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Lp Norm Iterative Sparse Solution for EEG Source
Localization

Peng Xu, Yin Tian, Huafu Chen, and Dezhong Yao*

Abstract—How to localize the neural electric activities effec-
tively and precisely from the scalp EEG recordings is a critical
issue for clinical neurology and cognitive neuroscience. In this
paper, based on the spatial sparse assumption of brain activities,
proposed is a novel iterative EEG source imaging algorithm, Lp
norm iterative sparse solution (LPISS). In LPISS, the ( 1)
norm constraint for sparse solution is integrated into the itera-
tive weighted minimum norm solution of the underdetermined
EEG inverse problem, and it is the constraint and the iteratively
renewed weight that forces the inverse problem to converge to
a sparse solution effectively. The conducted simulation studies
with comparison to LORETA and FOCUSS for various dipoles
configurations confirmed the validation of LPISS for sparse EEG
source localization. Finally, LPISS was applied to a real evoked
potential collected in a study of inhibition of return (IOR), and the
result was consistent with the previously suggested activated areas
involved in an IOR process.

Index Terms—EEG source imaging, sparse constraint, inhibi-
tion of return, inverse problem, underdetermined system, weighted
minimum norm solution.

I. INTRODUCTION

THE scalp electroencephalogram (EEG) represents elec-
trical activity manifested by the ensemble of a great

number of neurons within the brain. Estimating the location
and distribution of the underlying equivalent electric generators
based on the scalp EEG is the EEG inverse problem [1]. The
general EEG inverse problem with an assumption of a few
unknown focal activated areas is a nonlinear optimization
problem. To simplify the EEG inverse problem, the complex
nonlinear problem is sometimes realized by a linear approach,
which is usually based on the distributed source assumption that
the solution space consists of all the possible source positions
[1]–[5]. Mathematically, such a linear approach can be stated as

(1)

where is the scalp EEG recordings of is the number
of scalp electrodes. is the lead field matrix of , where
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is the dimension size of possible solution space. is the source
solution vector to be estimated and is the noise induced in the
recording. For EEG inverse problem, is usually much smaller
than , which means that the system is underdetermined, thus,
the problem lacks a unique solution because there are an infi-
nite number of possible source configurations that could explain
the measured recordings . To obtain a physiologically feasible
solution, some possible and reasonable constraints are neces-
sary, such as the minimum norm least square solution (MNS)
developed in the early effort [3]. However MNS favors the su-
perficial source, that is to say, for a deep source, the localized
source will have some bias toward the scalp surface. The cur-
rently popularly adopted one is the weighted minimum norm
solution (WMNS), among which the low resolution electromag-
netic tomography (LORETA) is mostly used, though its result is
really blurring. Many researchers are still making great efforts
to improve the spatial resolution of EEG localization methods
to satisfy the requirements of neurological research [1], [5], [6].

Usually the main neural electric activities are sparsely lo-
calized, thus, a reasonable solution should not only explain
the scalp recordings but also be sparsely localized [1], [4], [5].
Presently, there are three approaches to get sparse solution for
EEG inverse problem. In the first approach developed in early
studies, a few sparse sources were priorly supposed, and then a
nonlinear optimization method was taken to solve the inverse
problem. The second way was to directly solve the
norm solution of the inverse problem, such as the norm
solution [4]. In recent years, the methods based on solution
space shrinking were emphasized. Starting with an initial blur-
ring distributed source solution, such as MNS, by iteratively
shrinking the solution space, the solution would converge to a
relatively sparse one, such as the self-coherence enhancement
algorithm (SCEA) [6] and the focal underdetermined system
solver (FOCUSS) [5], [9], [10], etc. FOCUSS is a repeated
WMN procedure, and it recursively adjusts the weighting
matrix until most elements of the solution become nearly zero,
thus, achieving a sparse solution. However, the final solution
of FOCUSS largely depends on the initial source distribution
usually provided by LORETA [2], [11], [12], and it is sensitive
to noises and source configurations [1], [10]. Besides, during
each FOCUSS iteration, a matrix inverse is needed and such
an inverse calculation greatly determines the stability and
validation of FOCUSS. Current efforts in improvement of
FOCUSS are mainly made to improve the calculation of the
matrix inverse and various techniques such as singular value
decomposition (SVD) truncation and regularization technique
are adopted [1], [5], [9], [10], [13].

