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Abstract
Objective. The prediction of brain–computer interface (BCI) performance is a significant topic
in the BCI field. Some researches have demonstrated that resting-state data are promising
candidates to achieve the goal. However, so far the relationships between the resting-state
networks and the steady-state visual evoked potential (SSVEP)-based BCI have not been
investigated. In this paper, we investigate the possible relationships between the SSVEP
responses, the classification accuracy of five stimulus frequencies and the closed-eye
resting-state network topology. Approach. The resting-state functional connectivity networks
of the corresponding five stimulus frequencies were created by coherence, and then three
network topology measures—the mean functional connectivity, the clustering coefficient and
the characteristic path length of each network—were calculated. In addition, canonical
correlation analysis was used to perform frequency recognition with the SSVEP data.
Main results. Interestingly, we found that SSVEPs of each frequency were negatively
correlated with the mean functional connectivity and clustering coefficient, but positively
correlated with characteristic path length. Each of the averaged network topology measures
across the frequencies showed the same relationship with the SSVEPs averaged across
frequencies between the subjects. Furthermore, our results also demonstrated that the
classification accuracy can be predicted by three averaged network measures and their
combination can further improve the prediction performance. Significance. These findings
indicate that the SSVEP responses and performance are predictable using the information at
the resting-state, which may be instructive in both SSVEP-aided cognition studies and
SSVEP-based BCI applications.

(Some figures may appear in colour only in the online journal)

1. Introduction

The steady-state visual evoked potential (SSVEP) is a periodic
response evoked by a repetitive visual stimulus with a
frequency above 4 Hz. It has the same fundamental frequency
as the stimulus as well as its harmonics [1]. SSVEP has been
widely used to study the neural processes underlying rhythmic
brain activities in cognitive and clinical neuroscience [2].

1 Author to whom any correspondence should be addressed.

Because of the high signal–signal ratio and robustness, the
SSVEP-based brain–computer interface (BCI) has become
an important system in the BCI community [3–5]. However,
up to now the underlying mechanisms which account for the
differences in SSVEP responses across subjects still need to be
explored; few works in the literature probe into these aspects.

The brain is a complex network consisting of a
large number of functionally and structurally interconnected
regions. There is accumulating evidence that indicates the
value of brain network topology for understanding cognitive
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processes and diseases [6–9]. Brain network topology can
be derived by theoretical graph analysis. Usually, a brain
network can be constructed by calculating the functional
connectivity between the concerned brain regions. Functional
connectivity is defined as the statistical dependence of
neuronal activity patterns between anatomically separated
brain regions [10]. Various measures, such as correlation,
synchronization likelihood, coherence and phase lag index can
be used to calculate the functional connectivity [8, 11–13].
The construction of brain networks during rest is a hot topic
in the neuroscience community. Studies have shown during
rest the brain is not idle, but rather that it shows an amount
of spontaneous activity that reflects the brain’s potential
processing abilities [8, 14]. Recently, intensive statistical
analysis has revealed that the topology of a resting-state brain
network has significant associations with cognitive functions
and performance. [9, 11, 12].

On the other hand, many resting-state measures have been
demonstrated to be relevant to BCI performance [15–17].
For example, Blankertz et al showed the averaged power
spectral densities (PSD) of two channels from the 2 min
of open-eyed resting-state EEG data can be predictors of
motor imagery BCI performance [17]. Fernandez-Vargas et al
also showed that inter-individual baseline resting-state EEG
measures (PSD in specific frequency bands) were correlated
with assisted closed-loop SSVEP-based BCI performance
[16]. However, so far little is known about the role of resting-
state brain networks in BCI. In this study, we try to investigate
the significance of resting-state brain network topology of
the stimulus frequencies in the SSVEP responses and the
SSVEP-based BCI classification performance. To this end,
five different frequencies are adopted to explore our goals.
Interestingly, we found that the resting-state network topology
is related to both the SSVEP responses and the performance
of SSVEP-based BCI.

2. Materials and methods

2.1. Participants

Twelve healthy right-handed adults (two females, age range:
20–27 yr, mean (SD) age was 22.5(2.2) yr) with normal
or corrected to normal vision participated in this study.
All participants signed an informed consent form before
participating in the study. These subjects had no historical
record of any epileptic seizure. The study was approved by
the Human Research and Ethics Committee, University of
Electronic Science and Technology of China.

