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Time-varying connectivity methods are increasingly used to study directed interactions between brain regions
from electrophysiological signals. These methods often show good results in simulated data but it is unclear to
what extent connectivity results obtained from real data are physiologically plausible. Here we introduce a
benchmark approach using multichannel somatosensory evoked potentials (SEPs) measured across rat cortex,
where the structural and functional connectivity is relatively simple and well-understood. Rat SEPs to whisker
stimulation are exclusively initiated by contralateral primary sensory cortex (S1), at known latencies, and with
activity spread from S1 to specific cortical regions. This allows for a comparison of time-varying connectivity
measures according to fixed criteria. We thus evaluated the performance of time-varying Partial Directed
Coherence (PDC) and the Directed Transfer Function (DTF), comparing row- and column-wise normalization
and the effect of weighting by the power spectral density (PSD). The benchmark approach revealed clear
differences between methods in terms of physiological plausibility, effect size and temporal resolution. The
results provide a validation of time-varying directed connectivity methods in an animal model and suggest a
driving role for ipsilateral S1 in the later part of the SEP. The benchmark SEP dataset is made freely available.

© 2014 Elsevier Inc. All rights reserved.
Introduction

Sensory, cognitive and motor processing consists of dynamically
coordinated activity in functional networks of brain regions. In such
large-scale networks the activity in one region may drive activity in
other regions, and which regions drive one another varies with time
and task. A better understanding of directed interactions and their
dynamics may help to better comprehend sensory and cognitive
processing in both health and disease (Bressler and Seth, 2011;
Bressler, 1995). Reliable time-varying methods are therefore needed
that can identify from electrophysiological signals what the important
drivers of cortical networks are, which regions they most strongly
drive to, and how driving from each region varies with time.

Various time-varying methods exist that can model directed
interactions from non-stationary electrophysiological recordings
(Astolfi et al., 2008; Ding et al., 2000; Hesse et al., 2003; Hu et al.,
2012; Lin et al., 2009; Milde et al., 2010; Porcaro et al., 2013;
Sommerlade et al., 2012; van Mierlo et al., 2011; Wilke et al., 2007).
Such methods may correctly represent directed interactions in
simulated data but when applied to human data it is often unclear
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whether connectivity results correctly reflect the underlying phy-
siology. This is because EEG andMEG signals at each electrode or source
point reflect activity from multiple regions to unknown extents: the
problem of volume conduction (Gómez-Herrero et al., 2008; Haufe
et al., 2013; Nolte et al., 2004; Nunez and Srinivasan, 2006). In addition,
large-scale human functional connectivity and its dynamics are not
well-understood so that connectivity results cannot be easily compared
to the underlying physiology, even in intracranial recordings.

We here use multichannel electrophysiological recordings from rats
as a benchmark to test the performance of directed, time-varying
connectivity methods. In rat cortex structural and functional con-
nectivity are simpler than in human, and better understood because
more direct electrophysiological measures are possible in animal
models. After unilateral whisker stimulation the spatiotemporal
dynamics of evoked activity follows a known pattern that reflects the
underlying structural connectivity (Quairiaux et al., 2011). Rat SEPs
can therefore provide a good benchmark to evaluate results from
time-varying connectivity estimators, for three reasons in particular.
Firstly, the SEP is entirely driven by the primary sensory cortex
contralateral (cS1) to whisker stimulation (Farkas et al., 1999; Shuler
et al., 2001). Secondly, activity in cS1 is known to start at around 5 ms
after whisker stimulation and ceases at around 25 ms, as shown by
intracranial recordings in anesthetized animals (Armstrong-James
et al., 1992; Constantinople and Bruno, 2013; Quairiaux et al., 2011).
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Outside these latencies driving from cS1 to other regions is physiologi-
cally not plausible. Thirdly, cS1 has structural connections to specific
regions in both hemispheres (Colechio and Alloway, 2009; Hoffer
et al., 2003; Lee et al., 2011; Smith and Alloway, 2013; Zakiewicz et al.,
2011). In line with structural connectivity, contralateral parietal and
frontal sensory-motor regions become active immediately after cS1
(see Fig. 1, dark blue and orange traces).

Out of the numerous published Granger-causal methods we here
selected time-varying PDC and DTF for comparison (Kaminski and
Blinowska, 1991; Baccalá and Sameshima, 2001; Astolfi et al., 2008).
These methods, based on multivariate autoregressive modeling, are
variations within the Wiener–Granger causality theoretic framework,
quantifying how activity at one region predicts activity at other regions
(Bressler and Seth, 2011; Granger, 1969).

PDC is a linear multivariate method that separates direct from indi-
rect connections and can correctly identify interactions even in relative-
ly noisy data (Astolfi et al., 2006, 2007b; Baccalá and Sameshima, 2001;
Fasoula et al., 2013; Florin et al., 2011). Stability and interpretability of
PDC results are achieved through normalization. The original PDC defi-
nition normalizes the outgoing connection strengths fromeach region, a
column-wise normalization that bounds the sum of the outflows per
region to one (Baccalá and Sameshima, 2001). This bounding however,
Fig. 1. Large-scale SEPmapping afterwhisker stimulation (A) Amulti-electrode grid placed on th
stimulation is shown on the left, ipsilateral (Ips) on the right. The electrode layout is shown belo
voltage peak over cS1 (e4, dark green; mean 13.9 ms, 95% bootstrapped confidence intervals (C
15.4 ms, CI 14.2–16.2 ms), frontal areas (e6, orange; 15.6 ms, CI 14.4–16.4 ms). At middle la
26.5–31.4 ms). Topographic layouts of the voltage potential (2D spline interpolation) are plo
SEP for three nearby electrodes.
may compromise the sensitivity to outflows and therefore a normaliza-
tion by inflowsmay be preferred. This row-wise normalization is part of
the original DTF definition and has also been applied to PDC (Astolfi
et al., 2007a; Kaminski and Blinowska, 1991; Kus et al., 2004). Row-
wise normalized methods may be advantageous in studying neural
systems because they allow more variability in outgoing connection
strengths, but to our knowledge a direct comparison of the effects of
row- and column-wise normalizations in real data is so far missing.