Sparse component analysis (SCA) is a newly developed
method for signal sparse decomposition, which usually takes
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norm as the constraint for signal decomposition
[14]–[17]. Proposed in this paper is a novel EEG source
imaging approach called Lp norm iterative sparse solution
(LPISS), which integrates the norm constraint to an
iterative procedure similar to FOCUSS. Compared to FOCUSS,
LPISS is different in that the sparse solution of an intermediate
auxiliary variable is estimated by a norm constrained
optimization procedure, instead of by the matrix inverse, and
when the algorithm converges, a sparse solution of source

is readily derived from the obtained sparse . The method
was introduced in Section II. The adopted head model and
evaluation indexes were discussed in Section III. In Section IV,
the algorithm was tested and compared with FOCUSS and
LORETA. Finally, LPISS was applied to localize the sources of
the evoked potential collected in a study of inhibition of return
(IOR) in Section V. Discussions and conclusions concluded
this paper in Section VI.

II. EEG INVERSE METHODS

A. Loreta

The weighted minimum-norm solution of EEG inverse
problem can be stated as

(2)

where is the solution vector of ; is the lead
field matrix; with dimension of is the recorded scalp
potentials; is the weighted matrix. The solution is

(3)

where denotes the Moore-Penrose pseudo-in-
verse of . In LORETA, the weighted matrix is
defined as,

(4)

where denotes the discrete spatial Laplacian operator;
is the th column norm of the lead field matrix [2], [11], [12].

B. FOCUSS

FOCUSS algorithm was developed by Gorodnitsky and Rao
[9], and it is an energy localized iterative procedure. To make
the solution sparse and localized, a linear transform
was taken, thus, formula (1) is changed to the following form:

(5)

FOCUSS is an iterative procedure for the underdetermined
system and in its th iteration the transform is a diagonal

matrix constructed by the prior iteration solution , denoted
by . The details of FOCUSS can be found
in [9] and the iteration procedure can be briefly stated with the
following three steps:

(6)

The initial source distribution is usually provided by
LORETA at the beginning of the iteration procedure. One
FOCUSS procedure needs to repeat the above three steps for
several times, when the iteration number is above the pre-
defined maximum iteration number or the difference between
the neighbouring iterations is smaller than the termination
tolerance error, the iteration will be terminated and a sparse and
energy localized solution will be achieved.

C. Norm Sparse Solution

The norm is a quantitive index to measure the
sparsity of a signal [14]–[17]. A norm solution is
sparser and more localized than MNS [1], [4]. If the
norm of the solution is taken as a constraint, we have a Lagrange
multiplier expression of the inverse problem (1)

(7)

where is a regularization parameter [18]. For EEG source
imaging, norm solution is usually adopted [1], [4]. Many opti-
mization algorithms can be used to solve the above optimization
problem and in this paper BFGS is taken for the optimization
[19].

D. Lp Norm Iterative Sparse Solution (LPISS)

1) Derivation of LPISS From Norm Solution and
FOCUSS: Both the above norm solution and FO-
CUSS aim at a sparse solution, and if they are integrated prop-
erly, a better sparse solution is possible.

As shown in step 2 of FOCUSS, it is necessary to estimate
the inverse of the matrix to evaluate , and such calcula-
tion is very sensitive to noise because the lead field matrix
is seriously ill-posed in an EEG inverse problem [1]. The solu-
tion may be unstable especially when the SVD of the ill-posed
matrix is not correctly truncated or the regularization pa-
rameter is not properly selected. Current effort in improvement
of FOCUSS is mainly focused on the matrix inverse or the so-
lution space compression [1], [5], [9], [10], [13].

