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Abstract

Previous studies have shown that the brain network topology correlates with the cognitive function. However, few studies
have investigated the relationship between functional brain networks that process sensory inputs and outputs. In this study,
we focus on steady-state paradigms using a periodic visual stimulus, which are increasingly being used in both brain-
computer interface (BCI) and cognitive neuroscience researches. Using the graph theoretical analysis, we investigated the
relationship between the topology of functional networks entrained by periodic stimuli and steady state visually evoked
potentials (SSVEP) using two frequencies and eleven subjects. First, the entire functional network (Network 0) of each
frequency for each subject was constructed according to the coherence between electrode pairs. Next, Network 0 was
divided into three sub-networks, in which the connection strengths were either significantly (positively for Network 1,
negatively for Network 3) or non-significantly (Network 2) correlated with the SSVEP responses. Our results revealed that the
SSVEP responses were positively correlated to the mean functional connectivity, clustering coefficient, and global and local
efficiencies, while these responses were negatively correlated with the characteristic path length of Networks 0, 1 and 2.
Furthermore, the strengths of these connections that significantly correlated with the SSVEP (both positively and negatively)
were mainly found to be long-range connections between the parietal-occipital and frontal regions. These results indicate
that larger SSVEP responses correspond with better functional network topology structures. This study may provide new
insights for understanding brain mechanisms when using SSVEPs as frequency tags.
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Introduction

The human brain is a large-scale complex network composed

of widely distributed, functionally specialized, and interconnect-

ed brain regions. In recent years, graph theories have been

introduced to study the functional connectivity of the brain,

which allows us to elucidate the relationship between the

topological structure of brain networks and processes occuring

in those networks [1]. When applied to brain research, these

approaches offer a network perspective that help us better

understand the higher brain functioning [2,3,4,5]. Previous

studies have suggested that the brain network topology

correlates with its cognitive function. A resting-state fMRI

study indicated that a strong positive association exists between

the intellectual performance and the global efficiency of brain

networks [4]. Furthermore, a resting-state EEG study showed a

correlation between a shorter reaction time and a shorter

characteristic path length within gamma band network [6].

Functional connectivity analysis is assumed to provide new

avenues to measure and assess the functional interactions

between brain regions. Few studies have investigated the

relationship between sensory functional brain networks and

their outputs. Sensory functional brain networks can be

investigated using steady-state paradigms with a periodic

stimulus. These studies provide us with new clues regarding

the relationship between steady state visual evoked potentials

(SSVEP) and the corresponding network topology.

SSVEP is a periodic response to a regularly repetitive visual

stimulus modulated at a fixed frequency larger than 4 Hz [7]. It is

actually a near-sinusoidal waveform that contains the same

fundamental frequency of the visual stimulus and its harmonics.

SSVEP responses have a stable spectrum and a high signal-to-

noise ratio, and they can be evoked by a visual stimulus with a

flickering frequency ranging between 4 and 75 Hz [8]. As a

frequency-tagging method, SSVEP is a very useful tool for the

study of neural processes underlying brain rhythmic activities, and

it has been successfully used in a wide range of applications in

cognitive neuroscience and clinical researches [9]. Moreover,

SSVEP is also used in the brain computer interface (BCI) to

achieve a high information transfer rate

[10,11,12,13,14,15,16,17,18]. A universal phenomenon especially

observed in implementing a BCI is that different subjects obtain

different performances using the same SSVEP-BCI systems

[10,11,12,19]. This phenomenon may indicative of variability

between interindividual in SSVEP responses under the same

periodic stimuli.

Evidences suggest that the SSVEP response involves multiple

sources distributed cortical regions, including the parietal,

temporal, frontal, and prefrontal cortices [9,20]. Additionally,

functional networks including these regions are sensitive to the
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physical properties of the stimulus, especially to the driving

frequencies [20]. The amplitude, phase and spatial distribution of

SSVEP responses change with the flickering frequencies. As a

whole, this indicates that different frequencies can target

functionally distinct brain networks with different preferred or

resonant frequencies [7,20]. However, very few studies have

examined the functional network organizations underlying

SSVEP. Using correlation analysis of fMRI data, Srinivasan et al.

Figure 1. Power spectrum of eighteen electrodes averaged across the epoch from a subject. (A) 12.5 Hz, (B) 16.6 Hz. The red vertical lines
indicate the components of the stimulus frequency.
doi:10.1371/journal.pone.0072654.g001
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showed that occipital voxels were either positively or negatively

correlated to frontal voxels forming functionally distinct large-scale

functional networks [20]. In an EEG study, Yan et al. showed that

the parietal cortical regions were a critical node for the

transmission of SSVEP information [21]. To the best of our

knowledge, the relationship between the network topological

properties and SSVEP responses have not yet been examined.