PDC is a measure in the frequency domain that quantifies to what
degree a power change at frequency f predicts a power change in
another region at f. That is, PDC represents a directional rate of change
in the spectral power between two regions: large PDC(f) indicates that
increased spectral power in the source region yields a large increase
in the destination region (Schelter et al., 2009). However, the PDC
calculation is independent of the signal spectral power, and therefore
large PDC can occur from regions that show little spectral power, and
vice versa. PDC values therefore lack a clear physiological interpretation
(Baccalá and Sameshima, 2001; Faes et al., 2012). To increase the
physiological interpretability we weigh PDC values by the instanta-
neous power spectral density (PSD) in the source region. Thisweighting
reflects the fact that activity in a source region is necessary, but not
sufficient, in order for the source region to effectively drive activity in
e skull bone recorded unilateral SEPs across cortex. The hemisphere contralateral (Con) to
wwith color-coding used in all plots. (B) In the grand-average SEP (n=10), themaximum
I) 13.1–14.9 ms) was quickly followed by peak activity over more parietal (e2, dark blue;
tencies the maximal activity was measured over iS1 (e12, green dotted line; 29.0 ms, CI
tted below to illustrate large-scale activity spread. (C) Shows time-frequency plot of the
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other regions. Similar spectral weightings have been previously
proposed for PDC (Takahashi et al., 2010) and for DTF (Van Mierlo
et al., 2011, 2013). Herewe systematically evaluate the effect of spectral
weighting on connectivity results for both PDC andDTF.We compared a
total of four PDC implementations (column-wise normalized PDC, row-
wise normalized PDC, column-wise normalized weighted PDC (wPDC),
and row-wise normalized wPDC) and two DTF implementations (an
unweighted and a spectrally weighted one).

Like PDC, DTF is a linear, multivariate implementation of Granger-
causality defined in the frequency domain, but using a row-wise
normalization (Kaminski and Blinowska, 1991; Kus et al., 2004). In
contrast to PDC, DTF does not distinguish between direct and indirect
interactions; it quantifies the total driving of a region on the entire net-
work, irrespective of the routing of that influence through other regions.

We compared connectivity results of thesemethods inmultichannel
SEP data recorded across rat cortex according to three performance
criteria: 1) Can cS1 be identified as the initial main driver, and how
well; 2) Are the peak latencies of cS1 driving physiologically plausible;
and 3) Does early cS1 driving specifically target contralateral parietal
and frontal regions? These criteria clearly differentiated between the
tested methods. Results closest to what may be expected from phy-
siology were obtained with row-normalized wPDC and wDTF. In
addition to showing the feasibility of a benchmark approach in real
data, the results also showed strong indications that ipsilateral S1 is an
important network driver at longer latencies.

Material and methods

All animal handling procedures were in accordance with Swiss
Federal laws. We analyzed data of 10 young Wistar rats (P21; half
were male) from previously published work (Quairiaux et al., 2011).
While the animals were under light isoflurane anesthesia, multichannel
epicranial EEG was recorded from a grid of 16 stainless steel electrodes
placed directly on the skull bone, covering the entire cortex (Fig. 1A).
The EEG was filtered online between 1 and 500 Hz and sampled at
2 kHz. Unilateral SEPs were recorded by presenting 50 right- and 50
left-sided whisker stimulations in separate blocks. The inter-stimulus
interval was 9 s. For further details, see (Quairiaux et al., 2011).

We calculated SEPs by averaging responses per animal and condition
(left, right). We combined results within animals for left and right
stimuli, representing them as responses to contralateral and ipsilateral
stimuli.

Time-varying Granger-causal modeling

PDC quantifies the predictability between multiple pairs of signals
based on the concept of Granger causality (Baccalá and Sameshima,
2001; Bressler and Seth, 2011; Granger, 1969). This states that a time
series s1 can be said to cause another time series s2 if knowledge of
past samples of s1 reduces the prediction error for the present sample
of s2, i.e. if activity in s1 predicts s2.

The predictability of s2 by past samples of s1 can be quantified
through simultaneous multivariate autoregressive (MVAR) modeling
of the N signals in S:

S tð Þ ¼ S1 tð Þ; S2 tð Þ;…; SN tð Þ½ �T: ð1Þ

We assume the following MVAR process to adequately describe the
data:

Xp

k¼0

AkS t−kð Þ ¼ E tð Þ: ð2Þ

Here S (t) is the data vector in time, E (t) is a vector of multivariate
zero-mean uncorrelated white noise processes, Ak is the N × N matrix
of model coefficients at lag k, and p is the model order, determining
the size of the prediction window. To avoid volume conduction effects
in the analysis the cross-coefficients at zero lag are set to zero, so that
A0 is equal to identity matrix I.