According to steps 2 and 3 of FOCUSS, the ith element of the
th iteration solution , can be formulized as

(8)
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Because is a diagonal matrix constructed from the prior it-
erative solution , the above formula (8) can be simplified
to

(9)

From (9), it is easy to see that if is sparse, is sparse too.
This fact means that if we get a sparse solution of , we ac-
tually get a sparse solution of . Thus, in order to achieve a
sparsely localized solution, we may combine the linear trans-
form of FOCUSS into (1), and directly estimate the
sparse solution of the intermediate auxiliary variable by the

norm constraint as

(10)

where is a regularization parameter and is a weight matrix
supposed to change in the way of FOCUSS. Thus, by evalua-
tion of the sparse expression of , a sparse solution of will
be easily achieved at the same time. Furthermore, during the
sparse solution evaluation for , the noise effect will be greatly
suppressed by the norm constrained object function
as confirmed in previous studies [17]. The optimum can be
determined by parameter regularizing criteria [18]. Usually the
higher the noise power is, the larger the is. Chen proposed
in [17] that could be simply determined as: ,
where is the standard deviation of noise and is the size of
the solution space. Specially, when , LPISS reduces to the
original FOCUSS algorithm, and when , LPISS reduces
to the original norm solution, too.

2) Procedure of LPISS: The iterative procedure of LPISS is
as follows:

a) Initialization. Set , iteration termination error
and the maximum iteration number , initialize source
distribution with LORETA solution.

b) Update the diagonal weight matrix: .
c) Using BFGS optimization method to estimate the sparse

solution of the auxiliary variable
.

d) Update source distribution: .
e) Judge termination condition. Comparing the difference

between the prior and the last source distribution, if
or , terminate the iteration and

is the final source distribution; else , and jump
to step 2 and go on.

Our method is a norm constrained iterative sparse
solution (LPISS), and it is an integration of the repeated WMNS
(FOCUSS) and the norm sparse solution, where the
intermediate auxiliary variable in FOCUSS was introduced

into the norm constrained cost function for a sparse
solution as (10), and the norm sparse solution ob-
tained by BFGS optimization was utilized instead of the MNS
of in FOCUSS. In our practice, norm is taken as the con-
straint and the optimization problem is solved with BFGS [19].

III. HEAD MODEL AND EVALUATION INDEXES

A. Head Model

A 3-shell realistic head model is used for EEG source lo-
calization, whose conductivities for cortex, skull and scalp are

m m and m , respectively.
The solution space is restricted to cortical gray matter, hip-
pocampus and other possible source activity areas, consisting
of 910 cubic mesh voxels with 10 mm inter-distance. The lead
field matrix is calculated with dipole model by boundary
element method (BEM) [20] for a 128 electrode system and it is
a matrix with dimension of 128 2730, where .
The origin of the coordinate system is defined as the midpoint
between the left and right preauriculars, and the directed line
from the origin through the nasion defines the -axis, the

-axis is the directed line from the origin through the left
preauricular. Finally, the -axis is the line from the origin
toward the top of the head (through electrode Cz).

B. Evaluation Indexes

Localization ability is a primary concern of inverse problem
and the resolution matrix, , is a popular index for
evaluation of it [1], but for LPISS, no inverse matrix is
evaluated (the auxiliary variable is estimated with BFGS
optimization procedure), so we are not able to give the reso-
lution matrix of LPISS. In this paper, we take the following
three evaluation indexes. One is the localization error [1],
[5], , which is the distance between the simulated
source and the estimated source of maximum power within a
sphere neighbour of the simulated source; the second is the
source energy error [5], , which is used to measure the
source energy recovery ability. is defined as follows,

, where is the
moment of simulated source, is the moment of estimated
source with maximum power within a sphere neighbor of the
corresponding simulated source. The third is the normalized
burring index (NBI) in region of interest (ROI) to measure
the spatial resolution ability [12], which is defined as shown
in the equation at the bottom of the page, where the subscript

refers to a grid point of the discrete solution space in the
3-D model, for the assumed dipole distribution, it is selected
as the actual position of the simulated dipole. For the recon-
structed distributions, it is selected as the point with maximum
power within a sphere neighbor of the corresponding simulated
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source. The subscript refers to the neighboring points within
the spherical ROI surrounding the point . The and are the
spatial location vectors corresponding to the grid points and ,
respectively. NBI can exhibit the distribution of sources in ROI.
Generally, the smoother the sources spread in ROI, the closer to
1 the NBI is; otherwise, if the sources are sharply distributed,
NBI is close to 0. Obviously, for far isolated sources, a small
NBI is expected. An excellent localization algorithm should be
of low , and a NBI similar to the actual
NBI.