2.2. EEG data acquisition

All data were collected from 64 Ag–AgCl electrodes extended
to a 10–20 system (Brain Products GmbH, Germany). The
data were sampled at 1000 Hz with an online bandpass filter
between 0.01–100 Hz and a 50 Hz notch filter for the line
frequency interference (50 Hz in China). The impedance for
all electrodes was kept below 10 k�. Frontal vertex (i.e. FCz)
was the reference electrode, and AFz served as the ground
electrode during recording. To control for eye movement

artifacts, horizontal and vertical electro-oculograms (EOGs)
were recorded from electrodes placed above the left eye and
at the outer canthus of the right eye, respectively.

2.3. Experimental procedure

For each subject, 2 min of closed-eye resting-state data were
collected. After that, each of five frequencies, i.e. 7.5, 10, 12,
15 and 20 Hz were used to collect SSVEP data for 1 min. The
stimulus sequence of the five frequencies was random across
the subjects. The subjects had a 2–3 min break between each
experiment to relax. The stimulus flickers were controlled by
a computer through a control program written in C++ builder
based on Windows DirectX API. The size of the stimulus was
a 2 × 2 cm2, with a duty cycle 0.5, 0.5, 0.6, 0.5 and 0.5 for the
five frequencies, respectively. A laptop with a 13′′ screen and
a refresh rate of 60 Hz was used to present stimuli. During
the experiment, the subjects were seated in a comfortable
armchair, about 60 cm away from the center of the monitor.
Subjects were requested to gaze binocularly at each flickering
stimulus. The experiment lasted for about 1 h.

2.4. Data processing

2.4.1. Data preprocessing. To eliminate the signal excursion,
the EEG data were filtered with 1–100 Hz, and then resampled
to 250 Hz. To reject electrodes with a preponderance of
noise resulting from insufficient contact with the scalp, two
electrodes, TP9 and TP10 were eliminated from the study due
to excessive artifact.

For each subject, we chose the first seven non-
overlapping artifact-free (common artifacts such as eye blinks,
eye movements and muscle activities, amplitude exceeded
100 μV) epochs of 10 s from the resting-state data, and the first
three to five non-overlapping and artifact-free epochs of 4 s
from the SSVEP data. After these pre-processing procedures,
all data were re-referenced to zero reference by the reference
electrode standardization technique (REST) (Free software
download at www.neuro.uestc.edu.cn/rest/index.asp) [18].

2.4.2. SSVEP data processing. In this work, the SSVEP
data processing is divided into two steps. First, we measured
the SSVEP response under each frequency for each subject.
Second, because stimulus frequencies are always not across
a wide frequency band (7.5 Hz–20 Hz), we calculated
the classification accuracy by pooling the data of the four
frequencies (7.5, 10, 12 and 15 Hz) together for each subject.
To lower the possible effect of background across subjects,
we expressed SSVEP responses as the signal-to-noise ratio
(SNR) based on the fast Fourier transform (FFT) [19]. The
SNR was defined as the ratio of the power of the stimulus
frequency divided by the mean power value of the 1 Hz band
which centered on the stimulus frequency but excluded the
stimulus frequency itself. For each subject, the SNRs for the
nine electrodes (P3, Pz, P4, PO3, POz, PO4, O1, Oz, O2)
located in the occipital area were calculated in each epoch, then
SNRs were further averaged across the epochs and electrodes
for each stimulus frequency.
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To implement classification, we used the canonical
correlation analysis (CCA) which is one of the methods that
can provide satisfactory results for SSVEP-based BCI [20–22].
This method uses the multivariable statistical method CCA
to calculate the correlation coefficients between the multiple
electrodes EEG and the reference signals. The data from the
nine electrodes mentioned above were chosen as the input of
CCA. A study has shown that there is no significant influence
for the number of harmonics on the frequency recognition for
CCA. In order to avoid the interference between the harmonic
frequencies, we just chose the first harmonic when creating
the reference data matrix. A 2 s time window was chosen
for the classification as in other related works [20, 21, 23].
Accordingly, there were two classification operations for each
of the 4 s long data epochs.

2.4.3. Resting-state network calculations. To reduce volume
conduction influence, 19 standard electrode positions Fp1,
Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8,
O1, O2 were chosen as the nodes to construct the networks. The
coherence was adopted to measure the functional connectivity
between a pair of electrodes. For each subject, we calculated
five coherence matrices corresponding to the five frequencies
in each epoch of the resting-state data respectively. Then the
coherence matrices of each frequency were averaged across
epochs.

