can be decomposed as

x tð Þ ¼ ∑
P

p¼1
αp tð Þap þ βp tð Þbp
� �þ ∑

Q

q¼1
γq tð Þcq ð1Þ

where αp(t), βp(t) and γq(t) are the temporal activities of each
source and ap, bp, and cq are the respective spatial patterns. γq

(t)cqcq are Q independent components, and αp(t)ap and βp(t)
bp are P pairwise interacting components, i.e., αp(t) can be
statistically dependent on βp(t) but neither on αr(t) nor on βr

(t) for p≠ r, and analogously for βp(t). We additionally assume
that P≤M/2 but we do not make restrictions on Q , the number
of independent components. As a “compound system,”
“interacting system,” or simply “system,” we refer to the
activities denoted by a specific index p in the first sum in
Eq. (1). A compound system hence consists of two temporal
activities αp(t) and βp(t), which are associated with two
spatial patterns in channel space, ap and bp, respectively.

This model makes two assumptions. First, all interactions
are assumed to be pairwise. For more complex interactions,
the methods outlined below will approximate these systems
by dominating pairs of interaction. Second, the number of
compound systems measurable with EEG/MEG is assumed to
be lower or equal than half the number of channels. Note that
this assumption is considerably weaker than the typical
assumption used for ICA, namely, that the total number of
sources (which include, e.g., channel noise) is not larger than
the number of channels. Both assumptions are made for
technical reasons. A generalization to arbitrary structure is
welcome but is beyond the scope of this paper.

The goal of this paper is to identify the spatial patterns and
to localize the sources of the interacting systems by analyzing
cross-spectral matrices estimated from the data. Conceptually,
this goal is achieved in three steps: (a) we analyze only imagi-
nary parts of cross-spectra to get rid of systematic contribu-
tions from non-interacting sources; (b) we introduce a new
method (sPCA) and recall an older one (PISA) both capable of
identifying the 2D subspaces spanned byap and bp for all p; and
(c) we introduce a new method (MOCA) to identify the pat-
terns ap and bp themselves for a given 2D subspace. MOCA also
includes the localization of the sources.

Principal component analysis and source principal component
analysis (sPCA)

PCA is an orthogonal linear transformation that finds a
representation of the data using only the information
contained in the covariance matrix of the (zero mean) data
vector. A new coordinate system for the data is chosen by PCA
so that the largest variance by any projection of the data lies
on the first axis (first principal component), the second largest
variance on the second axis, and so on.

Again, let x=(x1,…, xm)T be an M-dimensional EEG/MEG
instantaneous data vector with mean value defined by μx=E{x}.
The notation (·)T indicates matrix transpose.

Setting x0=x−μx, the zero-lag covariance matrix for that
data set is defined as

Cx ¼ E x0xT
0

� � ð2Þ

Then, finding the principal components is equivalent to
finding the eigenvalues and the eigenvectors of the covariance
matrix by solving the eigenvalue equation:

CxU ¼ UG ð3Þ
where Г is a diagonal matrix of eigenvalues Г=diag {λ1,…,λm},
and the columns of U are the corresponding eigenvectors that
form an orthogonal basis of the data space. For the calculation
in the Fourier domain, the analogue of the covariancematrix is
the cross-spectra matrix that is defined as

Cx fð Þ ¼ E x̂0 fð Þx̂H
0 fð Þ

n o
ð4Þ

where x̂ 0( f) is the Fourier transform of the Hanning-windowed
demeaned data for each trial, E{·} is estimated by the average
over these trials, and (·)H denotes the Hermitian conjugate, i.e.,
transpose and complex conjugate.

When interpreting the eigenvectors of such matrices as
potentials of single sources, two assumptions are made:
(a) the sources are uncorrelated, and (b) the potentials are
mutually orthogonal in signal space. Let's assume that the first
assumption is correct and address the second one. The
forward mapping of sources to sensors is essentially a spatial
low pass filter. Even if the regions of non-vanishing source
activities are spatially distinct, such as dipoles at different
locations, which are orthogonal as vector fields, the respective
potentials are highly blurred and are in general spatially cor-
related. Apparently, the orthogonality assumption would be
much more reasonable if we were able to reconstruct the
sources and formulate this assumption in source space.
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The idea here is that, despite all limitations of inverse
calculations, even rough estimates of the sources are spatially
less correlated than the signals in channel space. For a prac-
tical implementation of this idea, we suggest to use a linear
inverse method and then calculate the PCA decomposition of
the cross-spectrum/covariance matrix in the source space (i.e.,
source PCA).

In general, results will depend both on the forward opera-
tor and the inverse operator. The most crucial question is
whether sources, which are truly non-overlapping and hence
orthogonal, give rise to non-orthogonal source estimates cal-
culated from the respective scalp potentials. This will espe-
cially be the case if the true sources are close to each other and
have similar direction. In this case, the decomposition will
most likely be inaccurate. However, the key point here is that
on average these inaccuracies are much lower than for PCA
which will be shown in the simulations below.

A straightforward implementation if this idea faces a
numerical problem: for K voxels and three dipole directions,
the respective matrices have size 3K×3K, which is in general
too big to handle in a reasonable amount of time. Fortunately,
for linear inverse methods, it is not necessary to make these
calculations in such a large space, but, as will be shown below,
it is also possible to formulate a non-symmetric eigenvalue
problem in M dimensions that is formally equivalent.