Our motivation for the present study is to probe the association

between SSVEP and the overall topology of the network entrained

by the flickering stimulus using the graph theoretical analysis. Two

frequencies flickering (see Materials and Methods) were used for

the visual stimulus. During our experiment, the subjects were not

required to conduct mental tasks.

Materials and Methods

Ethics Statement
This study was approved by the Institution Research Ethics

Board at the University of Electronic Science & Technology of

China. All participants were asked to read and sign an informed

consent form before participating in the study. All the participants

received monetary compensation for their time and effort

following completion of the experiment.

Participants
Eleven healthy right-handed adult volunteers (males; 24–27

years; mean 25 years) participated in these experiments. All of the

subjects had normal or corrected-to-normal vision. These subjects

did not have any history of epileptic seizure or mental disease.

Flickering Stimuli
We used two stimulus cycles of 80 ms and 60 ms to generate the

stimulus with two light-emitting diodes (LED). Therefore, two

frequencies, 12.5 Hz and 16.6 Hz, were used in this experiment.

Each LED was fixed at the end of a white pipe with a diameter of

about 3 cm and a length of about 60 cm. The subjects gazed at the

stimulus at the other end of the pipe. The background luminance

was 0.25 cd/m2, the maximum luminance of the LED was

2.5 cd/m2, and the modulation depth was 82%. All the driving

pulses used here had a 50% on/off duty cycle. These settings have

been used in previous experiments [22,23]. During the exper-

iment, each subject completed two runs corresponding to each of

the two frequencies. Each run had a duration of 2 mins, during

which EEG data were recorded. In each run, the frequency was

randomly assigend and presented to the subjects. Between runs,

the subjects were allowed to rest for 2–5 minutes. In the

experiment, the subjects were required to avoid blinking and

large movements. The total duration of the experiment was about

40 minutes.

EEG Acquisition
The experiment was conducted in a shielded room. The EEG

data were recorded with a 129-channel EGI200 recording system

(Electrical Geodesics Incorporated, USA). The 129 channels (128

measuring electrodes and 1 reference electrode Cz) included the

international 10–20 standard recording electrodes. Electrode

impedances were maintained below 10 kV during the experiment.

EEG signals were digitized at 250 Hz, filtered online using a 0.3–

70 Hz bandpass filter, and then stored on a disk for off-line

analysis.

Electrodes with a preponderance of noise resulting from

insufficient contact with the scalp, were excluded for analysis. A

total of twenty-nine electrodes, primarily on the outer ring of the

electrode array, were eliminated from the study due to excessive

artifacts, leaving 100 electrodes [24,25]. Additionally, data from

other electrodes for which the original EEG was believed to be

invalid (e.g., amplitude in excess of 100 mV), were replaced by the

mean value of the three nearest recording sites [23]. For each

subject, a total of 9–12 6 s –long segments of data free of artifacts

(e.g., eye blinks, eye movements and muscle activities) were

selected for each frequency. Following preprocessing, all data were

re-referenced to zero reference by the reference electrode

standardization technique (Free software: REST: doi:10.1016/

j.clinph.2010.03.056, or www.neuro.uestc.edu.cn/rest/index.asp)

[24,26].

Brain Network Construction
As closely spaced electrode pairs are subject to significant

volume conduction effects [25,27], 18 standard electrodes

positions Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, C4, T4, T5, P3,

Figure 2. The SNRs of the two frequencies of different subjects.
doi:10.1371/journal.pone.0072654.g002

SSVEP Correlates with Brain Network Topology

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e72654



Pz, P4, T6, O1, O2 were chosen as the nodes for network

construction. These electrodes covered all the regions that were

assumed to be the possible sources of SSVEP [9,20].

SSVEP can be measured in a narrow (usually,0.1 Hz)

frequency band centered on the stimulus frequency; therefore,

the coherence is adopted to measure the functional connectivity

between each pair of electrodes. It is known that coherence is the

most commonly used measure in the analysis of co-operative,

synchrony-defined cortical neuronal assemblies [24,28]. Coher-

ence represents the linear relationship at a specific frequency

between two signals x(t) and y(t), which is expressed as.

C(f )~
DCxy(f )D2

Cxx(f )Cyy(f )
, ð1Þ

where Cxy(f ) is the cross-spectrum between x(t) and y(t), and Cxx(f ),

Cyy(f ) are the auto spectra.

