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Resting state networks (RSNs) are sets of brain regions exhibiting temporally coherent activity fluctuations in the
absence of imposed task structure. RSNs have been extensively studied with fMRI in the infra-slow frequency
range (nominally b10−1 Hz). The topography of fMRI RSNs reflects stationary temporal correlation over
minutes. However, neuronal communication occurs on a much faster time scale, at frequencies nominally in
the range of 100–102 Hz. We examined phase-shifted interactions in the delta (2–3.5 Hz), theta (4–7 Hz),
alpha (8–12 Hz) and beta (13–30 Hz) frequency bands of resting-state source spaceMEG signals. These analyses
were conducted between nodes of the dorsal attention network (DAN), one of the most robust RSNs, and be-
tween the DAN and other networks. Phase shifted interactions were mapped by the multivariate interaction
measure (MIM), a measure of true interaction constructed from the maximization of imaginary coherency in
the virtual channels comprised of voxel signals in source space. Non-zero-phase interactions occurred between
homologous left and right hemisphere regions of the DAN in the delta and alpha frequency bands. Even stronger
non-zero-phase interactions were detected between networks. Visual regions bilaterally showed phase-shifted
interactions in the alpha band with regions of the DAN. Bilateral somatomotor regions interacted with DAN
nodes in the beta band. These results demonstrate the existence of consistent, frequency specific phase-shifted
interactions on a millisecond time scale between cortical regions within RSN as well as across RSNs.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Following the seminal work of Biswal et al. (1995), resting
state networks (RSNs) are defined as networks of brain regions that
exhibit temporally coherent activity fluctuations in the absence of
identifiable temporal structure (tasks, stimuli or endogenously gener-
ated events). RSNs have been mapped over the entire cerebral cortex
(Buckner et al., 2011; Doucet et al., 2011; Yeo et al., 2011). Each RSN
has been associated with specific cognitive processes (Cole et al.,
2010; Deco and Corbetta, 2010; Fox and Raichle, 2007; Laird et al.,
2011). Most of what is currently known about RSNs derives from rest-
ing state functional magnetic resonance imaging (fMRI), and, conse-
quently, signals in the infra slow frequency range (nominally less
than 0.1 Hz).
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Much less is known concerning RSNs on a time scale relevant to
behavior, i.e., frequencies in the 1–100 Hz range. Electroencepha-
lography (EEG) and magnetoencephalography (MEG) (Cohen, 1972;
Hämäläinen et al., 1993; Hari and Salmelin, 2012) are non-invasive
techniques with millisecond temporal resolution, well suited to the
study of neuronal activity in this frequency range. EEG and MEG re-
cord the activity of “coalitions of neurons” (Crick and Koch, 2003)
that give rise to macroscopic magnetic fields and potential differences
at the scalp. Observed oscillations in these fields are generated by
phase-synchronous activity in large assemblies of neurons. These os-
cillations provide a basis for defining functional brain networks (for a
review see Siegel et al., 2012; Varela et al., 2001). Indeed, coherent
neuronal activity has been hypothesized to serve as a mechanism
for neuronal communication (Fries, 2005). Invasively recorded coher-
ent multi-unit activity and local field potentials (Womelsdorf et al.,
2007) as well as non-invasively recorded scalp potentials (EEG)
(Tallon-Baudry et al., 1996) and MEG (Gross et al., 2006; Siegel et
al., 2008) signals have been extensively described. However, the
great preponderance of this work concerns transient coherence in-
duced by task- or stimulus-related events, e.g., (Siegel et al., 2008).
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The MEG correlates of fMRI RSNs have been recently reported
(Brookes et al., 2011a,b; de Pasquale et al., 2010, 2012). These studies
describe correlations in band-limited power envelopes at infra-slow
frequencies i.e., on a time scale similar to that of fMRI. However,
MEG and EEG allow the estimation of functional connectivity metrics
at much faster time scales, i.e., in the 1–100 Hz range. Indeed, it is
possible to investigate neuronal communication within and between
RSNs by focusing on the phase relations of oscillations in (possibly)
interacting neuronal pools, with the additional possibility of examin-
ing specific brain rhythms, that is particular frequency ranges.

To this end, we reconstruct source-space MEG signals and com-
pute the multivariate interaction measure (MIM) (Ewald et al.,
2012). MIM measures the interaction between vector signals based
on complex coherence (correlation in the frequency domain). MIM
is based on the maximization of the imaginary part of coherence
betweenMEG source space signals, which implies robustness to mixing
distortions (Nolte et al., 2004; Pascual-Marqui, 2007; Schoffelen and
Gross, 2009; Sekihara et al., 2011). Thus, significant non-zero MIM
values cannot be generated by independent sources. Moreover, the
maximization of imaginary part of coherence between subspaces
leads, in general, to an increase in signal to noise ratio by construction
and to the potential observation of interactions otherwise embedded
into noise (Ewald et al., 2012).

We previously investigated MEG RSNs using correlation of band-
limited power (BLP) (de Pasquale et al., 2010, 2012). In those analyses,
RSN functional connectivity was found only intra-hemispherically
unless non-stationarity of the BLP correlation was explicitly taken into
account. Here, we assume stationarity butwe take into account system-
atic temporal delays in signal propagation. We investigate within- and
between-RSN interactions with special attention to the question of
inter-hemispheric functional connectivity. We focus our analysis on
the dorsal attention network (DAN), one of the most robust and well-
defined fMRI RSNs. The DAN characteristically is recruited by tasks
that require the endogenous control of spatial attention (Corbetta and
Shulman, 2002), is highly symmetric and therefore is well suited to in-
vestigating the question of inter-hemispheric functional connectivity.
Moreover, the DAN interacts with other functional networks, especially
the somatomotor and visual systems, and plays a central role in linking
relevant sensory stimuli to motor responses (Corbetta and Shulman,
2002). This functional role makes the DAN well suited to investigation
of the coupling between networks in the resting state.