MVARmodeling separates direct and indirect influences between s1
and s2 by discounting the cascade effects from s1 onto s2 mediated by
other time-series. This way A (k) between two signals reflects only the
direct interactions between regions.

We derived time-varying connectivity estimators using adaptive
MVAR (AMVAR) models (Astolfi et al., 2008; Hesse et al., 2003). This
approach makes no assumptions about the stationarity of the signal,
contrary to the classic MVAR approach. We estimated time-dependent
parameter matrices A (k, t) by means of a Recursive Least Squares
(RLS) algorithm with a forgetting factor (Hesse et al., 2003). RLS
minimizes the sum of exponentially weighted prediction errors of the
processes' past. The weighting depends on an adaptation constant
(typically 0.01–0.04, Astolfi et al., 2008) which controls the trade-off
between adaptation speed and quality of estimation. Values close to
zero result in slower adaptation and more stable estimations, and vice
versa. Here we used an adaptation constant of 0.02, suggested by
simulation studies for the comparable levels of Signal to Noise Ratio
(SNR) and amount of trials. A full description of the RLS algorithm can
be found elsewhere (Hesse et al., 2003; Möller et al., 2001).

To arrive at a spectral representation, Eq. (2) is transformed to the
frequency domain at every time-point:

A f ; tð ÞS f ; tð Þ ¼ E f ; tð Þ ð3Þ

where

A f ; tð Þ ¼
Xp

k¼0

Ak tð Þe− j2π fΔtk ð4Þ

with Δt being the temporal interval between successive samples.
The PDC is then classically defined by a column-wise normalization,

i.e. a normalization with respect to outgoing connection strengths
(Baccalá and Sameshima, 2001):

sPDCij f ; tð Þ ¼
Aij f ; tð Þ
���

���
2

XN

m¼1

Amj f ; tð Þ
���

���
2

:

ð5Þ

Where we squared the PDC values (sPDC) to further enhance
accuracy and stability (Astolfi et al., 2006). The corresponding row-
wise normalization, i.e. a normalization with respect to incoming
connection strengths is then:

sPDCij f ; tð Þ ¼
Aij f ; tð Þ
���

���
2

XN

m¼1

Aim f ; tð Þj j
2

:

ð6Þ

Using the transfer matrix H of the AMVAR model (Eq. 3) DTF is
defined as:

DTFij f ; tð Þ ¼
Hij f ; tð Þ
���

���
2

XN

m¼1

Him f ; tð Þj j
2

:

ð7Þ

We calculated time-varying PDC and DTF values using non-averaged
single sweeps between−10 and 60ms around stimulus onset. For each
trial we automatically chose the model order p using the Akaike
Information Criteria (AIC) for MVAR processes. The average model
order p was 8 time frames (4 ms). We then calculated median time-
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varying connectivity values per animal and stimulation condition (left/
right).

Spectral weighting

We weighted PDC by the PSD at each source region, defining a
weighted PDC (wPDC):

wPDCij f ; tð Þ ¼ sPDCij f ; tð Þ � Sj f ; tð Þ ð8Þ

where Sj is the PSD at the source region.
Before weighting, we computed PSD on single-trials between−120

and 120 ms around stimulus onset using the S-transform (Stockwell
et al., 1996) and then averaged it for each animal and condition (left,
right). The bin size of the S-transform was 5.5 Hz. Average PSD was
then scaled (0–1) across electrodes, time (0 to 60 ms) and frequencies
(1–150 Hz). PDC values were similarly scaled before multiplication
(Eq. 7). Since wPDC is the product of PDC and PSD, wPDC values range
between 0 and 1. Due to this scaling, wPDC(ij)(f,t) is 1 only when the
PSD maximum occurs in the same region as the maximum PDC, and at
the same frequency and latency. When either PDC or PSD is low,
wPDC will also be low. The same holds for spectrally weighted DTF
(wDTF), which was computed analogous to wPDC, following Eq. 8.

Time-varying connectivity valueswere calculatedwithin animal and
per stimulation condition (left, right).We then averaged for each animal
the directed connectivity matrices for left and right stimuli in order to
represent them as responses to contralateral and ipsilateral stimuli,
respectively.

Frequency of interest selection

The spectral analysis of the evoked response showed that the
dominant frequencies strongly depended on electrode and stimulated
side (Fig. 1D–E). To account for this frequency specificity we identified
Fig. 2.Weighting and frequency selection example. A) Shows time-frequency plot of summed
Averaged data from one animal (IC070523). B) Shows the broadband PSD in cS1 with the fre
frequency plot of summed wPDC. The summed wPDC at the frequency of maximal PSD is show
the frequency of maximal PSD at each electrode and time-point as the
frequency of interest. We further analyzed connectivity results at
these frequencies only. This data-driven approach reduces the dimen-
sionality of the results and assures that for each electrode and stimula-
tion condition the dominant frequencies are taken into account. The
approach is illustrated for column- and row-wise normalized PDC in
Fig. 2.

Statistics

To statistically compare the summed driving from a region, or the
directional specificity of driving, we calculated 95% CIs of within-
animal differences using non-parametric bootstrapping (n = 10,000)
across animals, with the null-hypothesis of no difference between con-
ditions or directions, respectively. We used a non-parametric approach
since normality cannot always be assumedwith small sample sizes (our
n=10).We used a similar bootstrapping procedure to compute 95% CIs
around the mean values for plotting purposes.