For each subject, we used a 2.4 s window length and a 1.2 s

overlap to extract data epochs for all the data segments at each

frequency. These data lengths were chosen because they included

the integer number of cycles at all the frequencies. A narrow band

spectrum with one bin centered on the stimulus frequencies was

Figure 3. The correlation between the mean functional connectivity of Network 0 and SNRs across subjects. (A) 12.5 Hz, (B) 16.6 Hz.
The red lines indicate the fitted linear trend. The r denotes correlation coefficients, p denotes significant level of correlation coefficients.
doi:10.1371/journal.pone.0072654.g003

Figure 4. Spatial topology of links that showed significant correlation with SNRs of two frequencies. (A) 12.5 Hz, (B) 16.6 Hz. The red
and blue lines indicate the links significantly positively or negatively correlated with the SNRs, respectively.
doi:10.1371/journal.pone.0072654.g004
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obtained for each segment. We then calculated the coherence

matrix in each epoch and obtained a total of 36–48 coherence

matrixes (of size 18 by 18) for each frequency. All the matrices of

each frequency were averaged and used as the original whole

network of each frequency.

The coherence was always nonzero, which might result in some

spurious edges in the networks. Therefore, we tried to reduce these

spurious edges using the sparsity value. Sparsity is the ratio of the

total number of edges in a network divided by the maximum

possible number of edges. A sparsity value can be obtained based

on the criteria that all brain networks are fully connected while

minimizing the number of false-positive paths [5,29]. With this

method, the resulting networks have the same numbers of nodes

and edges [5,29], and only retain edges with large connection

strengths. In this study, the sparsity value was generated based on

all original entire networks of two frequencies across 11 subjects.

Because the sparsity value ranged from 0 to 1, we scaled the

threshold value from 0 to 1 with a step of 0.01 to find the sparsity

value. Under each threshold, after calculating the number of edges

remaining in each network, we selected only the edges having the

top connection strengths and deleted the rest edges. If a threshold

reached the first value under which one of the original entire

networks had a sole node, the sparsity value was the preceding

threshold before that value.

Brain Network Classification
After reducing a number of spurious connections based on the

sparsity value, we denoted the new whole functional network as

Network 0. To identify the connections (links) that were

significantly correlated with the SSVEPs of each frequency, the

correlation coefficient was calculated between the connection

strengths of each possible nodal pair in Network 0 and the SSVEP

responses across subjects. For example, we obtained 11 values of

connection strengths between O1 and O2, and another 11 values

of SSVEP responses under 12.5 Hz. Then, we calculated the

correlation coefficient between these two groups of measurements

to determine whether the connections between O1 and O2 were

significantly correlated with the SSVEP responses under 12.5 Hz.

With this approach, we found that the connections were

significantly correlated with SSVEP responses of each frequency.

We then divided each Network 0 into three sub-networks:

Networks 1, 2 and 3. Network 1 was composed of connections

in which the connection strengths were significantly positively

correlated with SNRs (p,0.05, uncorrected). In Network 3, the

connection strengths were significantly negatively correlated with

SNRs. Finally, Network 2 was composed of the remaining

connections for which the strengths were not significantly

correlated with SSVEP responses. As the connections in Network

3 were very sparse, we did not calculate its network properties.

Figure 5. Four sub-networks’ topographies of one subject. For each row, from left to right, the four topology networks are Network 0, 1, 2
and 3, respectively. (A) 12.5 Hz, (B) 16.6 Hz.
doi:10.1371/journal.pone.0072654.g005

Table 1. The relationship between the mean functional
connectivities of Networks 1 and 2 and the SNRs across
subjects.

Network Frequency r p

Network 1 12.5 Hz 0.892 ***

16.6 Hz 0.927 ***

Network 2 12.5 Hz 0.875 ***

16.6 Hz 0.832 ***

r denotes correlation coefficients, p denotes significant level of correlation
coefficients.
***p,0.001,
**p,0.01.
doi:10.1371/journal.pone.0072654.t001
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Graph Theoretical Analysis
In this study, we focused on the weighted network analysis. In

weighted networks, the weights indicate the connection strengt-

hand reflect a difference in the capacity and intensity of the

connections between nodes; thus, they may be a more valid

approach for brain network modeling. Furthermore, using

weighted networks is useful for reducing the influence of weak

and potentially non-significant connections [5,30].

In a weighted network (N-by-N), the clustering coefficient of a

node i represents the likelihood that the direct neighbors of the

node are also connected with each other [31], and it is calculated

as follows:

Ci~

P
j,h[N

(wijwihwjh)1=3

ki(ki{1)
, ð2Þ

where wij is the weight between nodes i and j in the network, and ki

is the degree of node i. In this work, wij is the coherence between

two electrodes obtained using formula (1).

The network clustering coefficient is the average of the

clustering coefficients of all nodes:

C~
1

N

X

i[N

Ci, ð3Þ

it is a measure of the extent of the local density or cliquishness of

the network [32].