Methods

Subjects, procedures, and acquisition

The present data were acquired in 12 healthy young adult subjects
(mean age 29 ± 6 years, five females, all right handed; same dataset
described in de Pasquale et al., 2010, 2012). Each subject contributed
two 5 min resting state MEG runs during which they were instructed
to maintain fixation on a visual crosshair. MEG was recorded using
the 165-channel MEG system installed at the University of Chieti
(Della Penna et al., 2000). This system includes 153 dc SQUID inte-
grated magnetometers arranged on a helmet covering the whole
head plus 12 reference channels. Two electrical channels simulta-
neously recorded electrocardiogram (ECG) and electro-oculogram
(EOG) signals for use in artifact rejection. All signals were band-pass
filtered at 0.16–250 Hz and digitized at 1 kHz. The position of the
subject's head with respect to the sensors was determined by five
coils placed on the scalp recorded before and after each MEG run.
The coil positions were digitized by means of a 3D digitizer (3Space
Fastrak; Polhemus), together with anatomical landmarks (left and
right preauricular and nasion) defining a head coordinate system.
Anatomical images were acquired using a sagittal magnetization
prepared rapid acquisition gradient echo T1-weighted sequence
(MP-RAGE; Siemens Vision scanner 1.5 T; TR = 9.7 s, echo time
TE = 4 ms, alpha = 12°, inversion time = 1200 ms, voxel size =
1 × 1 × 1.25 mm3).

MEG source space signal estimation

After downsampling to 341 Hz, the recorded datawere preprocessed
using an independent components analysis (ICA) based algorithm. In
brief, the algorithm automatically classifies the ICs and identifies artifac-
tual components and components of brain origin. Typically, ICA based
pipelines rely on the subtraction of artifactual ICs from MEG recordings
to increase the signal-to-noise ratio. An alternative strategy is that of
reconstructingMEG signals by recombining the ICs of brain origin either
in signal or in source space (Mantini et al., 2011). The latter approach is
pursued in this work. ICs classified as brain components by the fastICA
algorithm with deflation approach (see Mantini et al., 2011 for details
on the classification scheme), typically 10 to 15 in number, are input
to a weighted minimum-norm least squares (WMNLS) linear inverse
(Fuchs et al., 1999; Hämäläinen and Ilmoniemi, 1994) implemented
in Curry 6.0 (Neuroscan). Source-space current is reconstructed on a
Cartesian 3D grid bounded by the subject brain volume as derived
from segmentation of individual magnetic resonance images (Curry
6.0—Neuroscan). Source-space current corresponding to the i-th IC is
computed as

ŝi ¼ W−1LT LW−1LT þ νiI
� �

†
ai; ð1Þ

where ai is the i-th IC topography, L is the lead-field matrix for theMEG
forward problem, W is a diagonal weighting matrix, the elements of
which are defined as wjj = ‖Lj‖ (with Lj being the three field compo-
nents for unit dipoles in three directions at the j-th voxel). The symbol
‖ ⋅ ‖ denotes the Frobenius norm); νi is the regularization parameter
for each IC and I is the identity matrix. The superscripts −1, T and †

indicate matrix inverse, transpose and pseudoinverse, respectively.
As the ICs are typically characterized by relatively simple source

configurations, the localization of their associated source-space maps
within the cortex can potentially provide high accuracy in the detection
of source generators (Tsai et al., 2006). Approaches differ for the choice
of the regularization parameter. InWMNLs, this parameter is set on the
basis of the deviation between the measured data and the forward
calculated data using the Chi-squared criterion, which relies on the
assumption that signal power is comparable to noise in the data. In
separately localizing independent component topographies, the regu-
larization parameter λI is set for each IC rather than for the whole
recording, thus proving an individualized estimate of the signal to
noise ratio. Further details on ICA classification and source localization
steps are given in Mantini et al. (2011) and de Pasquale et al. (2010).

Once the topographies have been projected onto the source space,

the activity at each voxel and each time sample, q̂jx tð Þq̂jy tð Þq̂jz tð Þ
h i

,

was obtained as a linear combination of IC time courses weighted
by their related source space map. A dimensionality reduction step
then was performed via principal component analysis (PCA). Of the
three PCA eigenvalues (λ1 > λ2 > λ3), the magnitude of λ3 is sys-
tematically much smaller than that of λ1. Thus, in our data, over all
subjects, in 99% of the voxels λ3/λ1 ≤0.1. However, λ2 magnitude is
comparable with that of λ1. Thus, over all subjects, in 99% of the
voxels λ2/λ1 ≈ 0.8. MEG signal power therefore is mostly contained
in the first two principal components, as expected following the
well-established theory regarding MEG quasi-silent pseudo-radial
generators (Hämäläinen et al., 1993). Since the third component is
very small, its retention in MIM estimation (Eq. (7)) introduces an
indeterminate form, which is numerically unstable. Therefore, only

the first two components, namely, λ1, λ2 and q̂jλ1 tð Þ q̂jλ2 tð Þ
h i

, were

used to estimate seed-based MEG functional connectivity in terms
of the multivariate interaction measure.
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Complex valued coherence

The multivariate interaction measure (MIM) is based on complex
valued coherence. Given two time domain signals, xk(t) and xl(t),
and their Fourier transforms, Xk(f) and Xl(f), coherence is defined as

Cohkl fð Þ≡ Ckl fð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ckk fð ÞCll fð Þp ; ð2Þ

where

Ckl fð Þ≡ Xk fð ÞX�
l fð Þ� � ð3Þ

is the cross spectrum between Xk(f) and Xl(f), Ckk(f) is the power
spectrum of Xk(f), and Cll(f) is the power spectrum of Xl(f). The sym-
bols * and 〈〉 in Eq. (3) indicate complex conjugation and expectation
value, respectively. In practice, the expectation value is estimated as
the average over signal epochs. In the following, frequency depen-
dence of all the quantities is implicitly understood. Complex valued
coherence in Eq. (2) can be split into its real and imaginary part, the
former being sensitive to in-phase and phase-shifted interactions
and the latter being non-vanishing only for phase-shifted inter-
actions. Expressing Xk and Xl in phasor notation explicitly shows
their dependence on amplitude (ak and al respectively) and phase
(Φk and Φl respectively)

Xk ¼ ake
JΦk ¼ ak cosΦk þ J sinΦkð Þ

Xl ¼ ale
JΦl ¼ al cosΦl þ J sinΦlð Þ ; ð4Þ

where J stands for the imaginary unit. It immediately follows that Ckl
can be expressed as

Ckl ¼ ake
JΦk ale

JΦl
� ��D E

¼ akale
J Φk−Φlð ÞD E

¼ akale
JΔΦ

D E
: ð5Þ

A non-vanishing imaginary part of complex valued coherence
can only result from a consistently phase-shifted relation between
Xk and Xl. As a consequence of these properties, and assuming the
quasi static regime for Maxwell's equations (instantaneous signal
propagation of brain currents to MEG sensors), the imaginary com-
ponent of Cohkl is robust (in the above defined sense) to spurious
connectivity caused by linear signal leakage between source space cur-
rent estimates at spatially separate locations in the brain (Schoffelen
and Gross, 2009; Sekihara et al., 2011) and to cross talk at the sensor
level (Nolte et al., 2004). A significant deviation from zero of the imag-
inary component of complex valued coherence cannot be generated
by independent sources, only by true interaction. Thus, the imaginary
component of complex valued coherence robustly measures functional
connectivity (Guggisberg et al., 2008; Martino et al., 2011; Marzetti
et al., 2008; Nolte et al., 2009).