To compare results across methods we calculated effect sizes for
each statistical comparison using Cohen's d with pooled s.d.s in the
denominator (Cohen, 1992). The effect size quantifies the difference
between two observed means relative to the standard deviation,
providing a way to compare effects across measures or studies.

Results

The first performance criterion was whether cS1 could be distin-
guished as themain driver at early latencies, and howwell.We summed
per region the outgoing connection strengths to all other regions (out-
flows) as ameasure of the total driving of each region onto the network.
The time-series of total driving for the six methods are shown in Fig. 3.
Each method except unweigthed DTF identified cS1 (e4, in green) as
the largest driver at short latencies after stimulation. For column-
PDC from cS1 for column-wise normalization (left) and row-wise normalization (right).
quency of instantaneous maximal PSD indicated by the green dots. C) Shows the time-
n in D).

image of Fig.�2


Fig. 3. Dynamics of summed driving and discriminability of cS1 for eachmethod. The summed grand-average (w)PDC and (w)DTF time-series for each contralateral and ipsilateral elec-
trode, colors as in Fig. 1. Early peak latencies of cS1 driving are indicated by vertical gray dotted lines. Barplots are drawn at the peak latencies indicated by gray dotted lines and show
average summed outflows for each electrode with error bars denoting bootstrapped 95% CI around the mean across animals (n = 10).
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normalized PDC the peak driving from cS1 did not significantly differ
from that of the second-largest driver (e2, dark blue; lower 95%
confidence interval (CI) of bootstrapped pairwise differences smaller
than 0). Row-normalized PDC showed significantly larger driving from
cS1 than from the second-largest driver (e3, light blue); column- and
row-normalized wPDC, as well as wDTF showed significantly larger
driving from cS1 than from the second-largest driver (e2). The effect
sizes for distinguishing cS1 from the second-largest driver are listed in
Table 1, indicating that cS1 driving was most clearly identified by
wPDC and wDTF.
Table 1
Effect sizes (d) for cS1 identification.

PDC
column-normalized

PDC
row-normalized

DTF

Plain 0.2 0.3 n.a.
Weighted 1.4 1.5 1.5
The second performance criterion was whether peak driving from
cS1 occurred at physiologically plausible latencies, roughly between 5
and 25 ms after stimulus onset. Table 2 shows the average latencies
and 95% CIs of peak driving from cS1. Each method correctly identified
latencies close to the peak amplitudes of the ERP (13.9 ms, 95% CI
13.1–14.9 ms), at which there is considerable neural activity in cS1
(Armstrong-James et al., 1992; Constantinople and Bruno, 2013;
Quairiaux et al., 2011). For row-normalized PDC and DTF the 95%
confidence intervals were about half the size as compared to column-
normalized methods, which more closely reflected the 2 ms 95% CI of
the peak ERP latencies at cS1 (Fig. 1).
Table 2
Peak latencies of driving from cS1 for each method.

PDC
column-normalized

PDC
row-normalized

DTF

Plain 10.3 (8.8–13.9) 8.9 (8.2–10.5) 8.4 (7.9–9)
Weighted 13.4 (11.1–16.1) 8.9 (8.2–10.6) 8.8 (8.0–10.7)

image of Fig.�3


Fig. 4. Directions of driving from contralateral S1. Barplots show the driving from cS1 to all target regions in the hemisphere contralateral and ipsilateral to stimulation, for eachmethod.
Barplots are drawn at latencies corresponding to the peak latencies in Fig. 3. Error bars denote 95% CI around the mean.
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The third performance criterion waswhether early driving from cS1
specifically targets parietal (e2) and sensory-motor (e6) regions. These
two regions show significant activation shortly after cS1 (Quairiaux
et al., 2011) and receive direct structural connections from S1 (Hoffer
et al., 2003; Lee et al., 2011; Smith and Alloway, 2013; Zakiewicz et al.,
2011). The directional specificity of driving from cS1 is depicted in
Fig. 4 per method. All methods correctly identified e2 and e6 as the
main targets of cS1 driving. We statistically compared cS1 driving to
e2 and to e6 with that toward medial electrodes equidistant from cS1,
e3 and e5 respectively. These medial regions reflect bodily representa-
tions and exhibit only modest evoked activity to whisker stimulation
(Chapin and Lin, 1984). Column-normalized PDC did not show signifi-
cantly more cS1 driving to e2 than to e3, nor did it indicate that driving
to e6 was significantly larger than driving to e5. The other methods did
show significantly more driving to e2 and e6 than to e3 and e4 respec-
tively. Table 3 lists the effect sizes of these comparisons per method. All
methods distinguished targets of cS1 with medium to large effect sizes.

At the peak latencies of cS1 driving, row- and column-wise normal-
izedmethods suggested different patterns of driving from cS1 to ipsilat-
eral cortex (Fig. 4). Column-wise normalized methods suggested
considerable, undifferentiated driving to ipsilateral cortex, with large
Table 3
Effect sizes (d) for distinguishing cS1 and iS1 targets for each method.

cS1 targets iS1 targets

e2 N e3 e6 N e5 e10 N e11 e14 N e13

Col PDC 1.0 0.6 0.6 0.2
Col wPDC 1.0 0.9 0.4 0.3
Row PDC 0.8 0.6 0.8 0.9
Row wPDC 0.7 0.5 0.3 0.6
DTF 0.9 0.4 0.6 0.1
wDTF 0.7 0.3 0.1 0.02
variability across animals. Row-wise normalized methods indicated
more specific driving to ipsilateral cortex, with smaller 95% CIs. Row-
wise normalized PDC suggested that cS1 specifically targets e14, while
DTF and wDTF suggested predominant targeting of e10. These regions
receive transcallosal monosynaptic connections from cS1 and are the
homotopic regions of the main contralateral S1 targets (e6 and e10).