In this paper, our simulations were conducted under different
noise-to-signal-ratio (NSR), where NSR is defined as the ratio
between the power of noise and that of signal. In all the simula-
tions, the iteration tolerance error was 1E-4, and the maximum
iteration number was 100 for FOUCSS and 40 for LPISS. The
tolerance error for the BFGS optimization in LPISS was 1E-6.

IV. SIMULATION RESULTS

A. Tests for Two Isolated Sources Under Different NSRs

In this simulation, we tested the noise effect on LORETA,
FOCUSS and LPISS when applied to localize two isolated
sources. Two dipole sources with moments of (1.90, 0.60, 0.40)
and (0.40, 2.30, 0.00) were placed at two isolated positions
( , 51.67) (mm) and ( , 61.67)
(mm), respectively. The scalp potentials were obtained by BEM
and contaminated with white Gaussian noise of different NSRs.
For different NSR cases, LORETA, FOCUSS, and LPISS were
taken for source localization. The and
were calculated within a sphere of 25 mm radius with the
center at the corresponding simulated source position. NBI
was also estimated within a spherical ROI with 25 mm radius
but with the center at the position of the estimated source with
the maximum power. For % % % %, and

%, the values of in LPISS were 0.09, 0.17, 0.34, 0.51, and
0.68, respectively. The localization results under
were shown on the MRI slices in Fig. 1 and the corresponding
indexes in all noise cases were shown in Fig. 2.

As shown in Figs. 1 and 2, among these three localization
algorithms, the estimated sources areas with LORETA were
mostly blurring, which usually were the large clouds activated
regions on the MRI slices. The and NBI
of LORETA were relatively large compared with the other two
methods. While in all simulated cases, LORETA could estab-
lish a relatively strong source at the corresponding simulated
source position like that in the 0.15 noise case shown in Fig. 1,
where there was overlapping between the blue cross line and the
colorful rectangle area on MRI slices. When NSR , the

and NBI of FOCUSS were small, which meant that
the localization ability of FOCUSS under low NSR was good
for isolated sparse sources. But for the stronger noise cases with

, FOCUSS was not stable with a remarkable in-
crease of and . As shown by the localiza-
tion result of FOCUSS for in Fig. 1, no strong
sources were estimated at the corresponding simulated source
positions while localized in some other areas close to the due po-
sitions instead, and FOCUSS localized some fake weak sources
in other areas relatively far away from the simulated sources at

Fig. 1. Localization results of LORETA, FOCUSS and LPISS on MRI slices
for two isolated sources under noise of NSR = 0:15. (a) LORETA localized
sources; (b) FOCUSS localized sources; (c) LPISS localized sources. Colorful
rectangle area is the estimated source location; the blue cross line within the
colorful rectangle area indicates the overlapping area of the simulated source
and the estimated source; the blue cross line within green circle indicates those
simulated source locations that are not overlapped with the positions of the es-
timated sources.

the same time. In all the cases, the of LPISS were
nearly 0, except for the case with of the second
source, which was localized at a neighboring grid node with

mm. Comparing the localization results of
LPISS and FOCUSS under shown in Fig. 1, the
source configuration localized by LPISS was much clearer and
of fewer fake sources than that localized by FOCUSS. Further-
more, the and NBIs of LPISS were relatively small and
changed smoothly. Thus, the calculated three indexes showed
that LPISS was relatively stable over different noise levels.

B. Localization of Deep and Superficial Sources
Simultaneously

In this simulation, three dipole sources with moments of
(6.00, 2.70, 1.90), ( , 3.00, 1.00) and (5.80, 1.00, 2.00)
were placed at three isolated positions ( , 19.00, 31.67)
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Fig. 2. Localization indexes at different noise NSRs. (a) Source 1; (b) Source
2.