Connectivity map estimation by MIM

As outlined above, the estimated signal at each voxel, q̂jλ1 tð Þ q̂jλ2 tð Þ
h i

,

is bi-dimensional. Therefore, to map global functional connectivity be-
tween voxel pairs, a pairwise interaction measure such as the imaginary
part of coherence as defined above is not adequate. Rather, a measure of
interaction between multidimensional subspaces is needed. For this
purpose,weuse themultivariate interactionmeasure recently introduced

by Ewald et al. (2012). Let us define q̂sλ01
tð Þ q̂sλ02

tð Þ
h i

as the time domain

signals at the seed voxel s, and q̂jλ1 tð Þ q̂jλ2 tð Þ
h i

as the time domain signals

at a generic voxel j (Fig. 1).
The Fourier transform of these signals can be expressed as the vec-

tors Xs fð Þ ¼ Q̂ sλ01 fð Þ Q̂ sλ02 fð Þ
h i

and Xj fð Þ ¼ Q̂ jλ1 fð Þ Q̂ jλ2 fð Þ
h i

, spanning

two bi-dimensional subspaces. Further introducing the notation
X(f) = [XS
T(f) Xj

T(f)]T, the cross-spectrum between the two vectors
assumes the block form:

C fð Þ ¼ X fð ÞX fð Þ�� � ¼ CR
ss fð Þ þ JCl

ss fð Þ CR
sj fð Þ þ JCl

sj fð Þ
CR
js fð Þ þ JCl

js fð Þ CR
jj fð Þ þ JCl

jj fð Þ

 !
; ð6Þ

where the superscripts R and I denote the real and the imaginary
part, respectively. Complex coherence between the two subspaces is
defined, analogously to the bivariate case, as the cross-spectrum nor-
malized by power. We are interested in the imaginary part of the
global complex coherence and, in particular, in finding the vector
weights (α∈ℜ2 × 1 and β∈ℜ2 × 1) for the corresponding voxel direc-
tions that maximize the imaginary part of coherence between the
two projections within subspaces of the seed voxel s and the generic
voxel j. This idea is related to canonical correlation analysis (CCA)
(Hotelling, 1936), which maximizes the correlation between multi-
variate data sets.

The maximum imaginary coherence between the two projections
within the subspaces is found by setting to zero the derivatives of the
imaginary part of coherency between the two virtual channels given
by the weighted dipole directions with respect to the weights α and
β (see Ewald et al., 2012 for details). This is equivalent to solving a
set of eigenvalue equations. Each solution (eigenvalue) might be con-
sidered as a meaningful measure of brain interaction. Nevertheless, to
derive a global index for coupling between multidimensional voxel
signals, we sum the eigenvalues in quadrature (compute the square
root of the sum of all eigenvalues squared), i.e., MIM. An alternative
definition of MIM can be analytically derived without directly solving
the set of eigenvalue equations (see again Ewald et al., 2012 for ana-
lytical derivation), thus providing the compact form:

MIMsj ¼ tr CR
ss

� ��1
Cl
sj CR

jj

� ��1
Cl
sj

� �T� �
; ð7Þ

where, for notational simplicity, the dependence on the frequency is
again omitted. Thus, the MIM analytical formulation finds the dipole
orientations that maximize the imaginary coherence for a given pair
of sources. This is equivalent to performing an exhaustive search
over each orientation in the dipole subspaces and estimating the
imaginary coherence for each orientation pair. We emphasize that
MIM is invariant to linear and static transformations within the sub-
space spanned by each vector signal, but not to the coupling between
two subspaces. If a measure not invariant to linear transformations of
the 3D coordinates for a given voxel was used, such as the averaged
imaginary coherence between different possible orientations, the
interaction result would depend on the orientation of the coordinate
system and would therefore be meaningless. As was shown in Ewald
et al. (2012), an interaction measure for which the invariance proper-
ties holds must have the form given in Eq. (7).

In this work, MIM values were estimated as follows: Cross-spectra
were averaged over approximately 400 signal epochs of 1.5 s dura-
tion with 50% overlap between epochs (frequency resolution of
0.66 Hz), after linear de-trending and Hanning windowing. To further
improve the interaction estimate robustness, consecutive frequency
bins were integrated over frequency bands defined on the basis of in-
dividual alpha peak (IAF) (Klimesch, 1996). In our data, IAF variability
was 10.1 ± 0.7 Hz (mean ± standard deviation). The alpha band
was defined for each subject as IAF ± 2 Hz; the definitions of other
frequency bands were individually adjusted accordingly. On average,
these bands span the following frequency ranges: delta (2–3.5 Hz),
theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), in accordance
with conventional practice (Engel and Fries, 2010). Results for fre-
quencies above 30 Hz (gamma band range) did not reveal significant
interactions and therefore are not reported here.

Since MIM is a positive definite quantity, cross-spectral estimates
in Eq. (7) based on a finite number of epochs will be positively biased.



Fig. 1. Schematic illustration of the 3D grid source space signal components before and after principal component analysis.

Table 1
Node coordinates for dorsal attention, somatomotor and visual networks in MNI space.
DAN seed coordinates are highlighted in yellow in the first two rows.