The length of each edge is defined as the inverse of the edge

weight, 1/wij. The shortest path length between two nodes, Lij, is

defined as the length of the path with the shortest length between

the two nodes i and j. The characteristic path length of a network

is measured by the harmonic mean length between pairs [33], to

handle the possible disconnected edges and is calculated as follows:

L~
1

1

N(N{1))
:
XN

i~1

XN

j=i

1=Lij

, ð4Þ

this property quantifies the level of global communication

efficiency of a network.

The global efficiency is defined by the inverse of the harmonic

mean of the shortest path length between each pair of nodes [34],

and it is computed as.

Eglobal~
1

N(N{1)

XN

i~1

XN

j=i

1=Lij , ð5Þ

it is a measure of the global efficiency of parallel information

transfer in the network.

We can also compute the local efficiency of node i using the

following formula:

Ei local~
1

NGi

XNGi

i[Gi

Eglobal(Gi), ð6Þ

where NGi
is the number of nodes in Gi and Gi denotes the

subgraph composed of the set of nodes that are the direct

neighbors of node i [34]. The mean local efficiency of graph G is

the average of the local efficiencies of all nodes in graph G,

Elocal~
1

N

XN

i[G

Ei local(Gi): ð7Þ

It can be understood as a measure of the fault tolerance of the

networks [35].

Graph theoretical analyses were implemented using the Brain

Connectivity Toolbox [30].

Table 2. The relationship between network topological properties of Networks 0 and the SNRs of two flickering frequencies.

Clustering Coefficient Path Length Global Efficiency Local Efficiency

Frequencies r p r p r p r p

12.5 Hz 0.894 *** 20.919 *** 0.911 *** 0.904 ***

16.6 Hz 0.944 *** 20.9507 *** 0.938 *** 0.940 ***

r denotes correlation coefficients, p denotes significant level of correlation coefficients.
***p,0.001.
doi:10.1371/journal.pone.0072654.t002

Table 3. The relationship between topological properties of Networks 1 and the SNRs of two flickering frequencies.

Clustering Coefficient Path Length Global Efficiency Local Efficiency

Frequencies r p r p r p r p

12.5 Hz 0.842 *** 20.903 *** 0.903 *** 0.738 **

16.6 Hz 0.949 *** 20.947 *** 0.924 *** 0.960 ***

r denotes correlation coefficients, p denotes significant level of correlation coefficients.
***p,0.001,
**p,0.01.
doi:10.1371/journal.pone.0072654.t003

SSVEP Correlates with Brain Network Topology
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Relationship between Topological Properties and SSVEP
To reduce the influence of non-specific background, we

expressed the SSVEP responses as signal-to-noise ratio (SNR)

based on the Fourier transformation [36]. The SNR was defined

as the ratio of the power of the stimulus frequency divided by the

mean power value of the 1 Hz band that was centered on the

stimulus frequency but excluded the stimulus frequency itself. The

SNRs of the 18 electrodes of each frequency were averaged across

the epochs for each subject. To avoid arbitrary selection of

electrodes, we used the mean SNR of the 18 electrodes as a

Table 4. The relationship between topological properties of Networks 2 and the SNRs of two flickering frequencies.

Clustering Coefficient Path Length Global Efficiency Local Efficiency

Frequencies r p r p r p r p

12.5 Hz 0.834 *** 20.898 *** 0.890 *** 0.871 ***

16.6 Hz 0.801 ** 20.919 *** 0.923 *** 0.742 **

r denotes correlation coefficients, p denotes significant level of correlation coefficients.
***p,0.001,
**p,0.01.
doi:10.1371/journal.pone.0072654.t004

Figure 6. The correlations between the SNRs across subjects and the four network properties of Network 0 of 12.5 Hz. Clustering
coefficient (A), global efficiency (C) and local efficiency (D) were significantly positively correlated with SNR, but the characteristic path length (B) was
significantly negatively correlated with SNR. The red lines indicated the fitted linear trend. r denotes correlation coefficient, p denotes significant level
of the correlation coefficient.
doi:10.1371/journal.pone.0072654.g006
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measure of the SSVEP responses of each frequency for each

subject. We then correlated the network topological properties

with the SNRs. The Pearson’s correlation analysis was used in this

study.

Results

Based on the original entire networks of the two frequencies

from all the subjects, the sparsity value was calculated as 0.67.

Before computing the topological properties, we first used this

value to reduce the spurious edges of all the original whole

networks.