After the initial peak latencies, each method showed qualitatively
different dynamics of driving (Fig. 3). Column-normalized PDC values
increased during the early period until about 20ms and then stayed rel-
atively constant at middle (N20 ms) and longer latencies (N40 ms;
Fig. 3A). These dynamics reflect the column-wise normalization which
bounds the sum of the outgoing PDC plus the autoregressive part to
one. For row-normalized PDC and DTF dynamics of summed outflow
depended on channel (Fig. 3B–C). Electrode e4 (cS1, green) and e2
(dark blue) decreased their driving at longer latencies while others
stayed relatively constant (e.g. e7, red) or showed a continuous increase
(e.g. e8, black). Such dynamics are unlikely to be physiologically correct.

Column-normalized wPDC showed sustained driving from e4 (cS1)
and e2 at middle latencies (Fig. 3C), yet there is little activity in cS1 at
these latencies and hence no mechanism for it to exert influence on
other areas (Quairiaux et al., 2011). At longer latencies, column-
normalized wPDC did show decreased driving from cS1, in line with
physiology, while ipsilateral S1 (iS1, green dotted line) became the
largest driver. Driving from iS1 at middle latencies seems plausible
since iS1 shows activity at those latencies (Quairiaux et al., 2011;
Shuler et al., 2001). At longer latencies, however, iS1 activity falls off
and predominant iS1 driving seems less likely. Row-normalized wPDC
showed more plausible and better articulated dynamics (Fig. 3D).
Whereas cS1 was the main driver at early latencies, iS1 became the
largest driver at middle latencies, with mean peak driving latency at
25.7 ms (95% CI 20.0–33.9 ms across animals) that matched the peak
latency of the SEP over iS1 (29ms, 95% CI 26.5–31.4ms). wDTF showed
similar dynamics, with peak iS1 driving latency at 26.9 ms (95% CI
20.3–37.9 ms).

image of Fig.�4


Fig. 5. Identification of iS1 as an important network driver. Average summed driving for each of the six methods is plotted at 26 ms after whisker stimulation. Error bars denote 95% CI
around the mean.
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The driving role for iS1 as shown by wPDC and wDFT has to our
knowledge not been previously demonstrated. We therefore asked
whether the other methods showed indications that ipsilateral S1 as
an important driver around this latency (26 ms). All methods except
row-normalized PDC and DTF, identified iS1 as the largest ipsilateral
driver (Fig. 5). We statistically compared summed driving from e12
(iS1) to that of e10, which was among the largest ipsilateral drivers
for each method. For these comparisons the largest effect sizes were
Fig. 6. Directions of driving from ipsilateral S1. Barplots show for each method the driving fro
Barplots are drawn at 26 ms, corresponding to the peak latencies of iS1 in Fig. 1. Error bars den
obtained with wPDC (d = 0.8 and 0.7 for column- and row-wise
normalized wPDC, respectively) and wDTF (d = 0.7), as compared to
PDC (d = 0.3 and 0.02 for column- and row-wise normalization
respectively).

At these middle latencies, column normalized wPDC (Fig. 3D)
furthermore indicated strong driving from cS1, which seems unlikely
since spiking activity is absent at this latency and current sinks are
feeble (Quairiaux et al., 2011).
m iS1 to all target regions in the hemisphere contralateral and ipsilateral to stimulation.
ote 95% CI around the mean.

image of Fig.�5
image of Fig.�6
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Given that iS1 appears to be an important driverwe next askedwhat
the main targets of iS1 driving are within the ipsilateral hemisphere. If
results follow the physiology, similar target are expected for iS1 as for
cS1, namely e14 and e10 which cover the homotopic regions of the
main targets of cS1 driving (e2, e6; see Fig. 4). The four PDC methods
identified e14 and e10 as the main ipsilateral targets of iS1 driving,
whereas DTF only distinguished e10 and wDTF showed no specific
targeting of ipsilateral regions (Fig. 6). We statistically compared the
driving from iS1 (e12) to e10 and e14 with that toward medial elec-
trodes equidistant from iS1, e11 and e13 respectively, as done for cS1.
The PDC methods confirmed significantly more driving to e10 and e14
but with medium to large effect sizes (Table 3), whereas DTF only reli-
ably distinguished e10 from e11 and wDTF did not distinguish targets
from iS1.

The characterization of driving from iS1 back to contralateral cortex
depended on the normalization used (Fig. 6), and not on weighting by
the PSD. Whereas column-normalized PDC results indicated large
driving back to e4 (cS1) and e2, row-normalized PDC suggested addi-
tional driving towards contralateral frontal regions (e6–e7), while DTF
suggested large, undifferentiated driving back to the contralateral
hemisphere.