(mm), ( , 29.00, ) (mm) and ( , 39.00,
) (mm), among which the first and the third were two

superficial sources and the second one was a deep source. The
scalp potentials were generated by BEM and contaminated with
white Gaussian noise of . LORETA, FOCUSS and
LPISS were used to localize the sources, and the three indexes,

, and NBI, were calculated as those in
Section IV.A. The value of in LPISS was 0.63. The results
were shown in Fig. 3 and Table I.

All of the three methods localized the two superficial sources
with relatively small distance errors and among
them, the results of FOCUSS and LPISS were more sparse
with relatively smaller NBIs and fewer dipoles. But for the
deep source 2, no activation at the true position was found
by LORETA and FOCUSS, whereas, with LPISS, the deep
source was localized with no distance error and a small NBI.
In this case, LPISS and FOCUSS were both initialized with
LORETA solution, in which no source with strong power at
the deep source position was estimated, but LPISS could still
modify the initial distribution and converge to the deep source
while FOCUSS failed. This difference between FOCUSS and
LPISS was caused by the different methods to evaluate during
the iterations, one was in essence based on the MN solution,
the other was based on the norm sparse solution, and the
performance of norm solution was usually superior to the
MN solution in EEG inverse problem [1], [30].

C. Localization of Focally Extended Source

The above simulations were all for the configurations con-
sisting of far isolated sources, here shown were the localization
results for a focally extended source. 17 dipole sources were
placed within a sphere centered at ( , 31.667) (mm)
with radius of 15 mm. Moment component of each dipole was
randomly set within range [0, 10]. The test was conducted under

. The above three indexes for this focally extended
source were calculated as follows. The dipole source with the
maximum power in the simulated sources was taken as the ref-
erence dipole. The distance error, , was the distance

Fig. 3. Localization results of LORETA, FOCUSS and LPISS on MRI slices
at the simulated source positions for three isolated sources under noise of
NSR=0.15. (a) LORETA localized sources; (b) FOCUSS localized sources;
(c) LPISS localized sources. Colorful rectangle area is the estimated source
location; the blue cross line within the colorful rectangle area indicates the
overlapping area of the simulated source and the estimated source; the blue
cross line within green circle indicates those simulated source locations that
are not overlapped with the positions of the estimated sources. In LORETA
results (a) and FOCUSS results (b), no corresponding sources at the position
of simulated deep source 2 were found.

TABLE I
EVALUATION INDEXES FOR THREE SOURCES UNDER NOISE OF NSR = 0:15

between the reference dipole and the dipole with the maximum
power in the estimated sources [1]. NBIs were calculated within
a 30 mm-sphere centered at the positions of the simulated and
estimated dipoles with maximum powers, respectively. And the
average power of the extended source, , was obtained
over all the simulated or estimated sources, respectively. The
value of in LPISS was 0.95. The localization results on MRI
slices near the simulated sources area were shown in Fig. 4 and
the indexes were listed in Table II, too.

On the MRI slices, the estimated sources area with LORETA
was much broader than actually it was, and those of LPISS and
FOCUSS were much more sparse and local than the true case.

Totally 40 relatively strong sources near the simulated area
were found with LORETA, and using FOCUSS and LPISS, only
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Fig. 4. Localization results of LORETA, FOCUSS, and LPISS on MRI slices
near the simulated sources area for a focally extended source under noise of
NSR = 0:15. (a) LORETA localized sources; (b) FOCUSS localized sources;
(c) LPISS localized sources. Colorful rectangle area is the estimated source lo-
cation; the blue cross line within the colorful rectangle area indicates the over-
lapping area of the simulated source and the estimated source; the blue cross
line within green circle indicates those simulated source locations that are not
overlapped with the positions of the estimated sources.