Let A be an inverse operator of size N×M, with N=3K,
considering three dipole orientations for each voxel, and
KNNM, mapping M measured signals to K brain sources (e.g.,
minimum norm operator). We can construct the source vector
field estimated from the measurement vector x as:

ŝ ¼ Ax: ð5Þ
The following is formulated for covariance matrices, but it is

identical for cross-spectra. The covariancematrix for the sources,
Cs, can be derived from the signal covariance matrix, Cx, as:

Cs ¼ E ŝ � ŝT
n o

¼ E Axð Þ Axð ÞT
n o

¼ AE xxT� �
AT ¼ ACxAT ð6Þ

We now need to find the eigenvectors of Cs, i.e., we need to
solve the Eq.

ACxATŨ ¼ ŨG̃ ð7Þ
where Г̃ is diagonal. In order to reduce the complexity of the
eigenvalue problem in the source space, we multiply Eq. (7)
from the left by (ATA)–1AT and insert the identity matrix I=ATA
(ATA)–1 after Cx, finally resulting in:

CxATA
� �

ATA
� �−1

ATŨ ¼ ATA
� �−1

ATŨG̃ ð8Þ

If we define a new matrix B as:

B ¼ CxATA ð9Þ
and

Û ¼ ATA
� �−1

ATŨ ð10Þ
then, from Eq. (7), it follows that:

BÛ ¼ ÛG̃: ð11Þ

Thus, finding the eigenvectors of the huge Hermitian
matrix Cs is reduced to finding eigenvectors of the small
non-Hermitian matrix B. Eigenvectors of B are in general not
orthogonal. For non-vanishing eigenvalues, the eigenvectorsŨ
must be entirely in the space spanned by the sources, i.e., the
range of A. Since A(ATA)–1AT is a projector on this space it
follows that A =A(ATA)–1ATŨ=Ũ, i.e., the eigenvectors of the
covariance matrix in source space (with non-vanishing
eigenvalue) are given by the inverse mapping of the
eigenvectors of the transformed covariance matrix in signal
space.

In this way, the eigenvectors of B can be interpreted as the
potentials/fields corresponding to temporally uncorrelated
and spatially orthogonal sources in the brain. The respective
sources can be estimated by applying the inverse operator A. It
is also conceivable that the final source estimate is found by
applying another inverse method on the decomposed fields—
thus using the matrix A only as an intermediate tool to
decompose the data. However, this specific interpretation is
meaningful only for covariance matrices or real valued cross-
spectra. Imaginary parts of cross-spectra require a different
interpretation as outlined in the next section.

Decomposition of imaginary parts of cross-spectra

We are here interested in studying interaction by analyzing
only imaginary parts (denoted CI) of cross-spectra since these
quantities are not biased by non-interacting sources regardless
of the number of sources and regardless how the respective
source activities are mapped into sensors (Nolte et al., 2004).

From a formal perspective, a straightforward way to do this
is to decompose CI into eigenvectors and then interpret these
eigenvectors. However, the interpretation of these eigenvec-
tors is not as straightforward as, e.g., for covariance matrices.
Since CI is real valued and antisymmetric, it is anti-Hermitian,
and hence has only imaginary eigenvalues. Consequently, the
eigenvectors can be neither purely real valued nor purely
imaginary valued but must necessarily be a mixture.

Fourier transforming (Eq. (1)) and calculating the imagin-
ary part the cross-spectrum leads to

CI fð Þ ¼Im hx fð ÞxH fð Þi� �
¼ ∑p Im hαp fð Þβ⁎

p fð ÞiapbT
p þ hβp fð Þα⁎

p fð ÞibpaTp
� 	

¼ ∑p Im hαp fð Þβ⁎
p fð Þi

� 	
apb

T
p−bpaTp

� 	 ð12Þ

For simplicity of reading, we used the same symbol for
functions in time and frequency domain.

If only one compound system consisting of two interacting
sources with field patterns a and b are present, then CI has the
form

CIfabT−baT ð13Þ
i.e., CI is proportional to the antisymmetrized outer product of
the two patterns. The important point now is that in general,
apart from a global constant, CI remains identical if we replace
a and b by an arbitrary linear combination of a and b. It is
therefore impossible to reconstruct from CI the patterns a and
b without additional knowledge. Note that assuming that the
patterns are orthogonal is not sufficient to reconstruct these
patterns. This reconstruction will be the subject of the next
subsection, andwe here continuewith the decomposition into
eigenvectors.

Without loss of generality, we now regard a and b as
(unknown) linear combinations of the true patterns such that a
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and b are normalized and orthogonal to each other. Then CI has
two eigenvectors with non-vanishing eigenvalues, namely, a
+ ib and a - ib. Hence, the real and imaginary parts of these
eigenvectors span a two dimensional subspace of the signal
space identical to the space spanned by thefields of the sources
or the estimates of the sources for PCA and sPCA, respectively.

If we have more than one compound system the eigende-
compositionproperly separates these systemsprovided that the
orthogonality assumption is correct, i.e., apTar=apTbr for all p≠r.

The above was formulated in channel space but applies
identically in source space after replacing x(f), ap and bp with
the respective sources estimated by using a linear inverse
method. The only difference is that the orthogonality assump-
tion, which was necessary for the interpretation of more than
one compound system, has a different physical meaning.

We emphasize that sPCA is just standard PCA in source space
and can be applied both to real and imaginary parts of cross-
spectra (with different interpretation). Therefore, although we
are here interested in brain interaction, we can test the different
spatial assumptions of sPCA and PCA also for the simpler case of
uncorrelated single sources which will be done below.