NETWORK ROI label MNI coordinates

[x, y, z]

Dorsal Attention Network lFEF [−26, −12, 53]

Dorsal Attention Network lPIPS [−25, −67, 48]

Dorsal Attention Network lVIPS [−24, −73, 29]

Dorsal Attention Network rFEF [30, −13, 53] 

Dorsal Attention Network rPIPS [23, −69, 49] 

Dorsal Attention Network rVIPS [30, −83, 13] 

Somato−motor Network lCS [−32, −36, 55]

Somato−motor Network lS2 [−39, −27, 18]

Somato−motor Network lSMA [−1, −17, 55]

Somato−motor Network rCS [32, −35, 58] 

Somato−motor Network rS2 [36, −23, 21] 

Somato−motor Network rSMA [4, −15, 52] 

Visual Network lV1 [ −2, −99, −3]

Visual Network lV2v [−5, −77, −11]

Visual Network lV3 [−8, −96, 10]

Visual Network lV4 [−29, −76, 18]

Visual Network rV1v [10, −91, 3] 

Visual Network rV2d [14, −95, 10]

Visual Network rV3 [18, −94, 15] 
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This bias can be approximated by assuming that the original signal is
a superposition of independent sources over K trials and that mixing
artifacts exist within but not across subspaces. Thus, an approximated
expectation value for the MIM bias is given by

MIMsj

D E
≈

NsNj

2K
ð8Þ

where 〈 ⋅ 〉 denotes expectation value, Ns and Nj are the subspace
dimensions and K is the number of trials used for cross-spectral esti-
mation. In this work, we computed the empirical distribution of MIM
for independent sources (simulated as i.i.d. Gaussian noise) using a
Monte Carlo approach, the mean of which corresponds to Eq. (8). A
non-parametric Wilcoxon signed-rank test was used to assess voxel-
wise significance of MIM maps across subjects. For each frequency
band and seed, the MIM distribution across subjects for each voxel
was compared to the empirical distribution of MIM for independent
sources. Significant voxels were assessed with Bonferroni correction
for multiple comparisons across voxels (p b 0.001, corrected value).
Significant voxels then were included in a binary group mask. Specif-
ically, the steps of the group statistics for a given frequency band
were as follows: i) for each seed, the MIM distribution across subjects
for each voxel is the input to the Wilcoxon signed rank test. Voxels
significantly different from the empirical distribution for i.i.d. noise
were assigned a value of 1, and all other voxels were set to 0 to gener-
ate a binary mask; ii) a binary valued conjunction mask was obtained
by combining the single seed binary masks by a logical and; iii) for
each seed, the group average MIM was computed; iv) the mean
group MIM map across the two seeds was computed; and v) the
final map is obtained by masking the average obtained in iv) with
the conjunction mask derived in ii).

MIM mapping was applied to derive functional connectivity maps
between nodes in the dorsal attention network (DAN) and voxels in
the whole brain space. The principal nodes of the DAN bilaterally
include anterior and posterior intraparietal sulcus (IPS), the inter-
section of precentral and superior frontal sulcus (human FEF), and
the middle temporal area (MT). Posterior IPS (pIPS) and human FEF
in the left hemisphere were selected as seeds for functional connectiv-
ity mapping. These nodes have been defined based on a meta-analysis
of fMRI studies of spatial attention described in He et al. (2007); their
coordinates in Montreal Neurological Institute (MNI) space are listed
in the first two rows of Table 1 (see also de Pasquale et al., 2010).

Final pIPS-FEF conjunction maps were obtained as described
above. All maps were projected to the brain surface for visualization
by using Caret software (http://www.nitrc.org/projects/caret/, Van
Essen et al., 2001).
Frequency specificity of MIM values

ANOVA was used to statistically assess frequency specificity with-
in and between network interactions. Since MIM values for back-
ground brain activity differ across frequency bands, we normalized
for global MIM values by calculating normalized MIM. This quantity
is obtained by correcting MIM by its mean and standard deviation
(Z-score) over the whole brain in each subject and for each frequency
band. Specifically, the normalization was performed on the conjunc-
tion map of lFEF and lPIPS seeds. Thus, all ANOVA tests were run
using the normalized MIM. Two-way ANOVA were run on normalized
MIM values with band (delta, theta, alpha, beta) and network node
as factors. The network node can either be DAN nodes or nodes
belonging to the other RSNs that showed interactions with DAN
nodes. In addition, if one frequency band was found to be involved
in within and between interactions, a one-way ANOVA with factor

http://www.nitrc.org/projects/caret/
Unlabelled image


Fig. 2. Whole brain map of the MIM values in the alpha frequency band for the left FEF
seed. This map is thresholded above the statistically significant level. The seed location
is marked by a blue dot and the network node locations are marked by white arrows
and labeled in accordance with the coordinates listed in Table 1.
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network was performed to evaluate possible differences related to
phase-lag of within versus between network interactions.

Results

Multivariate interaction map within the dorsal attention network

The group MIM map obtained for the left hemisphere FEF (lFEF)
seed is shown in Fig. 2 for the alpha frequency band.

The seed position is indicated by a blue dot. The group MIM map
shows interactions both within the seeded hemisphere and inter-
hemispherically. In particular, if we focus on DAN regions, we observe
that nodes of the right hemisphere (i.e. rFEF, rpIPS) show out of phase
coherent interactions. The other topographies obtained by seeding
either the lFEF or the lPIPS for the delta, alpha and beta frequency
bands prior to the conservative conjunction procedure are shown in
the Supplementary Material (Fig. S1).

Figs. 3(a, b) shows the generalization of MIM mapping across the
two core regions of the DAN (pIPS, FEF) obtained as the conjunction
map for the delta and alpha frequency bands. Conjunction maps are
necessarily more sparse than the union of the individual maps. Two
effects stand out from this conjunction map. First, non-zero phase
coupling between seeds in the left hemisphere and the rest of
the brain is predominantly contralateral, and this coupling exhibits
substantial topographic specificity, that is greatest in the right hemi-
sphere near nodes of the DAN. Second, there is substantial frequency
specificity, as shown in Fig. 3c for the inter-hemispheric MIM [both
nodes (rFEF and rpIPS)].

To statistically assess this frequency specificity, we ran a 2-way
ANOVA on normalized MIM values (see Methods section) with Band
(delta, theta, alpha, beta) and DAN Node (rpIPS, rFEF) as factors.
This ANOVA returned a significant main effect of Band (F(3,69) =
2.6, p b 0.05). As shown in Fig. 3d, statistically significant differences
were detected between alpha and theta and alpha and beta as well as
between delta and theta and delta and beta (p b 0.05). There was
no significant difference between alpha and delta, which is consistent
with the topographic similarity of the two maps shown in Figs. 3(a, b).

Multivariate interaction measure between networks

Our analysis also detected phase-shifted functional connectivity
between different networks. Specifically, significant MIM was ob-
served in the alpha band between DAN nodes and visual areas (see
Table 1 for node coordinates). The topography of this interaction is
shown in Fig. 4a, which shows the posterior view of Fig. 3b, i.e., the
conjunction map obtained from the left FEF and left pIPS group
maps in the alpha band. This figure illustrates temporally delayed
interactions of left hemisphere nodes of the DAN with bilateral
lower and higher order visual areas.