Discussion

Using multi-electrode cortex-wide SEP recordings in rats we evalu-
ated the physiological plausibility of time-varying connectivity results
obtained with several Granger-causal methods. We compared the ef-
fects of row- and column-wise normalization and the effects of
weighing by the PSD according to three performance criteria. Most
methods correctly identified cS1 as the main driver of the network at
early latencies, coincidingwith considerable neural activity in cS1. How-
ever, PSD weighting allowed for better discrimination of the major
drivers (larger effect sizes), and row-wise normalization increased the
precision of peak driving latencies. Row-wise normalized methods
also more plausibly reflected the initial targets of cS1 driving than
column-wise normalization. In sum, results obtained with row-
normalized wPDC and wDTF are in better correspondence with what
is expected from physiology than results from the other methods.
Importantly, only row-normalized wPDC and wDTF results never
contradicted known physiology.

PDC can be considered as a factorization of the Directed Coherence,
derived using either a column- or row-wise normalization (Baccalá
and Sameshima, 2001; Baccala et al., 1998). A column-wise normaliza-
tion bounds the outgoing PDC values to unit and therefore the strength
of each outgoing PDC is co-determined by the others to somedegree: an
increase in the strength of (non-normalized) PDC directed from one
driving area to any target areas will reduce the other PDC values outgo-
ing from this driving area. A row-wise normalization bounds the
incoming connectivity values to a region, which is how DTF is normal-
ized. This way, the value of each incoming connection strength is co-
determined by the others: when the strength of influence from one
region to a target region increases, the connectivity values from the
other regions targeting the same area will appear smaller. This is in
line with the interpretation of PDC as a rate of change (Schelter et al.,
2009) and makes row-wise normalized PDC better interpretable than
column-wise normalized PDC. Moreover, row-wise normalization has
the advantage that it allows for more variability in the outgoing connec-
tivity strengths because they remain unbounded. The sum of outgoing
PDC (outflow) is of particular interest in neural systems, as it allows to
identify the main sources of information in the network. Several alter-
native normalizations exist in the literature (Baccala et al., 2007; Lin
et al., 2009; Schelter et al., 2009). By directly comparing the perfor-
mance of column- and row-wise normalized methods in real data we
found that row-wise normalizedmethods provide a better characteriza-
tion of the directional selectivity of cS1 driving, in particular to ipsilater-
al cortex (Fig. 5B, D). Whereas column-wise normalization suggested
large and undifferentiated driving from cS1 to ipsilateral cortex
(Fig. 4A, C), row-normalized results suggest that cS1 driving to ipsilater-
al cortex does not exceed cS1 driving to contralateral cortex, and that
cS1 specifically targets ipsilateral frontal sensory-motor region (e14).
This is physiologically more plausible than the column-normalized
results because e14 is the homologue of themain target of cS1 in contra-
lateral cortex and S1 has structural connections to this region in both
hemispheres (Colechio and Alloway, 2009). Although DTF results
showed relatively large driving to ipsilateral cortex, it was specifically
directed to physiologically plausible areas: ipsilateral parietal and
primary sensory regions.

By comparing the two normalizationswe also found better temporal
resolution for row- than column-wise normalized methods. Row-
normalized methods identified peak driving latencies with 95% CIs
that were twice as small as those from column-normalized methods,
in good agreement with the small variability observed in ERP peak
latencies. Column-wise normalization may reduce temporal resolution
because it limits the sum of outgoing connection strengths from a chan-
nel plus its autoregressive part to one, at every time point. For analysis
we did not take the autoregressive part into account when summing
the driving from a channel, but this normalization still severely
constrained the temporal variations. This can be seen from the dynam-
ics of summed column-normalized PDC (Fig. 3A), which show persis-
tent driving from all regions at latencies beyond 20 ms with little
temporal variations. The low values in the first 20 ms indicate that
each channel has large autoregressive parts, i.e. that each region is
more or less self-determined. At longer latencies, network interactions
increase and the autoregressive parts become less important, resulting
in persistently high values of summed outgoing PDC.

Nonetheless, column-normalized results often qualitatively agreed
with row-normalized results. For example, both normalizations correct-
ly identified the main contralateral targets of cS1 driving, and column-
wise results even showed somewhat better discriminability here. In
addition, column-normalized PDC has been successfully applied previ-
ously (Astolfi et al., 2008; Baccalá and Sameshima, 2001; Hesse et al.,
2003; Möller et al., 2001; Takahashi et al., 2010). Yet when the goal is
to study dynamic interactions in neural systems, a good temporal reso-
lution is highly desirable and our findings indicate that a row-wise
normalization is preferred in this respect.

Although row-wise normalized PDC and DTF frequently gave com-
parable results, DTF performed poorly in detecting cS1 as amajor driver
(criterion 1). Instead, it indicated large driving from two neighboring
areas (e2 and e3, Fig. 3C), suggesting that driving from these areas is
similar to or exceeds that from cS1 at early latencies. The inability to
distinguish between these neighboring areas may result from how
DTF reflects both direct and indirect driving toward other areas. When
weighted by the spectral power, however, cS1 detection performance
was comparable to that of row-normalizedwPDC, showing that spectral
weighting is beneficial for DTF.

The theoretical motivation for weighting by the PSD is to make the
results better interpretable. The weighting implements the idea that
neural activity is necessary but not sufficient in order for one region to
change activity in another region, in line with the interpretation of
PDC as a rate of change (Schelter et al., 2009). ThewPDC takes the activ-
ity in a region into account, butwith independent normalizations of PDC
and PSD to assure that they can equally contribute. This normalization
ensures that wPDC tends to zero when PDC tends to zero irrespective
of PSD, and vice versa. This way regions can be active without influenc-
ing others. The same holds for wDTF, which was defined analogously to
wPDC.