The coherence was always nonzero resulting in a too dense
network. Therefore, in order to reduce some spurious edges,
we reduced the total edges based on the sparsity threshold.
Sparsity is defined as the ratio of the total number of edges
divided by the maximum possible number of edges in a
network [6, 7]. The criterion to choose the threshold was that
all brain networks across all subjects were fully connected
while minimizing the number of false-positive edges with the
sparsity value. In essence, this method was used to keep the
edges with large connection weights and delete some edges
where connection weights were small. With this strategy, the
resulting networks had the same number of nodes and edges
[6, 7]. In the current work, we determined the sparsity value
based on all the averaged matrices of the five frequencies from
the 12 subjects under all the frequencies.

For convenience, we denoted the new averaged matrices
after the reduced artificial links based on the sparsity value as
the resting network.

2.4.4. Resting network topology measures. To measure
the resting network topology, we first calculated the mean
functional connectivity of each resting network, and then
used the theoretical graph analysis to evaluate the topological
properties, i.e. the clustering coefficient and the characteristic
path length for each resting network. The mean functional
connectivity of each resting network was defined as the mean
coherence between all the possible coherence connections
between each pair of electrodes in each resting network. These
two topological properties were calculated by using the Brain
Connectivity Toolbox [24]. It should be noted that we focused
on weighted network analysis in this study.

In a weighted network (N × N), the clustering coefficient
of a node i represents the likelihood that the direct neighbors
of the node are also connected with each other [25], and it is
calculated as follows:

Ci =
∑

j,h∈N (wi jwihw jh)
1/3

ki(ki − 1)
, (1)

where wi j is the weight between nodes i and j in the network,
and ki is the degree of the node i. Note that wi j is the
coherence between two electrodes in this paper. Then, the
network clustering coefficient is defined as the average of the
clustering coefficients of all nodes:

C = 1

N

∑

i∈N

Ci. (2)

It is a measure of the extent of the local density or cliquishness
of the network [26].

The characteristic path length which quantifies the level of
global communication efficiency of a network is measured by
a harmonic mean length between different pairs [27], to handle
the possible disconnected edges. It is calculated as follows:

L = 1

1/(N(N − 1))
∑N

i=1

∑N
j �=i 1/Li j

. (3)

Here Lij, is the shortest path length between nodes i and j.
The length of each edge is defined as the inverse of the edge
weight, 1/wi j.

3. Results

3.1. Individual differences in SSVEP responses (SNR)

The SSVEP responses SNR of different subjects under the five
stimulus frequencies are shown in figure 1. The differences of
each frequency exist among subjects. These inter-individual
variabilities provide chances for us to explore the relations
between the SNRs and the underlying network measures.

3.2. The relationship between SNRs and mean functional
connectivity

Based on the procedure mentioned above, the sparsity value
in the present work was determined as 0.77. In the following
studies, we used this threshold value to reduce the spurious
connections of the averaged networks of each frequency for
each subject to get the resting networks, and then further
calculated the topological measures. After these procedures,
we investigated the relationship between SNRs and network
topology using Pearson’s correlation analysis.

Firstly, we focused on the relationship between the SNRs
and the mean functional connectivity of each frequency. The
detailed correlation information was listed in table 1 and
figure 2(a). Interestingly, under each frequency condition, the
mean functional connectivity showed significantly negative
correlation with the SNRs, despite a marginal significant
correlation under 10 Hz, probably due to interference from the
stronger alpha background activities. Furthermore, we found
that the averaged functional connectivity across the five resting
networks showed a significantly negative correlation with the
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(a)

(b)

(c)

(d)

(e)

Figure 1. The SNRs of the five frequencies across different subjects.

Table 1. The correlation of the mean functional connectivity of each
frequency and the SNRs. r denotes the correlation coefficient and p
denotes the significant level of the correlation coefficient.

Frequency r p

7.5 Hz −0.789 0.002
10 Hz −0.569 0.054
12 Hz −0.745 0.005
15 Hz −0.731 0.007
20 Hz −0.742 0.006

average SNRs of the five frequencies across the subjects, as
shown in figure 2(d).