TABLE II
EVALUATION INDEXES FOR EXTENDED SOURCE UNDER NOISE OF NSR = 0:15

14 and 8 sources were localized, respectively. The NBIs of FO-
CUSS and LPISS were 0.2179 and 0.4550, which were both
smaller than the actual NBI (0.5088) of the original extended
source, and contrary was that (0.5709) of LORETA. The fact
means that, with the emphasis on the sparsity of the extended
source, FOCUSS and LPISS may converge to a sparser solu-
tion with fewer dipoles, and due to the smoothing effect of the

spatial Laplacian operator, LORETA will enlarge and blur the
simulated source area. Certainly, the ideal result is that all the
simulated extended source could be recovered correctly, but it is
rather difficult for EEG inverse problem, and generally if most
of the estimated sources are located near or within the simulated
area and the difference of NBI between the simulated extended
source and the estimated extended source is not too large, the
localization could be thought to be successful for the extended
source [29]. As shown by the estimated source locations on MRI
slices and the indexes in Table II, FOCUSS had the smallest

(10 mm), but with some estimated sources out of
the assumed area; the of LORETA and LPISS were
17.3205 mm and 14.1421 mm, and the sources estimated by
LORETA and LPISS were basically distributed within the sim-
ulated area. Thus, we may say that these three methods all local-
ized this simulated activated area successfully. Each of them es-
tablished a corresponding equivalent source distribution for the
simulated extended source, and the differences among the esti-
mated results were that the result of LORETA was a blurring and
enlarged area, and the other two were two sparse and focal areas.
By comparison of , the (78.7437) of LPISS
was much closer to the actual (64.3200) than those of
LORETA (12.1725) and FOCUSS (135.6725), thus, LPISS re-
covered the source power more originally than the other two
methods did. This simulation also showed that different local-
ization methods may result in some different equivalent source
distributions and the difference should be taken into account in
explanation of the results for an EEG inverse problem, espe-
cially for the real EEG data [29].

D. Statistical Features of the Localization Methods

Generally, the detailed performance of a localization algo-
rithm depends on the head model and source configuration, etc
[1], [30]. In this section, the performances of these three algo-
rithms were evaluated by a way similar to the Mont-Carlo simu-
lation. In literature [5], by placing one dipole source on each grid
node of the solution space, and between
the simulated source and the estimated source with maximum
power were calculated for each grid node, and then the mean and
standard deviation (SD) of and were calcu-
lated, respectively. In this paper, for reducing the computation
load, we tested the localization performance on 100 randomly
selected positions, and for each of the 100 positions, a dipole
with moment randomly varied within [ , 10] was put on it.
For each case, the simulated scalp data was mixed with noise at

%. and were calculated between
the simulated source and the estimated source with maximum
power, and NBI was calculated at the position of the estimated
source with maximum power. The mean and SD of the three
evaluation indexes for the 100 cases were shown in Fig. 5.

V. REAL DATA TEST

A. IOR Experiment

We adopted the modified classical experiment paradigm of
inhibition of return (IOR), designed by Posner [22], to acquire
the ERP recordings. The visual stimuli were generated by a per-
sonal computer and the adopted behavioral task was illustrated
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Fig. 5. Statistical features of the three localization methods. (a) Mean and SD
of E ; (b) Mean and SD of E ; (c) Mean and SD of NBI.

Fig. 6. An example of the stimulus display sequences used in the IOR exper-
iment. The cue is a brightening of an unfilled box centered around one of the
two peripheral target locations; the target is a vertical line in the box.

in Fig. 6. The background was dark and the center fixation point
was a cross with 0.5 visual angle. Each of the two rectangle
outline boxes was of size visual angle and was hor-
izontally located with 5 visual angle from the fixation. Bright-
ening of one of the boxes served as the “cue”, and the target,
either a short vertical line (0.75 visual angle) or a long vertical
line (1.0 visual angle), was presented within either of the two
boxes with equal probability. The experiments were carried out
in a dark room with subjects seated 50 cm in front of monitor
and instructed to fix on the fixation cross.

The initial display, consisting of two boxes located in the right
and left of the central fixation, was presented for 120 ms. After a
700 ms inter-trial interval (ISI), one of the boxes was then cued
by outlining the perimeter of the box for 190 ms. After a delay
of 230 ms, the central fixation cross was brightened for 180 ms.
And following a randomly variant delay from 300 ms to 600
ms after the central cued fixation cross disappeared, the target
was presented until the subject responded. Both the cue and the
target were presented with equal probability within one of the
boxes randomly. Subjects were instructed to press the button as
quickly as possible whenever they saw the target, key “1” for the
short line and key “4” for the long line. 15 subjects performed
the same practice consisting of 10 experimental blocks, 80 trials
in each block.