SSVEP Responses of Different Subjects Under the Two
Frequency Stimuli

To ensure that the experiment resulted in expected SSVEP

responses, we calculated the power spectrum of each frequency for

each subject. Two examples of power spectrum of both

frequencies from a subject are shown in Figure 1. For this subject,

the fundamental frequency components on eighteen channels were

apparent under both stimulus frequencies. In addition, the second

harmonic components were also apparent for most of channels

under 12.5 Hz (Fig. 1(A)), while fewer harmonic components were

found under 16.6 Hz (Fig. 1(B)). The patterns for the power

spectrum varied between subjects, but all subjects displayed the

expected evoked components for the two frequencies. At the same

time, the mean SNRs averaged across the epochs and channels of

all subjects, under both stimulus frequencies, are shown in Fig. 2.

In this figure, different subjects showed variation in SNRs under

the same frequency. These phenomena were present at both

frequencies.

Network Partition based on the Relationship between
SNRs and Connection Strengths across Subjects

As shown in Fig. 3, the mean functional connectivity of Network

0 is significantly correlated with the SNRs across subjects. This

relationship may imply that both the SNRs and connection

strengths are entrained by the stimulus, which results in a high

correlation. To verify whether all connections were correlated with

the SNRs, the correlation coefficient was calculated between the

connection strengths of each edge present in Network 0 and the

SNRs across subjects under each stimulus frequency. The

computing procedure can be found in Section ‘‘Brain network
classification’’. Interestingly, we found that just a subset of the

connections in Network 0 showed a positive correlation with the

SNRs, and while an additional subset did not correlate with the

SNRs. Additionally, there were also some sparse connections that

correlated negatively with the SNRs. The connections that

correlated significantly (p,0.05, uncorrected) with the SNRs are

showed in Fig. 4. This result indicates that the significant links

were mostly long-range connections between the occipital and

frontal regions. Furthermore, according to the rules detailed in

section ‘‘Brain network classification’’, each Network 0 was

divided into three sub-networks, i.e., Networks 1, 2 and 3. A

representative example of these divisions were in Fig. 5.

Similar to Fig. 3 of Network 0, the mean functional connectivity

at each frequency was also calculated for Networks 1 and 2 of each

subject (Table 1). The mean functional connectivities of all three

networks were found to be significantly correlated with SNRs.

Taken as a whole, we may infer that the main contribution for

SSVEP generation may not be simply attributed to connections

entrained by stimulus; in other words, Network 1 is not the only

contributor to the generation of SSVEP.

Figure 7. Nodal connection differences of networks of the subject from Group 1 and Group 2. (A) 12.5 Hz, (B) 16.6 Hz. The red and blue
lines indicate the nodal connection weights in the networks of Group 1 show significantly increased and decreased compared with those of Group 2,
respectively. The results were produced using permutation testing, p,0.05.
doi:10.1371/journal.pone.0072654.g007
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Relationship between the SNRs and Topological
Properties across Subjects

First, the four properties of Network 0 were calculated for each

subject. At each frequency, we found strong associations between

the SNRs and the topological properties (Fig. 6 and Table 2). The

SNRs were significantly positively correlated with the clustering

coefficient, global efficiency and local efficiency, and they were

significantly negatively correlated with characteristic path length.

Similarly, we calculated the four properties of Networks 1 and 2,

and we found that the same relationships were present between

the properties of these two sub-networks and SNRs (Tables 3 and

4). These results suggest that SNRs are likely to be related to the

topology of individual functional brain networks with the same

resonance frequency as the input stimulus frequency. Larger

SSVEP SNRs are likely to correlate with more efficient functional

brain networks. According to these results, it seems that the non-

significant connections also contribute greatly to SSVEP genera-

tion, and as do their network topological properties.

Discussion

Graph theories have recently been widely employed to discover

the underlying neural mechanisms of some neurological or

cognitive phenomena [1,4,5,29,37].These findings may have

important implications and applications, such as serving as the

potential biomarkers for the observation of the diseases and

cognitive function [5]. In this study, we attempted to apply graph

theories analysis to explore functional brain networks of SSVEP

and to identify the observed differences between subjects. To the

best of our knowledge, this is the first study to investigate the

relationship between SSVEP and brain networks that are

entrained by a flickering stimulus.

Relationship between SSVEP Responses and Functional
Brain Networks

Studies have reported the resonant nature of SSVEP [38,39,40].

Neural circuits within the brain work at specific preferred or

resonant frequencies, and the resonance properties of the EEG

oscillators can be enhanced by the flickering stimulus [39]. These

resonance phenomena may arise from either feedback connections

within local neural circuits or the facilitation that arises through

simultaneous stimulation of aggregates of similar types of neural

circuits across the cortex [40]. Therefore, the flickering stimulus

drives the brain neural circuits (oscillators) to shape the SSVEP

brain networks. In our study, we found that the mean functional

connectivity and topological properties of the networks (Networks

0) were correlated with the SNRs. We also obtained the same

results with the sub-networks (Network 1) in which connections

had a significantly positive correlation with the SNRs. Interest-

ingly, in the sub-network (Network 2) in which connections were

not correlated with SNRs, the overall mean functional connectiv-

ity and properties of the network were correlated with SNRs.