Pairwise interacting source analysis

The decomposition of the whole data into compound
systems is also possible without making (spatial) orthogon-
ality assumptions at all which can be achieved by the Pairwise
Interacting Source Analysis (PISA) introduced by Nolte et al.
(2006).1 Here, instead of finding eigenvectors of CI (f) at a
given frequency f, one approximates CI (f) simultaneously for
all frequencies by a model

CI fð Þ≈∑
p
ρp fð Þ apb

T
p−bpaTp

� 	
ð14Þ

with unknown ρp(f), ap, and bp. The crucial model assumption
is that the spatial patterns are independent of frequency. Apart
from linear combinations of patterns within each compound
system, this model can, in general, be identified uniquely if
more than one frequency is considered. For technical details,
we refer to the original publication (Nolte et al., 2006). The
important point here is that PISA, like sPCA, is capable of
identifying 2D subspaces spanned by the two patterns of each
compound system, but is not capable of separating these 2D
subspaces further into the patterns of the sources.

Minimum overlap component analysis (MOCA)

When studying interacting sources, the dynamical assump-
tions of sPCA only hold between different compound systems
and therefore, it is meaningless to apply this method in order to
disentangle the field patterns of the interacting sourceswithin a
compound system.Nevertheless, one can still use PCAor sPCA in
order to get rid of noise and to reduce the dimensionality of the
initial problem. As outlined above, if applied on imaginary parts
of cross-spectra the resulting real and imaginary parts of the
eigenvectors are then a linear combination of the fields of the
two respective sources in the brain. When solving the inverse
problem for these eigenvectors, in fact, a mixture of these
1 In that paper this method was termed ISA, which is now changed to avoid
confusion with another method having the same name.
sources is localized. To the purpose of demixing these co-
tributions MOCAwas developed.

TheMOCA approach solves the inverse problem for the real
and imaginary parts of the eigenvectors found by PCA or sPCA.
An inverse is already built in for the latter, but it is also
conceivable to use standard PCA for the decomposition into
systems and then proceed from there to decompose the
eigenvectors into contributions from separate sources.

The inverse calculations of real and imaginary parts of an
eigenvector give two source distributions j1(x) and j2(x),
where, in practice, x is a discrete variable denoting the respec-
tive voxel on a pre-defined grid within the brain. We assume
that these two fields are superpositions of the true source-
fields. (Here and in the following, the term “true source-field”
used as an abbreviation for “correctly demixed estimates of
the true source-fields.”) To find this superposition, we first
assume, as in sPCA, that the true sources are spatially or-
thogonal. A transformation to orthogonal and normalized
sources can be done with spatial pre-whitening. Let Σ be the
2×2 matrix with elements

Σij ¼ ∑
x
ji xð Þ � jj xð Þ ð15Þ

Now we define S=Σ–1/2 and define new sources as

kj xð Þ ¼ ∑
i
Sjiji xð Þ ð16Þ

Note that this could also be written as a matrix multi-
plication by stacking voxel and dipole indices, but we consider
the explicit formulation as clearer. Now, requiring orthogonal
sources is not sufficient for a unique decomposition, as this
property is conserved upon rotation:

m1 x;Φð Þ
m2 x;Φð Þ


 �
¼ cosΦ sinΦ

−sinΦ cosΦ


 �
k1 xð Þ
k2 xð Þ


 �
ð17Þ

Now, the rotation angleΦ is fixed by assuming that the best
source estimate is the one that minimizes the overlap
between M1(x,Φ) and M2(x,Φ). For a meaningful definition
of overlap, it should be defined to be invariant with respect to
rotations of the coordinate system, and it also must be of
higher order than (spatial) correlation in order to constitute an
independent requirement. With these requirements, we
consider as the most appropriate definition of overlap L(Φ):

L Φð Þ ¼ ∑
x
m1 x;Φð Þ �m2 x;Φð Þð Þ2 ð18Þ

and we take as the final rotation angle Φmin

Φmin ¼ arg min L Φð Þð Þ ð19Þ
Fortunately, minimization of L(Φ) can be done analytically in

closed form. It is straightforward to check that the Eq. L'(Φ)=0
has the solutions

Φ0 ¼ 1
4

tan −1 b
a−c


 �
ð20Þ

with

a ¼ ∑x k1 � k2ð Þ2
b ¼ ∑

x
k1 � k2ð Þ k1 � k1−k2 � k2ð Þ

c ¼ 1
4
∑
x
k1 � k1−k2 � k2ð Þ2
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Various solutions arise due to the various branches of the
tan–1 function and differ by multiples of π/4. Minima and
maxima are alternating, and we only have to calculate two
neighboring solutions with angles Φmax and Φmin for the
maximum and minimum, and pick the one referring to the
minimum out of these two. We also note that

gap ¼ L Φmaxð Þ−L Φminð Þ
L Φmaxð Þ þ L Φminð Þ ð21Þ

might be used as a rough indicator of how well Φmin can be
estimated. Specifically, if this gap is zero, then the cost-
function has no unique minimum. This is, e.g., the case when
the two sources are dipoles at the same location. The decom-
position will result in two orthogonal dipoles but the orien-
tation of the system as a whole is ill-defined.