A 2-way ANOVA on individual normalized MIM values obtained
from visual network nodes (lV1, lV2v, lV3, lV4, rV1v, rV2d, rV3) was
run with factors Band and Node. This analysis showed a main effect
of Band (F(3,69) = 5.75, p = 0.0014). Post-hoc tests confirmed that
non-zero-phase interaction between DAN nodes and visual network
nodes were significantly stronger in alpha than in theta and beta
(p b 0.003). Only a trend was observed in the delta band, which sug-
gests that the alpha band is particularly important in mediating inter-
actions between the DAN and visual areas (Fig. 4b). In addition,
confining the analysis in the alpha band, a one-way ANOVA with fac-
tor Network (averaging regions from DAN in the contralateral hemi-
sphere (rpIPS, rFEF) and bilateral visual network nodes (lV1, lV2v,
lV3, lV4, rV1v, rV2d, rV3) respectively) was run to evaluate possible
differences related to phase-lag of DAN-Visual network interaction
with respect to within-DAN interaction. ANOVA results (F(1,23) =
5.03, p b 0.04) revealed that normalized MIM between the DAN and
visual nodes is greater than between homologous nodes within the
DAN (Fig. 4c).

Evidence for between network interactions as mapped by MIM
was also found between the DAN and the somatomotor network.
Interestingly, this coupling was found in the beta frequency range.
Fig. 5a shows the corresponding topography obtained from the con-
junction map of the left FEF and pIPS group maps in the beta band.
This map provides evidence for phase-shifted DAN interactions with
primary and secondary somatomotor cortex both in left and in right
hemispheres.

A 2-way ANOVA of individual normalized MIM values obtained
from the somatomotor network nodes (lCS, lS2, lPMA, rS2, SMA) was
run with factors Band and Node. This analysis showed a main effect of
Band (F(3,69) = 3.3, p b 0.03). Post-hoc tests confirmed that non-
zero-phase interaction between DAN nodes and these somatomotor
network nodes were significantly stronger in beta than in all the other
frequency bands (p b 0.01, beta vs. delta and beta vs. alpha; p = 0.05,
beta vs. theta), see Fig. 5b.

A one-way ANOVA with factor Network was run confining the
analysis to the beta band. In this analysis, DAN regions in the contra-
lateral hemisphere (rpIPS, rFEF) and bilateral somatomotor network
(lCs, lS2, rCS, rS2, SMA) were collapsed with the aim of evaluating
possible differences related to phase-lag of DAN-Somatomotor net-
work interaction with respect to within-DAN interaction. ANOVA re-
sults (F(1,20) = 8.64, p b 0.008) are shown in Fig. 5c and reveal that
normalized MIM values within the somatomotor network nodes are
significantly higher than those within the DAN. To further investigate
this effect, we run another one way ANOVA in which nodes within
each network were not collapsed. ANOVA results (F(6138) = 2.57,
p = 0.02) are shown in Fig. 5d and reveal that, also for single
nodes, normalized MIM values for the somatomotor network nodes
are significantly higher than values for DAN nodes.
Discussion

We examined phase-shifted coherence of resting-state neuro-
magnetic signals within and between functional networks previously
defined by fMRI. This work, as far as we are aware, represents the first
report of phase-shifted, source-space neuromagnetic interactions
linked to fMRI-derived networks. Non zero-phase interactions were
observed between homologous left and right hemisphere regions of
the DAN in the delta and alpha frequency bands. Furthermore, even
stronger non-zero-phase interactions were detected between net-
works. Visual regions bilaterally showed interactions in the alpha



Fig. 3. (a, b) Whole brain left FEF and PIPS conjunction maps of MIM values in delta and alpha frequency bands. These maps reveal out of phase interactions between the seeds and
DAN nodes in the contralateral hemisphere. This interaction is frequency specific, as shown by the plot as a function of frequency (c). The seed locations are marked by a blue dot
and the network node locations are marked by white arrows and labeled in accordance with the coordinates listed in Table 1. (d) Post-hoc results for the 2-way ANOVA with factors
frequency bands and DAN nodes (F(3,69) = 2.6, p = 0.047) for MIM values. The main effect concerns frequency bands: MIM values within-DAN in the alpha and delta bands are
statistically significantly greater than those in theta and beta.
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band with regions of the DAN; bilateral somatomotor regions inter-
acted with DAN nodes in the beta band.

MEG vs. fMRI functional connectivity

The observation that MEG MIM topography resembles RSNs
derived by fMRI is remarkable because the two modalities operate
in non-overlapping temporal frequency bands (~0.01–0.1 Hz in the
case of fMRI vs. 1–100 Hz in the case of MEG). Also, it should be
noted that resting state fMRI correlations, with rare exceptions,
e.g., (Roebroeck et al., 2011), are computed at zero phase lag. Non-
zero phase lags in resting state fMRI data are widely assumed to be
un-interpretable because blood oxygenation level dependent (BOLD)
signals only indirectly reflect neural activity and the kinetics of the
hemodynamic transduction mechanism cannot be directly observed
(Smith et al., 2012). The two modalities also operate in non-
overlapping spatial frequency bands: the spatial resolution of MEG is
limited by the intrinsic nature of the electromagnetic inverse problem,
while the spatial resolution of fMRI is limited only by practical consider-
ations governing the achievable magnetic field and imaging gradient
strengths (I mm resolution throughout the brain is feasible at 7 T,
Ugurbil, 2012). Moreover, whereas MEG is relatively insensitive to
sources distant from the sensors, e.g., the mesial and inferior cortical
surfaces, fMRI coverage is not similarly limited. Nevertheless, there
exists an obvious topographic concordance between the present
results and the extant resting state fMRI literature (e.g., compare pres-
ent Figs. 3 to 5 of Fox et al., 2006).