Thus, the network that supports the SSVEP responses are complex

and includes both connections that are directly correlated and

uncorrelated with the SSVEP generation.

In addition, SSVEP may be quite possibly related to network

efficiency. Within Networks 0, 1 and 2, we found the same

relationships between the four topological properties and the

SNRs. A shorter characteristic path length and a higher global

efficiency of the network indicate more efficient parallel informa-

tion transfer and integration in the brain, A larger clustering

coefficient and local efficiency indicate larger local information

processing. This suggests that larger SSVEP responses correspond

to more efficient network organizations. The different topological

brain networks sharing the same preferred frequency as the

stimulus may act to modulate the same inputs to shape different

response outputs. Our findings suggest that the efficiency of brain

functional organization may be an important basis for SSVEP

generation. These results may also be related to the observed

phenomena that some subjects, using the same SSVEP-BCI

system, do not perform as well as others. In the future, we need to

further confirm these results using simultaneous EEG-fMRI data.

These results may provide possible evidence for a significant role

for complex brain network topological parameters have important

value in understanding the neural mechanism of SSVEP.

In fact, some previous studies have shown similar associations

between the brain network topology and some measurements of

brain function. Li and his colleagues showed that individual

differences in intelligence are associated with brain structural

organization and that higher scores on intelligence tests were

related to greater global efficiency of the brain anatomical network

[37]. Another study also showed that a strong positive correlation

exists between the global efficiency of resting-state functional brain

networks and intelligence [4]. Zhou et al. showed that a shorter

reaction time was correlated with a shorter characteristic path

length in gamma band network using resting-sate EEG [6]. Douw

et al. showed increased local connectivity in delta, theta and

gamma bands was correlated with better cognition in a study using

resting-state MEG [41]. The present study may add to the findings

of these tpyes of studies.

The Networks Comparisons between Two Groups of
Subjects with High and Low SNR

To further explore the differences across subjects, we conducted

a comparison study. We chose subjects with the four highest SNR

(Group 1) and the four lowest SNR subjects (Group 2) to compare

the nodal connectivity (wij) differences. All the comparisons were

performed using permutation tests [5,42]. Accordingly, we

calculated the actual differences of nodal connectivity (wij) of

Networks 0 of these groups. Next, each subject was randomly

reassigned to one of the two groups of the same size as the original

groups, and the connectivity differences were recalculated. This

procedure was repeated 5000 times to sample the permutation

distribution of connectivity differences under the null hypothesis

that observed differences were not determined by the true group

membership. The one-tailed p value was then computed as the

proportion of differences in the permutation distribution that was

greater (or smaller than) the observed between-group differences.

Nodal connection differences of networks of the subject from

Group 1 and Group 2 are showed in Fig. 7. In comparison with

Group 2, the networks of Group 1 contain more connections with

increased connection weights (as shown with red lines), and they

also have some connections with decreased connection weights (as

shown with blue lines) under both frequencies. Most of the

connections with increased weights were long-range. In addition,

we found an increased number of long-range connections in the

networks of Group 1 at 16.6 Hz compared with 12.5 Hz. This

finding suggests that the long-range connections are crucial in

efficient global information integration and processing. They play

a crucial role in maintaining a short path length in a network,

which promotes effective interactions between and across different

regions [35,43]. The larger SSVEP may mainly depend on these

increased connectivity strengths of long-range connections. Our

findings may suggest that a larger SSVEP is more likely related to

a short path length. These results may coincide with the finding

that the primary significant links are the long-range connections.
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Does the Skull Thickness or Noises Result in our Findings?
One possible reason for the differences between subjects in both

SSVEP and graph measures could be from variations in the

overall EEG signal quality or skull thickness.If this were the case,

we would observe that connections that significantly correlated

with the SNRs were distributed across the majority of the brain

regions (Fig. 4), and the difference between the high SNR and low

SNR groups of subjects must also distribute across most of the

brain regions (Fig. 7). However, as shown in Fig. 4, the significant

connections are primarily long-range connections from the

occipital region to the frontal region. In addition to the positively

correlated connections, there were also some sparse connections

showing negative correlation with the SNRs (Figs. 4 and 5).

Concurrently, Fig. 7 shows that the long-range connections may

be the main factors driving the observed differences between the

two groups of subjects. Accordingly, we cannot attribute either the

differences or the correlations between the SNRs and networks

measurements to variations of the skull thickness or noise levels. In

fact, as the closely spaced electrode pairs were subject to significant

volume conduction effects [25,27], we limited our selection to 18

standard electrodes for the nodes used to construct the networks to

reduce volume conduction.