Two previously defined methods also incorporate spectral power in
the quantification of directed interactions. Information PDC (iPDC,
Takahashi et al., 2010)weights the PDC from j to i by the spectral density
of the partialized model process associated with time series j, given the
remaining time series. This produces a scale-invariant quantity of con-
nectivity that falls entirely within the framework of information theory.
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This has the benefit that iPDC values can be easily interpreted and com-
pared between groups and studies. A spectral scaling of DTF using the
PSD of theMVARmodel has been previously proposed to better identify
dominant frequencies of interaction and localize the foci of epileptic
seizures (Van Mierlo et al., 2011, 2013).

To estimate PSD from the signal we used the S-transform (Stockwell
et al., 1996). Time-frequency analysis is a trade-off between temporal
and spectral resolution and different methods optimize this trade-off
in different ways. However, we don't expect that results from wPDC
will be qualitatively differentwhen using alternativemethods for calcu-
lating PSD (e.g. a wavelet-based approach). Although time-frequency
transforms have limited temporal resolutionwith respect to the original
signal, our data show that PSD-weighted results have sufficient tempo-
ral resolution to distinguish the dynamics of driving in large-scale
networks.

We calculated PSD and PDC for frequencies in the 1–150 Hz range,
but we only selected the frequencies of maximal PSD for further
analysis. This data-driven selection does justice to the observation that
electrodes showed different spectral content (Fig. 1C, D) and avoids
pre-selecting a specific frequency or frequency band for analysis. In
addition, the frequency of maximal activity is the best candidate for
driving toward another region. However, the selection risks that some
drivingmay bemissed at frequencies that are not as strongly expressed.
We chose a reduction of dimensionality in the frequency domain over a
full investigation of effects across different frequency bands because the
aim of the current work was to illustrate how a benchmark dataset can
distinguish between different time-varying connectivity methods.

Our results indicate two specific advantages forweighting by PSD, ir-
respective of normalization. The first advantage is thatmajor drivers can
bemore clearly identified. Compared to PDC, the effect sizes fromwPDC
were more than four times as large for identifying cS1 as the first major
driver. For DTF spectral weightingwas needed to detect cS1. The PSD re-
produces physiological observations, and weighting by PSD takes these
physiological observations into account to quantify the influence of one
region on another. Yet the clear cS1 identification is not only due to the
weighting: wPDC can only be high when both PSD and PDC are high,
since each is normalized before multiplication. The same holds for
wDTF. That the PSD is not all-determining can be seen e.g. from the driv-
ing of e7. At around 20 ms this contralateral frontal-most electrode has
the highest amplitude (red trace in Fig. 1), yet scaling by the spectral
power does not make it stand out as one of the main drivers (Fig. 3).

The second advantage of weighting by the PSD is that it provides a
more plausible dynamics of driving, irrespective of normalization. For
example, the dynamics of row-normalized PDC showed continuous in-
creases in several channels that are unlikely to be physiologically correct
(Fig. 4B). These progressive increases occurred in channels with little
activity at longer latencies and may reflect unstable PDC results obtain-
ed from channels with low SNR (Fasoula et al., 2013). In our data DTF
showed similar progressive increases, suggesting that the problem
may have to dowith the MVARmodel, rather than in the normalization
used. Weighting by the PSD resulted in a highly plausible and interest-
ing dynamics of driving (Fig. 3D). In addition, it revealed that ipsilateral
S1 may be an important driver at middle latencies.

The finding that ipsilateral S1 plays a driving role in themiddle parts
of the sensory evoked response was confirmed by most methods used
here. That iS1 is an important driver has to our knowledge not been pre-
viously suggested but is in linewith iS1 activity observed at these laten-
cies and known functional interactions between ipsi- and contralateral
S1 (Shuler et al., 2001a). In our data, driving from iS1 predominantly
targets the same regions in ipsilateral cortex as cS1 targets in contralat-
eral cortex, as suggested by all methods with medium to large effect
sizes. This is in good agreement with known structural connectivity of
S1 (Colechio and Alloway, 2009; Hoffer et al., 2003; Lee et al., 2011;
Smith and Alloway, 2013; Zakiewicz et al., 2011).

The main targets of driving from iS1 back to contralateral cortex
were not unambiguously identified. Whereas column-normalized
methods suggested contralateral S1 and parietal areas (e2) as the
main targets, row-normalized methods identified additional frontal
areas as targets (Fig. 6). S1 projects to sensory and sensory-motor
areas in the other hemisphere (Colechio and Alloway, 2009; Smith
and Alloway, 2013), but to what extent these connections are function-
ally used is not known. Both scenarios are in line with an active role for
iS1 in the bilateral integration of sensory information, as well as the co-
ordination of motor responses (Aronoff et al., 2010; Matyas et al., 2010;
Shuler et al., 2001). The finding that iS1 is an important network driver
predicts that silencing iS1 will change the middle and later part of the
SEP, and this could be experimentally tested. For such a test column-
normalized results predict that the later part of the cS1 response will
be most strongly affected by iS1 silencing, whereas row-normalized
result predicts that activity over contralateral frontal regions will be
most affected.