EEG was recorded with the 128-channel EGI system at sam-
pling rate of 250 Hz, and vertex (Cz) was taken as the reference.
Epochs contaminated with excessive eye movements, blinks,
muscle artifacts, or amplifier blocking were manually removed
prior to averaging, and recordings of 13 in 15 subjects were valid
for further processing. According to the different locations of
the presented cue and target (RR: right cue-location and right
target-location; RL: right cue-location and left target-location;

Fig. 7. ERP of the case with cue at right and target at right (RR).

LL: Left cue-location and left target-location; LR: Left cue-lo-
cation and right target-location), the epochs in recordings for
each subject were classified into four kinds of ERPs, i.e., RR,
RL, LL, and LR. Each epoch, 1.2 s long, started 200 ms be-
fore the onset of the target and continued for 1000 ms after the
onset of the target. Epochs in the 13 valid subjects were grandly
averaged to get 4 kinds of ERPs according to the four location
combinations of cue and target. In this paper, reported was the
result of RR.

B. Results and Discussion

Behavior experiments show that for longer stimulus-onset-
asynchronies (SOAs, usually longer than 250 ms), subjects
are slower to respond to targets presented at the cued location
(valid-cue) than to targets presented at uncued locations (in-
valid-cue), and it is the phenomenon of inhibition of return
(IOR) discovered by Poser [23] and many brain function areas
are suggested to be involved in the IOR process [24]–[28].

As shown in Fig. 7, in our IOR experiment, the IOR related
ERP elicited by the target shows a significant peak at 200 ms
after the onset of the target, and the following analysis is focused
on this component. According to the usual ERP case, the NSR
is supposed to be 0.15.

The localized activations by LORETA, FOCUSS, and LPISS
were shown in Figs. 8, 9, and 10, respectively. The value of
in LPISS was assumed to be 0.63.

Since the phenomenon of IOR was discovered by Posner in
1984, the neural and psychological mechanisms of IOR have
been a popular subject of much controversy and debate. With
empirical supports, some researchers suggested that IOR is a
bias of attention. Others, however, have proposed that IOR is the
activation of the oculomotor system. Recently, some evidences
suggested that both attention and motor systems might be in-
volved in the generation of IOR [24].

As for the neurophysiologic mechanism, evidences have been
found that the generation of IOR is related to the superior col-
liculus [23]–[25], which is involved in both attention and oculo-
motor process [24], [26]. By the single-pulse transcranial mag-
netic stimulation (TMS) and fMRI, the frontal eye fields (FEF)
were found to play a crucial role in the generation of IOR [26],
[27].

Activations in the right cerebellum were found to be ob-
viously elicited when covert spatial-attention shifts were
compared to eye movements [27], [28]. As the IOR experiment
mode involves spatial-attention orienting process [22] and
previous researches showed that right cerebellum was often
activated during the attention shift process in human brain.
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Fig. 8. LORETA. (a) right frontal eye fields; (b) thalamus; (c) right cerebellum;
(d) letf occipital; (e) right occipital.

As shown in above figures, the activations in the right frontal
eye fields and the right cerebellum were all detected by these
three methods. Furthermore all these three methods localized
activations in the left occipital. Because the RR data was gen-
erated with cue and target both presented at right, some related
areas in the left occipital might be invoked.

Both LORETA and LPISS detected relatively strong activa-
tions in the thalamus, while FOCUSS localized a relatively su-
perficial activations in the paterial. It may be the activations in
the thalamus bias toward the surface just as the localization of
the deep source in Section IV.C. Similar to the simulations, ac-
tivations detected by LORETA were of large area and the acti-
vations localized by FOCUSS and LPISS were relatively sparse
and local.