Remark on weighted minimum norm inverse solutions

The methods presented here all require a linear inverse
method, which are usually expressed as minimum norm
estimates (Hämäläinen and Ilmoniemi,1984,1994;Wang et al.,
1992). We here propose a specific variant of a weighted mini-
mumnorm solution that combines amplitude and geometrical
properties of the forward model. The idea behind this is the
consideration that minimum norm solutions typically are too
superficial actually because of two different reasons. First and
well known, superficial sources need smaller amplitude to
induce a potential of givenmagnitude and are hence preferred.
Second and perhaps less easy to understand is the fact that
also the geometry biases the inverse solutions. The electric
potential on the scalp is typically smoother for deeper sources.
Qualitatively, to induce a potential of given (spatial) spectral
content, superficial sources have to be more distributed to
compensate for the weaker low-pass (a well-known conse-
quence is that dipole fits of distributed sources typically are too
deep; de Munck et al., 1988). Since the L2-norm becomes
smaller if the source amplitude are distributed across several
voxels, superficial sources are preferred.

In particular, we used aweightedminimum norm approach
in which the source estimation is given by:

ŝ ¼ W−1LT LW−1LT
� 	†

x ð22Þ

where L is the leadfield matrix of size M×K provided by the
EEG forward problem with K=3N for the N voxels of the grid,
and W is a diagonal weighting matrix of size K×K. The
elements of W are defined to be independent of dipole
direction as:

Wii ¼
jj Li jj q

dpi
ð23Þ

where Li is the Mx3 matrix where the j.th column (j =1…3)
corresponds to the potential of a unit dipole at the ith voxel
pointing in jth direction, the symbol ||·|| indicates the
Frobenius norm, and di is the Euclidean distance between the
ith voxel and the closest electrode. Eq. (20) with the settings
p=0 and q=1 is the classical weighted minimum norm
(WMNE) (Hämäläinen, 1993); see also Pascal-Marqui (1999)
and Baillet et al. (2001) for comprehensive reviews. As outlined
above, the classical WMNE has the problem that it estimates
the location of a 3D current distribution closer to the electrode
or detector coil than its actual location (Crowley et al., 1989;
Sekihara and Scholz, 1996; Pascal-Marqui, 1999). In order to
overcome this limitation, we make a different choice for the
parameter setting, in particular setting p=1.5 and q=1. With
this setting, we add a factor penalizing the sources closer to the
electrode that compensates forWMNE tendency to prefer such
kind of sources. The exponent q=1 accounts for the amplitude
and the exponent p=1.5 can be qualitatively understood as
follows: in order to induce a potential with given (spatial)
spectral content by a source located around depth d, this
source has size ~d–1 and hence volume and number of active
voxels are ~d–3. The reduction in the cost function from dis-
tributing the source activity across several voxels is propor-
tional to the square root of the number of voxels, which is
compensated in the cost-function. This rather heuristic
argument could be confirmed in simulations of random single
dipoles comparing the maximum of the estimated distributed
source with the dipole location. We found a minimum
deviation at p=1.4 in good agreement with the above
considerations. We still take p=1.5 because we consider the
argument, even if heuristic, as more generic than the specific
simulation.

For MOCA, we regard its inverse solution part as a mere
intermediate step to decompose a two-dimensional subspace
of the signal space into two patterns. This intermediate step is
done with weighted minimum norm solution using q=1 and
p=0. The final inverse method for the decomposed field is
chosen to be a depth-weighted minimum norm solution with
q=1 and p=1.5. The reason for this difference is that the choice
q=1 and p=1.5 has smaller bias to superficial sources for the
price of having more widespread sources, and in simulations
we found the choice q=1 and p=0 to be (slightly) better for
the decomposition.

We want to emphasize that in the context of this paper the
specific form of weights is a marginal issue. The proposed
form appeared convincing to us, but we do not claim that our
method is the best possible. Especially, we found the results to
be similar to those from LORETA (Pascal-Marqui et al., 1999). A
detailed comparison, however, is beyond the scope of this
paper.

Simulations

The EEG montage consisted of 118 electrodes fitted to the
outermost shell of a standard Montreal Neurological Institute
(MNI) head (Evans et al., 1994), which was used as a three
compartment realistic volume conductor model for the
solution of the EEG forward problem (Nolte and Dassios,
2005). An electrode near the nasion was taken as reference.
The source space was restricted to the segmented cortical
surface of theMNI head based on the observation that primary
sources are widely believed to be restricted to the cortex
(Baillet et al., 2001). The sources were modeled as multiple
current dipoles, apart from one case explicitly noted. The
locations of the dipoles were randomly selected from the
nodes of the triangularly tessellated cortical mantle, and the
orientation was set normally to the cortical surface based on
the physical orientation of the apical dendrites that produce
the actual measured fields of the brain (Baillet et al., 2001).

In the following simulations, we test the appropriateness of
the spatial assumptionsmade in sPCA andMOCA. This by itself
is not restricted to the analysis of interacting sources. Specifi-
cally, sPCA is compared to PCA assuming uncorrelated sources
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and hence assuming that the dynamical assumptions of PCA and
sPCA are correct. In contrast, MOCA does not make dynamical
assumptions, and we will test it both for correlated and
uncorrelated sources and compare it to the respective results
of PCA and sPCA. Note that the case of many pairs of correlated
sources corresponds to the study of eigenvectors of imaginary
parts of cross-spectra in the sense that the field patterns are a
superposition of the true source patterns, which is completely
unknown,whereas this superposition is partly known in the case
of correlated sources. In other words, the spatial orthogonality
assumption is sufficient for a unique decomposition of uncorre-
lated sources but not for correlated sources.