Electrophysiological recordings reflect not only neural activity from
nearby tissue but also activity from further away due to instantaneous
volume conduction (Gómez-Herrero et al., 2008; Haufe et al., 2013;
Nolte et al., 2004; Nunez and Srinivasan, 2006). Volume conduction
can make connectivity results hard to interpret (Haufe et al., 2013).
When an EEG channel shows strong driving, it is not necessarily the
neural tissue immediately underneath that does this driving. The inter-
pretability crucially depends on how uniquely the signals reflect local
activity. For example, interpretability is worse for connectivity analyses
of scalp EEG than for source estimates (Gómez-Herrero et al., 2008;
Supp et al., 2007). In our SEP data, volume conduction effects do not
seem to be problematic. The signals in each electrode are highly
location-specific (Fig. 1) because rodent cortex is essentially flat
(lissencephalic). Furthermore, the SEP signals correspond well to intra-
cranial data recorded immediately underneath (Armstrong-James et al.,
1992; Mégevand et al., 2008; Quairiaux et al., 2011). The location-
specificity of the signals is furthermore corroborated by the good detec-
tion of cS1 as the major driver for almost all methods used, as well as
good discrimination of the main targets of cS1.

Within the framework of Wiener–Granger causality there exist
numerous alternative methods to estimate directed relations be-
tween neurophysiological signals (e.g. Barnett and Seth, 2014;
Barrett et al., 2010; Dhamala et al., 2008; Geweke, 1982, 1984; Lin
et al., 2009; Roelstraete and Rosseel, 2012), including non-linear ap-
proaches (Granger, 2008; Marinazzo et al., 2008). From the large
number of published methods a “gold standard” has yet to emerge.
Each method has theoretical advantages and disadvantages and we
therefore consider direct comparisons on real data with known
physiology an important step in establishing a standard. We here fo-
cused on a limited number of time-varying methods to demonstrate
the feasibility of testing for physiological plausibility using rat SEPs,
and to allow for a direct comparison of the effects of different nor-
malizations and weighting by the spectral power. Our work followed
the original PDC and DTF definitions (Baccalá and Sameshima, 2001)
and the sub-optimal performance of these methods may be im-
proved using alternative definitions. The performance of DTF may
be improved by using more recently proposed variants (e.g.
Korzeniewska et al., 2003). Similarly, PDC performance may be im-
proved using generalized PDC (gPDC), which normalizes both the
numerator and denominator to the variance of the input terms to
achieve scale invariance, making it more robust against amplitude
differences in the modeled time series (Baccala et al., 2007).
Renormalized PDC (Schelter et al., 2009; Sommerlade et al., 2012)
is another optimization of the PDC that specifically allows for an in-
terpretation of the results in terms of coupling strength between
neural signals. Another measure with good physiological interpret-
ability is Directed Coherence (Baccala et al., 1998), which quantifies
the amount of spectral power change in the target region accounted
for by the source region. A limitation of DC is that it does not distin-
guish direct from indirect connectivity, and results may thus not
accurately reflect underlying physiology.
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The method used here are all based on MVAR modeling, which re-
quires selecting a model order parameter: the duration taken into ac-
count for determining relations between signals. We used Akaike's
Information Criterion to find an optimal model order that avoids
overfitting in a data-driven way (Bressler and Seth, 2011; Hesse et al.,
2003). Importantly, model orders were identical for all methods used
so that differences in results cannot be attributed to differences in
model order.

Time-varying MVAR approaches are developed to correctly model
non-stationary signals and a range of approaches exist, for example
Kalman filtering (Hu et al., 2012; Milde et al., 2010), window-based ap-
proaches (Ding et al., 2000;Wilke et al., 2008) and state-spacemodeling
(Sommerlade et al., 2012). Here we used adaptive MVAR modeling
based on the RLS algorithm (Astolfi et al., 2008; Hesse et al., 2003;
Möller et al., 2001). The RLS algorithm uses an adaptation constant
(Möller et al., 2001) which has to be chosen in advance. This value
may be set between 0.01 and 0.04 with large numbers of repetitions
and reasonable SNR (Astolfi et al., 2008). Reducing the constant could
increase the accuracy of the models and reduce the sensitivity to
noise, but at the cost of temporal resolution (Astolfi et al., 2008; van
Mierlo et al., 2011).

Since a direct comparison of all available time-varying directed con-
nectivity measures is beyond the scope of this paper, we make our SEP
dataset freely available at https://sites.google.com/site/fbmlab/data.We
hope this will contribute to the development and systematic evaluation
of different time-varying connectivity measures. When methods show
implausible results on this dataset, they should be treated with caution
when applied to neurophysiological signals. When a method meets the
criteria, its performance can be compared to that of other methods by
calculating effect sizes for the critical comparisons. Good performance
in this dataset should not be taken to mean that new results can be
taken at face-value. Time-varying connectivity results are models of ob-
served variables constructed with the aim to better understand dynam-
ic interactions within functional brain networks (Bressler and Seth,
2011). As with any model, its ultimate value comes from whether it
generates new insights and testable hypotheses.

In conclusion, we here showed that the physiological plausibility of
time-varying connectivity methods can be evaluated using large-scale
SEPs from rats. To our knowledge the results from row-normalized
wPDC and wDTF provide the first validation of time-varying connectiv-
itymeasures in an animalmodelwithwell-known structural connectiv-
ity along fixed criteria. These methods provide a sensitive tool for
understanding brain interactions and generate useful models of the dy-
namic functional connectivity underlying sensory processing in rat cor-
tex. We expect that future applications of these and other methods will
help advance our understanding of how networks of neural activity un-
derlie sensory and cognitive processing, how these networks develop,
and how they break down in disease.
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