If the upper frequency limit of physiologically meaningful signals
in an MEG record is conservatively taken to be 30 Hz, we can estimate
the number of independent measures (per channel) in a 5-min record
as 2⋅5⋅60⋅30 = 18,000. In contrast, if the upper frequency limit of
physiologically meaningful fMRI signals is taken to be 0.1 Hz (Hathout
et al., 1999), there are only 60 independent measures (per voxel) in
a 5-min record. This difference in spectral content translates to a
substantial difference in information acquired over a typical resting
state epoch. Thus, MEG supports a wide variety of analytic strategies
for characterizing signal interactions between ROI pairs that are not
accessible to fMRI. MIM is only one such strategy. Alternative strat-
egies include correlation of band-limited power in the 3–30 Hz range
(Brookes et al., 2011a,b; de Pasquale et al., 2010, 2012) and several tech-
niques for estimating directed influences between ROI pairs as
reviewed in (Castellanos et al., 2011; Florin et al., 2011; Schnitzler and
Gross, 2005; Schoffelen and Gross, 2009).
Multivariate interaction measure in resting state MEG

Phase-shifted interactions were derived from the Multivariate
Interaction Measure (MIM), a quantity based on maximizing the imag-
inary part of coherence between multidimensional subspaces (Ewald
et al., 2012; Nolte et al., 2004). Low spatial resolution of MEG source
space projection introduces artificial zero-lag coherence, usually
defined as the field spread effect (Brookes et al., 2012; Hauk et al.,
2011; Schoffelen and Gross, 2009). State contrast, e.g., control vs. task
periods, has been used to null-out zero-phase interactions under the
assumption that they are identical in both conditions. This strategy can-
not be applied to resting state data because task contrast does not exist.
The imaginary part of coherence is known to systematically ignore
any functional relation occurring at vanishing phase delay, including
artifacts from volume conduction in channel space and of field spread
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Fig. 4. (a) Whole brain left FEF and PIPS conjunction map of the MIM values in the alpha band. The left pIPS seed location is marked by a blue dot whereas the left FEF seed is out of
the field of view. This map reveals alpha band specific out of phase interaction between the DAN seeds and visual network nodes in both hemispheres. (b) Post-hoc results for the
2-way ANOVA with factors frequency bands and visual network nodes (F(3,69) = 5.75, p = 0.0014) for MIM values. The main effect concerns frequency bands: MIM for
across-network interaction between DAN and visual network in the alpha band are statistically significantly greater than those theta and beta. (c) Post-hoc results for the
1-way ANOVA with factor node (F(1,23) = 5.03, p = 0.035) of MIM values in the alpha frequency band from DAN and visual network nodes. MIM values for the average of visual
network nodes are significantly greater than those within the dorsal attention network for the average of right FEF and right pIPS in alpha.
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in source space, and can therefore provide information about true
non-zero-lag interactions even in the absence of task contrast.

Functional connectivity based on the imaginary part of coherence
reflects a consistent out-of-phase relationship that generally depends
on both power and phase. In noisy data, this combination of effects
persists, even if we study only phase relations at estimated sources,
e.g., by phase locking value (Varela et al., 2001), because the observed
phase depends not only on the true signal phase but also on signal
to noise ratio within each trial. In fact, an amplitude decrease of
the coherent process of interest, say without any change in phase
difference, will result in an overall increased phase difference in the
presence of a highly correlated background noise. On the other hand,
a measure of interaction based on amplitude-weighted phase, such
as the imaginary part of coherence, theoretically provides a statis-
tically more robust estimator of phase relationships for weak signals
(Nolte et al., 2004).

Comparison between the multivariate interaction measure and the
scalar approach

The imaginary part of coherence is a bivariatemeasure of interaction
between uni-dimensional signals. When dealing with MEG source
space signals, uncertainty in functional to anatomical image coregis-
tration prevents the use of a strict cortical orientation constraint to fix
dipole direction (Chang et al., 2012). Therefore, the estimated signal at
each location must be treated as a vector in a multidimensional sub-
space. To investigate the question of coherence/phase synchrony, it is
necessary to extend the classical definitions (Nolte et al., 2004; Varela
et al., 2001) to pairs of multivariate time series. The MIM measure
provides an extension such that invariance to the orientation of the
coordinate system is achieved. Such extension is needed also when
connectivity is mapped from source space signal estimated by vector
beamformers (Sekihara et al., 2001) in which the three components of
the weight vector are used to track the three components of the source
activity. The MIM method is based on the maximization of the imagi-
nary part of coherence between the seed and the test voxel vector activ-
ity thus leading to an increase in signal to noise ratio by construction
potentially allowing to observe interactions otherwise embedded into
noise. This feature is particularly relevant for low amplitude resting
state signals. An alternative approach is the selection of the direction
ofmaximumpower, e.g. using PCA to determine a fixed dipole direction
(Sekihara et al., 2004), thusmapping connectivity between scalar quan-
tities (e.g., by standard Imaginary coherence). However, the directions
of maximal power can in general be quite different from the directions
whichmaximize imaginary coherence.With the power based approach,
we might miss local interactions as well as interactions which corre-
spond to weak sources, i.e. the stronger sources are not always the
interacting ones. To investigate this, we made illustrative calculations
from MEG data measured in a single subject under resting condition
for 20 min. At sensor level, we observed a strong peak of imaginary
coherence (ImCoh) at 20.5 Hz which was analyzed by projecting
cross-spectra at the source level using a weighted minimum norm
source reconstruction. For two voxels, we calculated source activities
for all source directions in the two-dimensional plane spanned by
the two eigenvectors corresponding to the two largest eigenvalues
of the real part of the cross-spectrum at 20.5 Hz. Since we have two
voxels, we have two of such directions defined by Φ1 and Φ2. We cal-
culated the imaginary part of coherence and the sum of powers of
the two dipoles for all pairs of angles, each in the range [0, π]. We
consider two situations: i) the two voxels are far apart and located
one in the left and one in the right motor area (Fig. 6, panels a and
b); ii) the two voxels are identical and located in the left motor
area (Fig. 6, panels c and d).