In order to specify the contribution of each connection to
the SNRs under each frequency, we computed the correlation
coefficients between the strengths of each connection and
the SNRs across subjects. The topology maps are shown in
figures 2 and 3. All the links in figure 2 denote the connections
which are positively correlated with the SNRs. These links are
sparse, and widely distributed without any specific patterns.
The connections which are negatively correlated with the
SNRs are denser than the positively correlated links. In order to

clearly show the main contributors, we only plotted the links
of which the absolute values of the correlation coefficients
are equal to or larger than 0.4. In figure 3, it seems that the
main contributors may be the connections from the occipital
to frontal regions. In one of our recent studies, we also
found that the long connections from the parietal-occipital to
frontal region under the flickering stimulus were significantly
correlated with the SNRs across subjects [28]. In addition,
Srinivasan et al reported that the occipital and frontal cortices
were the two main sources of SSVEP [29]. These findings may
indicate that the occipital and frontal cortices contribute more
to the high SNRs, and further contribute to the correlations
between the network measures and the SNRs.

3.3. The relationship between SNRs and topological
properties

Similarly to the relationship between the mean functional
connectivity and the SNRs, we found interesting results
between the SNRs and the two topological properties as
shown in table 2 and figures 4(b), (c). The SNRs of the
four frequencies (7.5, 12, 15 and 20 Hz) were significantly
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(a) (b) (c)

(d) (e) (f)

Figure 2. The correlation between the connection strength of each connection and the SNRs across subjects. (a) 7.5 Hz, (b) 10 Hz,
(c) 12 Hz, (d) 15 Hz, (e) 20 Hz, (f) average result across the five frequencies. The line width indicates the magnitude of the positive
correlation coefficients.

Table 2. The relationships between the topological properties and
the SNRs. r denotes the correlation coefficient, and p denotes the
significant level of the correlation coefficient.

Clustering coefficient Characteristic path length

Frequency r p r p

7.5 Hz −0.779 0.003 0.741 0.006
10 Hz −0.542 0.069 0.581 0.047
12 Hz −0.686 0.014 0.842 0.001
15 Hz −0.706 0.010 0.746 0.005
20 Hz −0.699 0.011 0.780 0.003

negatively correlated with the clustering coefficient of the
corresponding resting networks, and the SNRs of 10 Hz
were marginally significantly correlated with the clustering
coefficient of 10 Hz resting networks. For all the five
frequencies, the SNRs were significantly positively correlated
with the characteristic path length of the corresponding resting
networks. Furthermore, we found the averaged clustering
coefficient and averaged characteristic path length of the five
resting networks respectively showed significantly negative
and positive correlations with the average SNRs of the five
frequencies across subjects, as shown in figures 4(e), (f).

3.4. The relationship between classification performance and
topology measures

Previous studies have demonstrated that high SNRs can
improve classification performance [30, 31]. We computed the
correlation between the SNRs and classification performance,
and got a similar result as shown in figure 5. This result
shows that classification accuracy is significantly correlated
to the SNRs. The SSVEP data with higher averaged SNR
can yield better classification performance. Accordingly, we
should choose the stimulus frequencies which can evoke robust
SSVEP data (high SNRs) when we design a SSVEP-based BCI
system.

For BCI application, the prediction of the performance
using the resting-state data is an important topic [16, 17]. It is
valuable to investigate whether resting-state network topology
can be a candidate performance predictor for SSVEP-based
BCI. With the correlation analysis, it is interesting that the
three topological measures showed strong correlation with the
classification accuracy (table 3). With the regression analysis,
the results were comparable to the correlation analysis: the
mean functional connectivity (R2 = 0.348, p = 0.044), the
characteristic path length (R2 = 0.400, p = 0.027) and
the clustering coefficient (R2 = 0.289, p = 0.071) could
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(a) (b) (c)

(d) (e) (f)

Figure 3. The correlation between the connection strength of each connection and the SNRs across subjects. (a) 7.5 Hz, (b) 10 Hz,
(c) 12 Hz, (d) 15 Hz, (e) 20 Hz, (f) average result across the five frequencies. All the absolute values of the correlation coefficients are equal
to or larger than 0.4. The line width indicates the magnitude of the absolute values of the negative correlation coefficients.

Table 3. The correlation between the classification accuracy and the
averaged topological measures across the four frequencies. r
denotes correlation coefficient, and p denotes the significant level of
the correlation coefficient.