We will now give a general formulation for the configura-
tions tested by our simulations. Given that N0 is the number of
ECDs in the simulation and M the number of channels in the
EEG montage, the leadfield matrix L0 of size M×N0 was
derived for the ECD configuration, the montage and volume
conductor described above by solving the EEG forward
problem.We introduce for later use the source cross-spectrum
matrix Cs of size N0×N0 and the noise covariance matrix Cn of
size M×M. The general model for the signal space cross-
spectrummatrix, Cx of sizeM×M, fromwhich all the situations
tested by our simulations can be derived, is:

Cx ¼ L0CsLT
0 þ αCn ð24Þ

where α is a weight to the noise term such that the Frobenius
norm of the source contribution to the signal cross-spectra is
equal to the Frobenius normof the noise term Cn. In the various
simulations, we assume either that the dipole amplitudes are
uncorrelated or are correlated with a positive definite co-
variance matrix. For the latter, we chose a different, randomly
selected, source covariance matrix for each source configura-
tion. Defining IN0 as the identity matrix of size N0×N0 and S a
matrix of Gaussian distributed randomnumbers of sizeN0×N0,
the two cases are obtained by setting Cs respectively as:

Cs ¼ IN0 ð25Þ

Cs ¼ STS: ð26Þ
We also assume various possible noise models by different

settings of the Cn matrix. In particular, spatially correlated
noise in the signal space (or equivalently uncorrelated noise in
the source space) is described by setting:

Cn ¼ LLT: ð27Þ
Here is the leadfield matrix of all dipoles on the entire grid

within the brain. Alternatively, a realistic noise is introduced
in the simulations by setting Cn equal to a broadband mean
value between 5 and 25 Hz of the real part of a cross-spectral
matrix of actual EEG data Cm

Cn ¼ Cm: ð28Þ
The last noise model describes the internal noise in the

electronics of the measurement equipment and is spatially
uncorrelated in the signal space. Defining as IM the identity
matrix of size M×M, this noise model is obtained by setting:

Cn ¼ IM: ð29Þ

The above-defined different settings were used in order to
analyze the performances of the proposed methods. In parti-
cular, in order to perform a systematic comparison between the
PCA and sPCA methods for uncorrelated sources, 5000 pairs,
triplets or quartets of uncorrelated dipoles were randomly
placed on the cortex and the noise-free case as well as the three
types ofnoisedescribed above inEqs. (22)–(24)were considered.

A second Monte Carlo simulation was carried out to inves-
tigate the accomplishment of the recovering of the true fields
by PCA, sPCA, and MOCA for two uncorrelated or correlated
ECDs with cross-spectra described in Eqs. (25) and (26), re-
spectively. No noise was added in this case.

The performances of themethods in these simulationswere
evaluated by defining a global error accounting for the differ-
ence between the known field patterns and the recovered field
patterns according to the equation

ERR ¼ ∑N
i¼1 1−

j ṽTi � vΠ ið Þj
jj ṽi jj �jj ṽΠ ið Þ jj

 !
¼ ∑N

i¼1 1−jcosΘiΠ ið Þj
� �

ð30Þ
where ṽi with i=1,…, N0 are the true fields of each ECD; vΠ(i)

are the vectors (selected by a permutation Π) provided by the
decomposition method, the symbol T denotes matrix trans-
pose as above, and the symbol ||·|| indicates the Frobenius
norm. The permutationΠ, which has to be introduced because
correspondence between eigenvectors and dipole fields can-
not be predicted, was chosen by a greedy search: we first select
a pair of closest patterns from the sets of true and estimated
patterns, then take these two patterns out, find the pair of
closest patterns from the remaining patterns, etc., until all true
patterns are associated with an estimated pattern. The error
can also be expressed in terms of the angle Θij between two
patterns ṽi and vΠ(i) as given in the last term of (30) showing
that the error vanishes if all respective pairs of patterns are
proportional to each other.

Finally, for demonstration purposes, a simulation based on
a pair of correlated extended and distributed source models is
performed in order to test the performances of the proposed
MOCA–WMNE method (Eqs. (21)–(22)) in comparison to the
multiple ECDs localization in recovering this kind of source. A
direct search for the location and orientation of multiple di-
polar sources involves solving a highly non-convex optimiza-
tion problem, which is prone to local minima. In order to avoid
this potential problem, we use for the multiple dipole locali-
zation the signal subspace method, RAP-MUSIC (Mosher
and Leahy, 1999), which is based on recursively removing
the components of the signal subspace that are spanned by
the explained sources. The source localization is performed in
this simulation from the true simulated fields in order to show
the plain effect of the source model in the localization results.
The property of the two methods does not change if one
provides the correctly disentangled field patterns as the input
fields to the two inverse methods.

Actual EEG data

EEG data were collected from a 118-channel EEG cap during
imagined left or right foot movement from (Blankertz et al.,
2003). For each of the randomly mixed conditions, 70 imagi-
nations, each lasting for ~3.5 s, were performed. Cross-spectra
were calculated separately for each condition by linear de-
trending and Hanning windowing the 3.5-s windows and
averagingover the respective 70 trials. To improve the signal-to-
noise ratio, we additionally averaged the cross-spectra across



Fig. 1. Axial and sagittal views of the simulated source configuration are shown on the
top. On the bottom, the true field patterns are compared to the PCA basis fields and to
the sPCA basis fields.