The SSVEPs are Multiple Sources Responses
Previous studies confirmed that SSVEPs involve both local and

distant widely distributed brain regions [9]. These results may

explain why we found that SSVEP correlated with the local

metrics, i.e., clustering coefficient and local efficiency, and the

global metrics of characteristic path length and global efficiency.

However, our findings further show that more efficient functional

networks composed of locally and non-locally distributed brain

regions are related to larger responses when processing the same

sensory inputs. Meanwhile, the present results provide new insights

into the origination of SSVEP from spatially distributed regions,

not just a single dipole source within the occipital region [9,20].

Methodological Considerations and Potential Topics for
the Future

Volume conduction is a major factor when calculating the scalp

EEG coherence, as EEG coherence is only meaningful for widely

spaced electrode pairs [25,27]. In this study, we attempted to

reduce this influence by choosing 18 widely spaced electrodes to

cover the main regions for recording SSVEP. Another important

factor in calculating coherence is the reference. In this work, we

adopted the novel zero-reference to avoid a reference effect

[24,44].

In this study, we focused on a weighted network analysis with

the graph theories and calculated all the properties based on a fully

connected network after reducing some spurious edges. We did

not take the unweighted networks into consideration, as these

types of networks could not reflect the physical information related

to the graph [45], and because some studies also showed similar

results when using the weighted and unweighted networks [46].

In this paper, we used two frequencies and eleven subjects to

determine strong correlation between SSVEP and the global

topological properties. In future studies, we plan to explore more

frequencies and adopt a larger number of subjects to investigate

the consistency of the results. Meanwhile, one of the great

challenges in BCI research is BCI illiteracy [47]. It would be of

significant value to determine if the network parameters can aid in

screening subjects prior to BCI application using the resting-state

recording data Additionally, effective connectivity would also be

conducted to investigate the properties of the directed network.

In this study, subjects were not asked to perform cognitive task.

Thus, potential future research may combine SSVEP with

network analysis during tests of various cognitive activities, such

as visual attention and working memory. Using this new analysis

method to study change in SSVEP during a cognitive process may

provide new avenues for both cognitive and clinical research.

Conclusions

In this study, we explored the mechanism of SSVEP using brain

networks analysis methods. The main findings were that larger

SSVEP responses correlate with high mean functional connectivity

and more efficient topological organizations of brain networks

entrained by the stimulus. We found that the connections in which

connection strengths significantly correlated with SSVEP were

primarily long-range connections and that these long-range

connections may contribute to the differences between subjects.

We also found that the connections that did not non-significantly

correlate with SSVEP still contribute to SSVEP generation,

although the connections that directly correlated with SSVEP may

be beneficial factors. Together, these results suggest that the

network topology substantially contribute to the generation of

SSVEP. Therefore, these results may provide insight into the

mechanism of SSVEP and open opportunities for future studies.

Functional brain network analysis based on graph theories may

provide a novel approach for probing the underlying mechanism

of SSVEP-BCI and invite new insights into relevant cognitive and

clinical studies using SSVEP.

Acknowledgments

The authors would also like to thank Dr. Daqing Guo for his help in

correcting the manuscript.

Author Contributions

Conceived and designed the experiments: YSZ YLH DZY. Performed the

experiments: YSZ YLH. Analyzed the data: YSZ PX DZY. Contributed

reagents/materials/analysis tools: YSZ PX DZY. Wrote the paper: YSZ

PX KWC DZY. Designed the stimulator: YLH.

References

1. Stam C, De Haan W, Daffertshofer A, Jones B, Manshanden I, et al. (2009)

Graph theoretical analysis of magnetoencephalographic functional connectivity

in Alzheimer’s disease. Brain 132: 213–224.

2. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat Rev Neurosci 10: 186–198.

3. Stam CJ, Reijneveld JC (2007) Graph theoretical analysis of complex networks

in the brain. Nonlinear Biomed Phys 1: 3.

4. van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of

functional brain networks and intellectual performance. J Neurosci 29: 7619–

7624.

5. Zhang Z, Liao W, Chen H, Mantini D, Ding JR, et al. (2011) Altered

functional–structural coupling of large-scale brain networks in idiopathic

generalized epilepsy. Brain 134: 2912–2928.

6. Zhou G, Liu P, He J, Dong M, Yang X, et al. (2012) Interindividual reaction

time variability is related to resting-state network topology: an electroenceph-

alogram study. Neuroscience 202: 276–282.