Measures r p

Averaged mean functional connectivity −0.589 0.043
Averaged clustering coefficient −0.538 0.071
Averaged characteristic path length 0.633 0.027

serve as feasible predictors. Probably due to the relatively
small sample size and the appearance of some outliers,
the effectiveness of the performance predictor is limited.
Furthermore, we considered whether combinations of the three
measures can improve the prediction performance. As the
results show in figure 4 and table 3, the mean functional
connectivity and clustering coefficient have inverse relations
with the accuracies comparing to the characteristic path length.
Therefore, we took two routes to solve the problem, i.e. we
calculated the reciprocals of mean functional connectivity and
clustering coefficient, or the reciprocals of characteristic path
length. Before combination, these values were normalized.
Each measure of each subject was divided by the summation

Table 4. The prediction performances with different combinations
of topological measures. NCC is the normalized clustering
coefficient, and INCC is the normalized reciprocals of the clustering
coefficient. INPL is the normalized characteristic path length, and
INCC is the normalized reciprocals of characteristic path length.
NMC is the normalized clustering coefficient, and INMC is the
normalized reciprocals of mean coherence. R2 and p denote the
R-square value and the p value with regression analysis.

Combinations R2 p

NCC+INPL 0.763 0.002
NMC+INPL 0.758 0.002
NMC+NCC 0.704 0.004
INCC+NPL 0.742 0.002
INMC+NPL 0.743 0.002
NCC+ NMC+INPL 0.763 0.007
INCC+INMC+NPL 0.743 0.009

of the same measures across the subjects. We also used
regression analysis to validate our ideas. The results are
shown in table 4. It seems that most combinations can provide
better prediction performance. Among these combinations, the
clustering coefficient and the reciprocals of characteristic path
length demonstrate the best performance, which could serve
as the predictors more feasibly than other combinations.
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(a) (b) (c)

(d) (e) (f)

Figure 4. The correlation between the network measures and the SNRs. The first row presents the results of 7.5 Hz; the second row presents
the results averaged across the five frequencies. From left to right, these are the relationships between the SNRs and the mean functional
connectivity, the clustering coefficient and the characteristic path length respectively. r denotes the correlation coefficient and p denotes the
significant level of the correlation coefficient. The red lines represent the fitted trend lines.

3.5. The results of the PSD-based method

In order to directly compare the proposed method with the
PSD-based method, we used a similar approach to [16]
to analyze our data. The same frequency bands of interest
were used: thetaLow (3.5–6.5 Hz), thetaHigh (6.5–7.5 Hz),
alphaLow (7.5–9 Hz), alphaHigh (9–12.5 Hz); betaLow (12.5–
18 Hz), betaMid (18–24 Hz), betaHigh (18–30 Hz). The
totalSpectrum frequency band in the current study was 1–
100 Hz. First, for the nine electrodes (P3, Pz, P4, PO3, POz,
PO4, O1, Oz, O2), the relative PSD of each frequency band
was calculated in each epoch by FFT. The relative PSD was
the PSD of each frequency band divided by the PSD of
the totalSpectrum frequency band. Second, we calculated the
mean relative PSDs for the Oz across the epochs as in [16],
and also calculated the mean relative PSDs across the epochs
and the nine electrodes. Third, we calculated the correlation
coefficients between the mean relative PSDs of each frequency
band and the classification accuracy. The results are shown
in table 5. We found that only the mean relative PSDs in
the alphaHigh frequency band showed almost significant (for

Table 5. The correlation between the classification accuracy and the
mean relative PSDs of the seven frequency bands. r denotes the
correlation coefficient, and p denotes the significant level of the
correlation coefficient.

Oz Nine electrodes

Frequency band r p r p

ThetaLow 0.287 0.365 0.414 0.181
ThetaHigh −0.057 0.861 −0.067 0.837
AlphaLow 0.014 0.966 0.114 0.725
AlphaHigh −0.535 0.073 −0.638 0.026
BetaLow 0.454 0.138 0.417 0.177
BetaMid 0.387 0.213 0.398 0.200
BetaHigh 0.461 0.132 0.450 0.142

Oz) or significant (for the nine electrodes) correlation with
the classification accuracy. The mean relative PSDs averaged
across the nine electrodes seem to improve the results. We
did not find that the mean relative PSDs in the thetaHigh and
betaMid frequency bands were significantly correlated with the
classification accuracy as in [16]. It seems that the predictors
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Figure 5. The correlation between the classification accuracy and
the averaged SNRs across the four frequencies. r denotes the
correlation coefficient and p denotes the significant level of the
correlation coefficient.

may change with the stimulus frequency sets. Therefore, the
PSD-based method may not provide predictors which were
directly related with the stimulus frequencies. Based on the
results shown in tables 3, 4 and 5, the proposed method seems
to yield better results than the PSD-based method.