Fig. 2. PCA and sPCA error distributions for 2, 3, and 4 ECDs are show
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neighboring frequencies with a Hanning window of width 11,
leading to an effective frequency resolution of ~1 Hz. Since we
are interested in studying interaction phenomena in the brain,
we isolated from thewhole complex cross-spectrummatrix the
only part of it that necessarily reflects interactions, i.e., the
imaginary part of the cross-spectra (Nolte et al., 2004).

Results and discussion

Simulations

Fig. 1 provides an example of classical PCA and of sPCA
decomposition of the simulated field patterns generated by
two uncorrelated ECDs (regarded here as the simplest con-
figuration of a system). The true dipole fields are shown and
compared to the result of the PCA decomposition and to the
results of the sPCA decomposition. Clearly, PCA is not able to
separate the field patterns of the two ECDs. The PCA eigen-
vectors, in fact, result in a combination of the true fields of
both ECDs. Conversely, if the orthogonal assumption in the
source space is exploited by applying sPCA to the field patterns
a clear identification of the distinct dipole fields is possible.

Fig. 2 shows the results of this simulation for two dipoles,
three dipoles and four dipoles. Each row in this figure is
accounting for a different type of noise in the general model
described in Eq. (21). On the x-axis of each subplot, the error
between the true fields and the recovered ones as defined in
Eq. (27) is reported, the corresponding occurrence of each
error value over the 5000 runs is reported on the y-axis.

When no noise is added to the simulated data, sPCA
outperforms PCA in recovering the true field patterns also for
n. In each row a different noise is added to the simulated data.



Fig. 3. The error distributions for PCA, sPCA, and MOCA are shown case of two uncorrelated and correlated ECDs. The scatter plot shows the relationship between the error of the
MOCA method and the gap between the minimum and maximum of the MOCA cost function.
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a higher number of dipoles. The error distributions for sPCA
are centered on amedian value that is at least 15 times smaller
than the corresponding median value for the PCA error dis-
tribution. Furthermore, the PCA error distributions are ty-
pically wider than the corresponding sPCA, indicating a much
higher occurrence of low error values for sPCA rather than for
classical PCA. Note that some tails of the PCA distributions are
cut in the plots.

Similar results were obtained also when uncorrelated noise
in the source space was added to the data. This kind of noise is
equivalent to the presence of spatially correlated noise in the
Fig. 4. The true field patterns generated from the true sources are given in input to MOCA–
wrongly recovered by RAP-MUSIC.
signal space, which is typically the case of spontaneous brain
activity non-related to the neural activity under study (Sekihara
and Scholz,1996). In this case, the sPCAmodel is able to account
for the uncorrelated noise in source space, which is correctly
disentangled from the true fields. Conversely, classical PCA
slightly degrades its performances with respect to the noise-
free case.

When the noise model is constituted by realistic noise, the
sPCAmodel is still able to explain such noise in terms of a field
pattern orthogonal to the true fields, thereby succeeding in
recovering the original field patterns. PCA performances are
WMNE and to RAP-MUSIC. The sources are correctly recovered by MOCA–WMNE and



Fig. 5. Basis fields obtained from the imaginary part of the cross-spectra at 12 Hz
(µ-rhythm) for MOCA rotated PCA decomposition, MOCA rotated sPCA decomposition,
and basis fields ascribed to the µ-rhythm for the MOCA rotated PISA decomposition. The
first twopatterns on the topof each columncorrespond to the real and imaginary parts of
thefirst complex eigenvector obtained by the decomposition of the imaginary part of the
data cross-spectrum at 12 Hz accomplished bymeans of PCA and sPCA. Similarly, the 12-
Hz component of the first basis field obtained by the PISA decomposition applied to the
same data is shown. The other two patterns on the bottom of each column correspond to
the real and imaginary parts of the second complex eigenvector of PCA and sPCA and to
the 12-Hz component of the second basis field obtained by the PISA.
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similar to the two previous cases. Since this kind of noise
represents a realistic example of brain activity not related to
the investigated neural activity in real EEG/MEG measure-
ments, the success of sPCA in recovering the true fields is
particularly valuable in this case.

In the presence of uncorrelated noise among all channels,we
do not observe any advantage of sPCA over PCA. This is due to
the fact that brain sources can hardly explain uncorrelated
channel noise. In principle, it is possible to consider regularized
inverse operators. However, uncorrelated channel noise is an
unrealistic event that would mean that internal noise in the
electronics of the measurement equipment is dominating the
signal. Nevertheless, in this limiting case, sPCA performances
become comparable to the PCA performances.

Fig. 3 shows the results for the second simulation in which
the performances were evaluated also for a pair of correlated
sources. The correlated structure of the sources is defined by a
symmetric and in general non-diagonal source cross-spec-
trum as in Eq. (26). In this figure, a comparison of the MOCA
results to PCA and sPCA results is shown in both cases of two
uncorrelated or correlated sources. Wewant to underline here
that the case of two correlated sources can be regarded as the
separation of two correlated simple systems (each composed
by one ECD) or equivalently as the separation of two corre-
lated sources within a compound system. For the sake of
simplicity, noise-free simulations have been performed in this
case. The presence of noise can in fact be handled by the sPCA
decomposition, as shown in Fig. 2, which can be applied as a
prior step to MOCA.