From the above figure, we first observe that the sum of powers is
always maximal at the corners (b, d) which are physically equivalent
and just differ by the sign of the activity. This is consequence of the
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Fig. 5. (a) Whole brain left FEF and PIPS conjunction map of the MIM values in beta band. This map reveals beta band specific out of phase interaction between the DAN seeds and
somatomotor network nodes in both hemispheres. Specifically, left central sulcus (lCS), secondary somatosensory areas (lS2) and supplementary motor area (lSMA), secondary
somatosensory areas (rS2) and supplementary motor area (rSMA) are involved in this interaction. (b) Post-hoc results for the 2-way ANOVA with factors Frequency Bands and
Somatomotor Network Nodes (F(3,69) = 3.28, p = 0.026) for MIM values. The main effect concerns Frequency Bands: the MIM for “across” network interaction between DAN
and Somatomotor Network in the beta band are significantly greater than those in delta and alpha. (c) Post-hoc results for the 1-way ANOVA with factor DAN and somatomotor
network nodes (F(1,20) = 8.34, p = 0.008) for beta band MIM. MIM averaged across somatomotor network nodes (lCS, lS2, lSMA, rCS, rS2 and rSMA) is significantly greater
than similarly averaged MIM in right hemisphere DAN nodes. (d) Post-hoc results for the 1-way ANOVA with factor DAN and somatomotor network nodes (F(6138) = 2.75,
p = 0.02) for MIM values in the beta frequency band. Here, each node is considered individually. MIM values in all Somatomotor Network nodes (lCS, lS2, lSMA, rCS, rS2 and
rSMA) were significantly greater than those in the right pIPS; MIM in lCS and rCS also were greater than MIM in rFEF. Seed locations are marked by a blue dot and the network
node locations are marked by white arrows and labeled in accordance with the coordinates listed in Table 1.
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chosen basis: vanishing angles correspond to the direction of eigen-
vector with largest eigenvalue, i.e. largest power. One of these corners
would be chosen if the direction of the dipoles would be fixed corre-
sponding to maximal power. For ImCoh, we observe that maximal
values do not correspond to the corners. Specifically, for identical
voxels ImCoh vanishes exactly on the diagonal (c) (and in all corners)
because this corresponds to self-interaction which cannot be detected
by ImCoh. In the MIM approach we can observe an interaction
with itself because it includes non-identical orientations which pick
up signals from different sources. For remote interactions, ImCoh
is almost vanishing in our example (a). We consider this as a coinci-
dence which is not necessarily the case but shows that it is
possible that interactions are missed if dipole directions are fixed
according to power.

To further show the difference between the MIM approach and
the scalar approach based on estimating the imaginary part of coher-
ence between the first principal direction at the seed and at all
other voxels, we provide a representative example of such compari-
son in the alpha band. Fig. 7(a) shows the MIM map for the lFEF
seed (also shown in Fig. 2) and the corresponding scalar map (b). In
the scalar version, we map the squared imaginary coherence which
is dimensionally consistent with MIM values (Ewald et al., 2012).
This comparison shows that although the two topographies share
some commonalities, they also present clear differences. In particular,
the right pIPS is highlighted by both approach but the rFEF is present
only in the MIM map. On the other hand, other right frontal regions
are significant in the scalar map but lose their significance when the
vector measure is taken into account. Moreover, overall increased
values are found for the MIM map meaning that an important part
of the interaction could be lost with the scalar approach.

In conclusion, by taking only orientation of maximum power and
ignoring the orthogonal direction, we miss local interactions. Mini-
mum norm inverse solutions, like beamformer solutions, are spatially
very blurred. If there are two interacting sources close to each other,
say e.g. at 4 mm distance, then these inverse methods will mix the
activities. For simplicity of the argument let's assume that the sources
are located exactly on two neighboring voxels but have different
orientations. The estimates of the source activities at these two voxels
will contain activity of both sources, such that, as the most likely
result, the dipole direction of both voxels will correspond to the one
of the stronger source. The interaction is then not visible or perhaps
will reappear as long range interaction in a weaker form. Thus, in
general we would have a bias towards remote interactions. The sec-
ond kind of interactions possibly missed are those corresponding to
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Fig. 6. Imaginary part of coherence (ImCoh) and sum of powers for two dipoles the directions of which are indicated by the angles Φ1 and Φ2, respectively. Each direction varies in
the range [0, π]. Two different situations are presented: dipoles located in distant voxels (top row, panels a and b), dipoles located at the same voxel (bottom row, panels c and d). In
more detail we show: (a) ImCoh for dipole located in distant voxels (left and right motor areas); (b) sum of powers for the same situation shown in (a); (c) ImCoh for dipole located
at the same voxel; (d) sum of powers for the same situation shown in (c).
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weak sources, as it is conceivable that the strong sources are not the
interacting ones.

Putative neurobiological mechanisms

Non zero-phase coupling was observed between homologous nodes
of the DAN (pIPS, FEF), within-network interaction, but was even higher
for between network interactions, e.g., between DAN and visual regions,
or DAN and regions of the somatomotor networks (Figs. 4 and 5). This
finding suggests that between- as opposed to within-network inter-
actions are relatively delayed, possibly because signals are routed through
more complicated sub-cortical pathways. Inter-hemispheric as compared
to intra-hemispheric interactions also appear relatively more delayed.
Phase-shifted interactions fundamentally imply twomechanisms: synap-
tic delays between regions, and multi-synaptic pathways. Three main
Fig. 7. (a) MIM map in the alpha band obtained by seeding lFEF (same of Fig. 2); (b) squared
cipal direction only (scalar analogous of (a)).
anatomical systems support information processing between cortical
regions: intra-hemispheric association pathways; callosal pathways;
and, cortico-striatal-thalamic-cortical loops.

We propose that inter-hemispheric phase-shifted interactions
depend on the corpus callosum. The available evidence, albeit scarce,
suggests that inter-hemispheric callosal connections are fewer, more
variable in size and in degree of myelination, and contain a higher
proportion of non-myelinated slow conducting fibers than intra-
hemispheric cortical association pathways (Nowak et al., 1997). Evolu-
tionary studies indicate that callosal connections increase in size as
well as in size variability proceeding from macaques to chimpanzees
to humans (Caminiti et al., 2009). Furthermore, the largest myelinated
axons and the smallest proportion of un-myelinated axons (≈6%) are
found in regions of the corpus callosum that carry projections from
primary sensory cortices, whereas the smallest myelinated axons and
imaginary coherence map obtained by seeding lFEF and calculated from the first prin-
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largest proportion of un-myelinated axons (≈30%) are found in regions
of the corpus callosum that carry projections from association cortices
(prefrontal, parietal) (LaMantia and Rakic, 1994). As pointed out by
Caminiti et al. (2009) slowing conduction and increasing the range of
delays might expand the temporal domain for differentiation neuronal
spike timing, enlarge the number of neuronal groups that cortical
connectivity can generate, and facilitate oscillations through the inter-
play of inhibitory and excitatory conduction delays between the hemi-
spheres (Caminiti et al., 2009). Our findings confirm the presence of
lagged interaction between homologous regions of the prefrontal and
parietal human cortex in the awake resting state.
Frequency specificity of MIM