4. Discussion and conclusion

Previous studies have indicated that the resting-state reflects
the potential processing abilities of the brain; there are
significant associations between cognitive function and
resting-state brain network topology [8, 11, 12]. A resting-state
fMRI study indicated strong positive associations between
the intellectual performance and the global efficiency of
brain networks [8]. Owing to the high temporal resolution
of EEG and MEG, the researchers explored the association
between the cognition and different frequency bands. Zhou
et al showed that shorter reaction time is correlated with a
shorter characteristic path length in gamma band networks
using resting-sate EEG [11], and Douw et al using resting-state
MEG, showed that an increased clustering coefficient in delta,
theta and gamma bands was correlated to better cognition [12].

These studies inspire us to adopt the resting-state network
measures to evaluate BCI performance. In the present study,
we investigated the association between the resting-state
network topology and SSVEP responses, and the feasibility
of resting-state network topology as the predictor for SSVEP-
based BCI. The results confirmed that both resting-state
EEG functional network topological properties and mean
functional network connectivity were correlated with the
SSVEP responses. Interestingly, our results also suggested
that these network measures might serve as feasible candidates
of performance predictors for the SSVEP-based BCI. Larger
SNRs and classification accuracy corresponded to a smaller
clustering coefficient and mean functional connectivity, but a
larger characteristic path length of the resting-state networks.
Furthermore, combinations of the topological measures could

provide better prediction results; the clustering coefficient and
the reciprocals of characteristic path length demonstrate the
best performance.

In this study, the larger SNRs correspond to smaller
clustering coefficients, but longer characteristic path lengths
of the resting-state networks. It is known that a brain network
is less efficient when it has a smaller clustering coefficient and
longer characteristic path length [9, 32]. From table 1, we can
see that resting-state networks may be task-negative networks.
Studies have shown that the stimulus-induced activities are
negatively correlated with the activities of the task-negative
networks [33]. The negative correlation of SSVEP strength
with the resting-state network efficiency may account for
a similar physiological basis. A less efficient background
network would facilitate SSVEP generation. It has been proved
that SSVEP is a resonance response from the functional
networks with the same resonance (preferred) frequency as
the stimulus [29, 34]. The flickering stimulus plays the role
of organizing the rhythms in the brain [34, 35]. Therefore,
we may infer that less efficient background processing
networks may be easily entrained by the stimulus to show
larger synchronization to the flickering stimulus, and then
generate relatively greater driving responses to the same
stimulus. Accordingly, the topological differences of the
resting-state networks may give some explanation for the
inter-individual differences of SSVEP responses and BCI
performances. Although many factors (for example, attention,
fatigue, etc) can lead to the differences of SSVEP responses,
we recently found that inter-subject variability is significantly
correlated with the topology of the functional networks
entrained by periodic stimuli [28]. Both our studies may also
support the significance of complex brain network topological
parameters [6].