For uncorrelated sources, PCA and sPCAmethods behave as
described above. For correlated sources, sPCA still performs
better than PCA, although, as natural, the sPCA strategy is
much more robust in the case of uncorrelated sources. In this
case, in fact, the orthogonality constraint in the time domain
imposed by PCA and sPCA is correct but is violated in the case
of correlated sources.

Conversely, the MOCA method behaves identically regard-
less of the correlation between the sources since the decom-
position is based on purely spatial criteria. This method
outperforms both PCA and sPCA for uncorrelated as well as for
correlated sources. Actually, for uncorrelated sources, if one
takes into account also the median values of the distributions
together with the histograms, the sPCA median (M) is equal to
6⁎10-4 whereas the median of the error distribution for the
MOCA method is equal to 4⁎10-4. This indicates that the
higher rate of occurrence is obtained for lower error values for
MOCA rather than for sPCA. This result is surprising as sPCA
makes a dynamical assumption (in place of a stronger spatial
one) that is exactly fulfilled in this case. Apparently, this is one of
the rare cases where two errors have the tendency to com-
pensate rather than to add up. In any event, both sPCA and
MOCA are clearly far superior in comparison to PCA, themedian
value of which is equal to 0.1716 for uncorrelated sources.

In case of correlated sources, MOCA (M=4⁎10−4) clearly
outperforms both PCA (M=0.1160) and sPCA (M=0.0621). For
almost all of the simulated pairs of dipoles, in fact, the MOCA
method strongly succeeds in the decomposition as indicated
by an error value of less than 0.026. Only in the 2% of the 5000
tested pairs an error larger then 0.026 is found. These cases
correspond to small values in the difference between the
maximum and minimum in the MOCA cost function (21),
whichwe defined as gap. The plot of the error ofMOCA against
the gap shows that, in fact, theworst errors are attained for the
smallest gap values. Note that this gap is attainable also in
cases where we do not know the true solutions and hence we
have indicator of the validity of the decomposition.

From this point on, we are mainly interested in further
investigating the case of correlated source pairs. Supposing that
the decompositionhas been successfully accomplished,wenow
want to use the disentangled field patterns for localizing the
position of the correlated source pairs in the brain. Since a
dipole model is not always adequate to describe real sources in
the brain apart from cases when the current source is highly
localized (Williamson and Kaufman, 1981) and often no
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information regarding the spatial extent of the source distribu-
tion is known, one cannot generally rely on an ECD source
model. In Fig. 4, we show, in fact, that when a multiple dipole-
based method, such as the RAP-MUSIC scanning method
(Mosher and Leahy, 1999), is used for the localization of a pair
of correlated extended anddistributed simulated sources, it fails
in recovering the original source location (Liu, 2006).

The original extended and distributed sources are shown
on the top right in Fig. 4. The first source is comprised by two
active areas: one frontal area in the right hemisphere and one
posterior area in the left hemisphere. The second source is the
symmetric version of the first and is formed by one frontal
area in the left hemisphere and one posterior area in the right
hemisphere. The simulated field patterns corresponding to
this source configuration are used for the source estimation
with MOCA and with RAP-MUSIC. The comparison of the true
sources with the ones obtained by MOCA and RAP-MUSIC
clearly shows that only MOCA is able to recover the original
source structure appropriately. The RAP-MUSIC solution pro-
vides two dipole locations, black dots, and a color-coded fit-
quality distribution at the cortex points in which blue indi-
cates low quality and red high quality fit. The results obtained
with RAP-MUSIC show that this algorithm is only capable of
partially localizing the centroid of some of the active areas
comprising the original sources and is therefore not suitable
for cases in which the source model cannot be a priori as-
sumed to be point-like. We emphasize that this example is
very artificial andmerely serves to illustrate that our proposed
methods also work in cases where the sources deviate
substantially from dipoles.

Actual EEG data

In Figs. 5–7, we show the results obtainedwith the proposed
MOCAmethodwhen applied to one example of actual EEG data.
Fig. 6. RAP-MUSIC and MOCA–WMNE localization of the µ-rhythm patterns (12
In particular, Fig. 5 shows the application of the investi-
gated methods to the µ rhythm of the actual EEG data. We
recall that for PCA, sPCA, and PISA, the outcome is a two-
dimensional subspace with ambiguous representation by two
individual patterns. For all these three methods, we used
MOCA for a unique representation.

We identify two compound systems by means of sPCA and
PISA. Although the two methods take advantage of different
properties in the data, they come to almost the same results in
terms of system classification and source identification. In the
sPCA case, the resulting basis fields are estimated for the 12-Hz
component of the data. Conversely, in the PISA decomposition,
the basis fields are extracted from the imaginary part of the
cross spectrum in a large frequency range (0 to 45 Hz), and the
spectral content of each basis field has to be classified a pos-
teriori based on diagonal spectrum of each system. For these
data, both of these methods distinguish between a left hemi-
sphere system and a right hemisphere system with almost
mirrored patterns. Furthermore, the estimated field patterns
for each source within a system are very reasonable patterns
corresponding to a central μ rhythm. The high similarity be-
tween the sPCA and PISA system classification and field pat-
terns can be considered as an indicator of the robustness of the
result. Conversely, the PCA results neither show any left to
right symmetry between systems nor a clear meaning in each
of the field patterns.