We present evidence for frequency specificity in delta, alpha and
beta phase-shifted interactionswithin and between RSNs. The temporal
frequencies at whichMIM is observed, i.e., ~3–30 Hz, agree with results
obtained by invasive recording in monkeys (Wang et al., 2012). A pos-
sible theoretical basis for such results can be found in recent computa-
tional studies indicating that phase-shifted synchronization may be an
important mechanism to link fast to slow RSN dynamics. In fact, when
brain regions are modeled as biologically plausible coupled oscillators
operating at high frequencies (e.g., in the gamma band), and connected
by a veridical neuroanatomical matrix, then slow power fluctuations
emerge when conduction delays between regions are introduced in
the model (Cabral et al., 2011; Deco et al., 2009; Ghosh et al., 2008).
The relationship between slow fluctuation fMRI RSNs and activity/
power and synchrony/coherence in electrophysiological data currently
is an active field of investigation in real data. Prior studies have evaluat-
edMEG data in terms of band-limited power (BLP), that is, the envelope
of rhythmical activity at faster frequencies (nominally, 1–100 Hz)
(Brookes et al., 2011a,b; de Pasquale et al., 2010, 2012; Liu et al.,
2010). Weak links between MEG BLP and imaginary part of coherence
have also been recently presented (Brookes et al., 2011a,b). Correlations
of slow frequency (nominally, below 0.1 Hz) power fluctuations as
measured byMEG generate RSN topographies similar to those observed
by fMRI. Our previous papers (de Pasquale et al., 2010, 2012) suggest
that low frequency BLP correlations exhibit fMRI RSN topographies
only transiently, and non-stationarity must be explicitly taken into
account to demonstrate MEG-fMRI correspondences. Here, we demon-
strate that phase-shifted interactions between nodes of networks or
between networks seem to be robust over relatively long time periods
(minutes), although it is likely that transientmodulations of phase rela-
tionships, strong enough to show up after averaging over time, occur
over shorter time scales.

The spectral specificity of our presently observed MIM results may
also have systems-level neurobiological implications. One important ob-
servation is that MIM between RSNs at rest involves similar frequencies
to those observed during tasks. Homologous regions of the DAN (pIPS,
FEF) maintain phase-shifted interactions in the alpha band (and, to a
lesser extent, the delta band). DAN and visual cortex maintain phase-
shifted interactions in the alpha band while DAN and somatomotor
cortex maintain phase-shifted coupling in the beta band. The DAN
has been described as a control network for directing spatial attention
to sensory representations and linking relevant sensory-to-motor rep-
resentations (Corbetta and Shulman, 2002; Culham and Kanwisher,
2001; Rushworth et al., 2001). The relationship between DAN and
alpha rhythms is consistent with previous EEG/MEG work showing an
association with alpha power envelope fluctuations (de Pasquale et al.,
2010, 2012; Laufs et al., 2003; Mantini et al., 2007). Alpha power also is
consistently modulated in electroencephalographic (EEG) studies of at-
tention and visuo-motor tasks (Capotosto et al., 2009; Thut et al., 2006;
Worden et al., 2007; Mantini et al., 2010) that also strongly recruit the
DAN (Corbetta and Shulman, 2002; Culham and Kanwisher, 2001;
Rushworth et al., 2001).
An emerging literature indicates that communication between
control systems and data processing systems may involve different
frequencies (Engel and Fries, 2010; Fries, 2005). Directing spatial at-
tention to a visual field location modulates occipital cortex alpha
power, possibly reflecting an active suppression of unattended loca-
tions (Foxe et al., 1998; Kelly et al., 2006; Snyder and Foxe, 2010;
Thut et al., 2006; Worden et al., 2007). Direct causal evidence of inter-
action comes from transcranial magnetic stimulation (TMS) studies.
Disruption of FEF or pIPS anticipatory activity during a spatial atten-
tion task alters the normal modulation of alpha-band activity over
occipital visual cortex, and impairs behavioral performance (Capotosto
et al., 2009, 2010; Romei et al., 2010). Hence interactions in the alpha
band seem to occur between visual occipital and frontoparietal cortex
both at rest and during visuomotor attention tasks.

Similarly, beta rhythms have been associated with somatomotor
activity at rest, and index frequency-specific interactions between
DAN and sensory-motor cortex during attention tasks (Anderson
and Ding, 2011; Haegens et al., 2011; Johansen-Berg and Matthews,
2002; Jones et al., 2010; Rushworth et al., 2001; van Ede et al.,
2011). In particular, orienting to an anticipated tactile event induces
pre-stimulus suppression of sensori-motor alpha and beta band oscil-
lations contralateral to the attended side (Van Ede et al., 2011) simi-
larly to what observed in the visual cortex with alpha rhythms (Foxe
et al., 1998; Kelly et al., 2006; Thut et al., 2006; Worden et al., 2007).
Finally, modulations of beta synchronization have been reported
with visual fixation, eye movements and shifts of attention in FEF
(Buschman and Miller, 2007; Drewes and VanRullen, 2011).

Future directions

The present work represents the first report of source-space
phase-shifted interactions robust over relatively long time periods
(minutes) in RSNs as derived from fMRI. Our results demonstrate
the effectiveness of the MIM measure in resting state MEG and are
sufficient to distinguish within- vs. across-network lagged phase rela-
tions for DAN. It is likely that these relations will generalize to other
networks, as an all-to-all mapping approach might reveal (Palva
and Palva, 2012). Moreover, the use of a multidimensional measure
opens the way for characterizing interactions between higher dimen-
sional subspaces, e.g. those defined from cortical patches on the basis
of cytoarchitectonics or functional organization.

Other possible strategies for assessing lagged phase interactions,
such as the lagged coherence defined in (Pascual-Marqui, 2007;
Pascual-Marqui et al., 2011), the Phase Lag Index (Hillebrand et al.,
2012; Stam et al., 2007) and the Weighted Phase Lag Index (Vinck
et al., 2011) may reveal different RSN features. Indeed, a multivariate
framework has been used by Brookes et al. (2012) to address the
problem of signal leakage by regressing out the zero-phase lag com-
ponent of the seed signal over the whole frequency span by the
source signal at all other brain voxels. The method has been applied
successfully to investigate power-to-power coupling within the
motor network. The use of such approach for MEG signal would result
in a strategy closely related to the MIM approach. Measures based
on higher order frequency domain statistical moments and robust
to mixing distortions could be very powerful tools for investigating
cross frequency coupling in RSNs (Jensen and Colgin, 2007; Palva
and Palva, 2012; Palva et al., 2005). We look forward to comparisons
of these methods.
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