7. Regan D (1989) Human brain electrophysiology: Evoked potentials and evoked

magnetic fields in science and medicine. Elsevier: New York.

8. Wu CH, Chang HC, Lee PL, Li KS, Sie JJ, et al. (2011) Frequency recognition

in an SSVEP-based brain computer interface using empirical mode decompo-

sition and refined generalized zero-crossing. J Neurosci Methods 196: 170–181.

9. Vialatte FB, Maurice M, Dauwels J, Cichocki A (2010) Steady-state visually

evoked potentials: focus on essential paradigms and future perspectives. Prog

Neurobiol 90: 418–438.

SSVEP Correlates with Brain Network Topology

PLOS ONE | www.plosone.org 10 September 2013 | Volume 8 | Issue 9 | e72654



10. Zhang Y, Xu P, Liu T, Hu J, Zhang R, et al. (2012) Multiple frequencies

sequential coding for SSVEP-based brain-computer interface. PLoS One 7:

e29519.

11. Cheng M, Gao X, Gao S, Xu D (2002) Design and implementation of a brain-

computer interface with high transfer rates. Biomedical Engineering, IEEE

Transactions on 49: 1181–1186.

12. Volosyak I (2011) SSVEP-based Bremen BCI interface boosting information

transfer rates. J Neural Eng 8: 036020.

13. Wilson JJ, Palaniappan R (2011) Analogue mouse pointer control via an online

steady state visual evoked potential (SSVEP) brain-computer interface. J Neural

Eng 8: 025026.

14. Ng KB, Bradley AP, Cunnington R (2012) Stimulus specificity of a steady-state

visual-evoked potential-based brain–computer interface. J Neural Eng 9:

036008.

15. Panicker RC, Puthusserypady S, Sun Y (2011) An asynchronous P300 BCI with

SSVEP-based control state detection. IEEE Trans Biomed Eng 58: 1781–1788.

16. Yin E, Zhou Z, Jiang J, Chen F, Liu Y, et al. (2013) A novel hybrid BCI speller

based on the incorporation of SSVEP into the P300 paradigm. J Neural Eng 10:

026012.

17. Xu M, Qi H, Wan B, Yin T, Liu Z, et al. (2013) A hybrid BCI speller paradigm

combining P300 potential and the SSVEP blocking feature. J Neural Eng 10:

026001.

18. Hwang HJ, Hwan Kim D, Han CH, Im CH (2013) A new dual-frequency

stimulation method to increase the number of visual stimuli for multi-class

SSVEP-based brain-computer interface (BCI). Brain Res 1515: 66–77.

19. Wu Z, Yao D (2008) Frequency detection with stability coefficient for steady-

state visual evoked potential (SSVEP)-based BCIs. J Neural Eng 5: 36–43.

20. Srinivasan R, Fornari E, Knyazeva M, Meuli R, Maeder P (2007) fMRI

responses in medial frontal cortex that depend on the temporal frequency of

visual input. Exp Brain Res 180: 677–691.

21. Yan Z, Gao X (2011) Functional connectivity analysis of steady-state visual

evoked potentials. Neurosci Lett 499: 199–203.

22. Wu Z, Yao D (2007) The influence of cognitive tasks on different frequencies

steady-state visual evoked potentials. Brain Topogr 20: 97–104.

23. Wu Z, Yao D, Tang Y, Huang Y, Su S (2010) Amplitude modulation of steady-

state visual evoked potentials by event-related potentials in a working memory

task. J Biol Phys 36: 261–271.

24. Qin Y, Xu P, Yao D (2010) A comparative study of different references for EEG

default mode network: the use of the infinity reference. Clin Neurophysiol 121:

1981–1991.

25. Murias M, Swanson JM, Srinivasan R (2007) Functional connectivity of frontal

cortex in healthy and ADHD children reflected in EEG coherence. Cerebral

Cortex 17: 1788.

26. Yao D (2001) A method to standardize a reference of scalp EEG recordings to a

point at infinity. Physiol Meas 22: 693.

27. Srinivasan R, Nunez PL, Silberstein RB (1998) Spatial filtering and neocortical

dynamics: estimates of EEG coherence. Biomedical Engineering, IEEE

Transactions on 45: 814–826.

28. Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, et al.

(1997) EEG coherency: I: statistics, reference electrode, volume conduction,
Laplacians, cortical imaging, and interpretation at multiple scales. Electro-

encephalogr Clin Neurophysiol 103: 499–515.

29. Yao Z, Zhang Y, Lin L, Zhou Y, Xu C, et al. (2010) Abnormal cortical networks
in mild cognitive impairment and Alzheimer’s disease. PLoS Comput Biol 6:

e1001006.
30. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity:

uses and interpretations. Neuroimage 52: 1059–1069.
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