In Fig. 6, the fields of the µ rhythm derived from MOCA
demixed PCA, sPCA, and PISA, respectively, are used as an input
to RAP-MUSIC and MOCA in order to localize the sources
within each system with results shown in Fig. 7. The RAP-
MUSIC results for the 2D subspaces obtained by PCA, sPCA, and
PISA, and the respective MOCA-weighted minimum norm
results are shownas indicated. Reasonable results are provided
by sPCA and PISA basis. Bilateral primary motor cortex (M1)
and premotor cortex (PM) show up in the two systems.
Hz) shown in Fig. 5. The sources are correctly recovered by both methods.



Fig. 7. RAP-MUSIC and MOCA–WMNE localization of the α-rhythm patterns (10 Hz) obtained by MOCA rotation of PCA, sPCA, and PISA, respectively. The sources are correctly
recovered by MOCA–WMNE and wrongly recovered by RAP-MUSIC due to their extended and distributed nature.
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Bilateral M1 is already known to be involved in generation of
the spatiotemporal patterns of Rolandic µ rhythm in motor
imagery (Pfurtscheller and Neuper, 1997). Moreover, interac-
tion between left M1 and left PM in the 9- to 12-Hz frequency
band has been also observed by Gross et al. (2001) using an
ROI-based cortico-cortical coherence analysis.

The use of the RAP-MUSIC algorithm for inverse mapping
provides, in this case, similar results, because of the focal
nature of the involved area. Both the inverse algorithms are
therefore able to reconstruct the sources roughly in the same
location for the same basis fields in input. Note that theMOCA-
localization of the PCA patterns shows a less reliable activation
pattern with respect to the localization of sPCA and PISA
patterns.

In Fig. 7, results for occipital α-rhythm are shown. Also in
this case for sPCA and PISA, the sources localized by means of
MOCA from the first basis field (first compound system) are
mainly in the left hemisphere, whereas the sources localized
from the second basis field (second compound system) are
mainly located in the right hemisphere. This property does not
hold for PCA basis fields, the localization of which results in a
mixture of left and right sources.

Each system seems to be reasonably composed of occipital
and parietal areas, consistently with the previously reported
generators of spontaneous oscillatory activity in the α rhythm
(Salmelin and Hari, 1994; Gross et al., 2001). Furthermore,
some of the identified areas, such as the inferior parietal lobule
and the intra parietal sulcus, are parts of the frontoparietal
network obtained applying the graph theory to functional
connectivity MRI data by Dosenbach et al. (2007).

From Fig. 7, it is also clear that these sources show up a
distributed and extended nature rather than a well-localized
one as for the motor μ rhythm. For this reason, when using
RAP-MUSIC, it is hard to find convincing results.
Conclusions

This paper proposes a method for identifying compound
systems in the brain and disentangling the contribution of the
various sources within each system. In this work, we supposed
that a compound system is composed of two dominating inter-
acting sources, which have in general an extended and distri-
buted nature. As a prerequisite, we developed the sPCA method
for the decomposition of temporally uncorrelated or non-
interacting sources, regarded to as the simplest possible system,
which is more effective than classical PCA in separating the
contribution of various brain sources to a measured field due to
the assumptionof spatial orthogonalityof the sources rather than
fields as assumedbyclassical PCA.Weuse thismethod inorder to
separate the contribution of various compound system each
composed of one pair of interacting sources to the measured
field. Computer simulations show that sPCA is able to disentangle
the contribution of non-interacting sources to the global field
whereas conventional PCA fails. Furthermore, results taking into
account the influence of different types of noise show that sPCA
does not degrade its performance also for a high noise level.

A second method, MOCA, is designed for the study of cor-
related source pairs and aims at disentangling the contribution
of each sourcewithin a compound systembyexploiting a purely
spatial criterion. Nevertheless, since MOCA does not make any
explicit assumption on the dynamical relationship between the
source pairs, it performswell also for uncorrelated sources. The
application ofMOCA to each system identified by sPCAmakes it
possible to separate the two interacting sources within each
system correctly. The MOCA approach provides also aweighted
minimum norm localization of the decomposed source pat-
terns, which is able to estimate focal as well as extended and
distributed sources as opposite to the RAP-MUSIC scanning
algorithm, which assumes dipolar sources.
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The sPCA andMOCAmethods were applied to the imaginary
part of the cross-spectra of actual EEG data from a motor
imagery protocol with the first method identifying compound
systems, and the second separating sourceswithin each of these
systems. The sPCA system separation is in good agreement with
the results provided by the PISA algorithm,whichwe applied for
comparison, although the two methods have different theore-
tical basis. TheMOCAdecompositionapplied to each systemand
theMOCA source localization shows that the primarymotor and
premotor areas interact at 12 Hz and occipital and parietal areas
interact at 10 Hz in each hemisphere. When RAP-MUSIC is used
to map the sources, meaningful source estimates are obtained
only for the μ rhythm, the generators ofwhich are typically focal.

We believe this approach can improve the understanding
of brain interference phenomena by revealing networks
formed by systems composed by sources interacting at a spe-
cific frequency or in a given frequency band. Therefore, we
expect this method to be particularly effective in identifying
interference among brain regions involved in the generation
and keeping of human brain rhythms such as alpha rhythm for
resting state activity or μ rhythm for somatomotor activity. We
also believe that in all cases of pathologies in which an alter-
ation of the power or frequency of such rhythms has been
observed (e.g., Alzheimer disease), the method could contri-
bute to the investigation of a possible alteration in the inter-
action mechanism as well.
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