To the best of our knowledge, although the association
between resting-state EEG measures and subjects’ BCI
performances has been investigated [16], this is the first
study that explored the association between resting-state EEG
activities and SSVEP from a network perspective. For the
first time, we found significant associations between the three
network measures of resting-state networks and SSVEP, and
then we also found that these network measures can play
potential roles in performance prediction in SSVEP-BCI.
In a recent study, Fernandez-Vargas et al found the mean
relative PSDs in some of the interesting frequency bands
(thetaHigh and betaMid) were related to the BCI performance
[16]. First, we think that both the PSD-based method and
the network measure-based method provide new evidences of
the feasibility of predicting BCI performance with resting-
state EEG measures. Both methods could hold potential for
improving the SSVEP-based BCI, and can be helpful to better
understand the mechanism of generating steady-state evoked
brain responses in the brain. Second, these two methods use
different measures as the predictors. In the study of Fernandez-
Vargas et al [16], the frequencies were 20–39 Hz, and the
predictors were the mean relative PSDs of thetaHigh and
betaMid. However, we do not know whether these predictors
can be generalized for other frequencies. In the current
study, we found that these predictors could not serve as the
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predictors for the four frequencies used by us. Only the mean
relative PSDs of the alphaHigh showed significant correlation
with the classification accuracy. For our proposed method,
the network measures are directly related with the stimulus
frequencies. Third, according to the results and explanations
[16], the PSD-based method may suffer from the size of the
sample (small), and different channels may yield different
performances. Because users have shown large inter-variation
in the SSVEP amplitude and distribution [29], the PSD-based
method may need to search the channel which can provide the
best prediction performance. Certainly, a PSD-based method
may need fewer channels after the channel selection. In table 5,
we found that the mean relative PSDs of the alphaHigh
averaged across the nine electrodes seemed to improve the
results. Therefore, the development of a more robust and
efficient method based on PSDs needs further study. For our
method, all the used channels work together to generate the
network measures, and then the combination of the clustering
coefficient and the reciprocals of characteristic path length
showed good performance. This phenomenon is similar to
the difference between the multichannel frequency recognition
method and the single channel frequency recognition method
[36]. Fourth, the computation of the network measures was
based on the single frequency of the flickering stimulus, not the
frequency bands. More studies are needed to further explore
the relationship between these two methods; it is also possible
to combine both methods to give a more efficient and practical
predictor.

The predictability of SSVEP response based on resting-
state network measures may be used to screen the subjects [37].
These results may provide new insights to the brain mechanism
of BCI, especially for SSVEP-based BCI. Based on our
method, we may compute resting-state network measures of
a set of frequencies, and then search the optimal frequency
combination according to the averaged network measures (i.e.
the clustering coefficient and the reciprocals of characteristic
path length). In the future, we will verify the feasibility of
frequency selection with the other protocols such as the one
proposed by Fernandez-Vargas et al [16].

In our current study, the results were generated under
exactly the same frequencies as the stimulus frequencies,
not based on the specific frequency bands (theta, alpha,
beta and gamma, etc). First, it could be helpful to better
understand the mechanism of generating steady-state evoked
brain response in the brain. Second, these measures may be
directly related to SSVEP-based BCI parameters, such as
stimulus frequencies, which may have more direct application
values. It will be also interesting to use specific frequency
bands. In future, we will use specific frequency bands to
investigate the associations between network properties of
resting-state networks and SSVEP, and verify whether some
network properties of specific frequency bands can also be
used for the performance prediction of SSVEP-based BCI.

It should be noted that we only adopted closed-eye EEG
data in this study. Thus, the findings could not be simply
generalized to the open-eyed data because some studies have
shown differences between the two kinds of resting-state EEG
activities [38, 39]. Investigating the relationship between open-
eyed resting-state network measures and SSVEP responses

and BCI performance would be of great interest to our future
study. Volume conduction is another important aspect which
should be considered when performing the analysis for the
scalp EEG networks. We tried to reduce this influence by
choosing nineteen widely-spaced electrodes that cover most
of the brain regions. Finally, reference is another important
issue that may influence network construction. In this work,
we adopted the novel REST method to reduce the reference
effect and volume conduction [40–42]. REST using a point at
infinity for a reference has the promise of helping reduce or
eliminate reference problems, and is a promising method that
can avoid the limitations of common references (e.g., inflation
of coherence) [41, 42].

In the current study, we only used coherence to construct
the resting-state networks. Because SSVEP is a narrow band
response (<0.1 Hz) centered on the stimulus frequency,
coherence may be the best choice to construct the resting-state
networks of the stimulus frequency. It will be also important
to check whether different measures (e.g. correlation, phase
lag index, etc) yield the same results when we construct the
resting-state networks. In the future, we will use different
measures when we adopt the specific frequency bands to
explore the associations between the resting-state network
measures and SSVEP, and test the effects and consistencies
of the different measures.

In conclusion, the results in this study clearly indicate that
both the topological properties and mean function connectivity
of the resting-state networks were related to SSVEP responses
and performance in SSVEP-based BCI. We believe that our
study can shed more light on the studies of SSVEP-based BCI.
The proposed method may be helpful to better understand
the mechanism of the SSVEP, and also hold potential for
improving SSVEP-based BCI.
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