VI. DISCUSSIONS AND CONCLUSION

The above simulations show that LPISS has good ability to
localize the isolated sparse sources, even for the deep source.
Among LPISS, FOCUSS and LORETA, LPISS shows the best
performance as evaluated by the three indexes for isolated
sources. For the tested source configurations, LPISS produced
reasonable sparse solutions, FOCUSS somewhat depended on

Fig. 9. FOCUSS. (a) right frontal eye fields; (b) left occipital; (c) paretial; (d)
right cerebellum; (e) right lateral occipital-paretial.

the noise level and source configurations, and LORETA usually
generated blurred results. The improvement of LPISS compared
with FOCUSS is that the norm is integrated into the
iterative procedure of FOCUSS, whereas, the original FOCUSS
procedure in essence uses the minimum norm solution, and the

norm solution is usually superior to the MN solution
in EEG inverse problem, thus, both the norm and
the iterative weight force the solution to converge to a sparse
and reasonable solution. And naturally, in the simulation test
for the focally extended source, a more focal and sparse source
area than actually the situation was is estimated with LPISS.
And this simulation shows that LPISS was not very qualitified
for extended source because of its emphasis on the sparsity of
the resulted sources configuration.

In Section IV.D, we systematically tested the localiza-
tion performance of LORETA, FOCUSS and LPISS using a
Mont-Carlo like simulation. As shown in Fig. 5, LPISS showed
a much better localization performance than the other two
methods. In this Mont-Carlo like simulation, the source config-
uration is simple with only one dipole source for each case, and
the localization of such simple source configuration is usually
easier than localization of a complex source configuration. Cer-
tainly, when localizing for other complex source configuration,
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Fig. 10. LPISS. (a) right frontal eye fields; (b) thalamus; (c) right cerebellum;
(d) left occipital.

the performance of a method would accordingly be somewhat
lowered as shown by the above simulated situations.

For the real IOR data, using LPISS, the activations were
localized in the right thalamus, the right frontal eye fields,
the right cerebellum and the left occipital, consistent with the
reports in some previous studies [24], [27]. Among the results
of LORETA, FOCUSS and LPISS, the activations localized
by LORETA were more extended, and those of FOCUSS and
LPISS were relatively focal and sparse. Furthermore, there are
also some differences among the results of these three methods,
just like the localization results of the simulated extended
source in Section IV. These facts mean that, for the EEG
inverse problem, different localization methods may result in
different equivalent sources, and for different actual problems,
the difference among different localization methods should be
taken into account [29].

In this paper, we implicitly assumed the residual error is of
Gaussian distribution, thus, we designed the cost function as a
combination of a norm of the residual errors and a norm
of the regularization term in solving the norm con-
strained problem for a sparse solution of , and in this way, we
have part of our cost function similar to the popular EEG in-
verse algorithms, including FOCUSS and LORETA, thus, gave
us hint to evaluate LPISS by comparing it with LORETA and
FOCUSS. However, in general, we may also apply
norm for both the residual error and the regularization terms in
(10), and it may result in a novel solution different from the cur-
rent EEG inverse solutions. Apparently, it is a valuable project
for the future.

In this paper, the classical was adopted as the conduc-
tivity ratio between the skull and the brain [31]. However, in re-
cent years, some different values varying from to was

suggested for the skull-brain conductivities ratio [32], [33]. And
the different skull conductivity may have some effect on the per-
formance of a source localization algorithm. And in order to re-
duce the effect of the conductivity on the evaluation of different
methods, we used the same skull conductivity for all methods,
thus, the comparison is fair and can reveal the difference among
different localization methods. The effect of different conduc-
tivities on the localization methods needs to be further studied.

In literature [9], it has been proved that FOCUSS is abso-
lutely convergent with at least a quadratic rate of convergence.
LPISS is based on the iterative procedure same as that of FO-
CUSS and the difference between them is only that the sparse
and power concentrated solution of the intermediate auxiliary
variable in the iteration is estimated directly, instead of using
the minimum norm solution estimated with the pseudo-inverse
in FOCUSS. In essence, this substitution will not affect the con-
vergence of the iterative procedure. Compared with FOCUSS,
there is no simple solution for the norm constrained
cost function in (10), LPISS uses an optimization programming
to solve the norm constrained problem, and it needs
much more computation than the solving based on SVD as that
in FOCUSS. In this paper, the algorithm was implemented on a
normal PC (1.7 GHz, 256 M RAM) under the Matlab 6.5 envi-
ronment. When localized on the realistic head model, it needs
nearly 10 hours. However, along with the rapid progress of the
computer science, we believe such a computation will not be a
crucial problem in the near future.
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