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Abstract—The extraction of the salient characteristics from
brain connectivity patterns is an open challenging topic since often
the estimated cerebral networks have a relative large size and
complex structure. Since a graph is a mathematical representation
of a network, which is essentially reduced to nodes and connec-
tions between them, the use of a theoretical graph approach would
extract significant information from the functional brain networks
estimated through different neuroimaging techniques. The present
work intends to support the development of the ‘“brain network
analysis:” a mathematical tool consisting in a body of indexes
based on the graph theory able to improve the comprehension of
the complex interactions within the brain. In the present work,
we applied for demonstrative purpose some graph indexes to the
time-varying networks estimated from a set of high-resolution
EEG data in a group of healthy subjects during the performance
of a motor task. The comparison with a random benchmark
allowed extracting the significant properties of the estimated
networks in the representative Alpha (7-12 Hz) band. Altogether,
our findings aim at proving how the brain network analysis could
reveal important information about the time-frequency dynamics
of the functional cortical networks.

Index Terms—High-resolution electroencephalography (EEG),
functional networks, graph theory.
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I. INTRODUCTION

VER the last decade, there has been a growing interest
O in the detection of the functional connectivity in the
brain from different neuroelectromagnetic and hemodynamic
signals recorded by several neuroimaging devices such as
the functional magnetic resonance imaging (fMRI) scanner,
electroencephalography (EEG), and magnetoencephalography
(MEG) apparatus [1]. Many methods have been proposed
and discussed in the literature with the aim of estimating the
functional relationships among different cerebral structures
[2], [3]. However, the necessity of an objective comprehension
of the network composed by the functional links of different
brain regions is assuming an essential role in the neuroscience.
Consequently, there is a wide interest in the development and
validation of mathematical tools that are appropriate to spot
significant features that could describe concisely the structure
of the estimated cerebral networks [4]-[7]. The extraction
of salient characteristics from brain connectivity patterns is
an open challenging topic, since often the estimated cerebral
networks have a relative large size and complex structure.
Recently, it was realized that the functional connectivity
networks estimated from actual brain-imaging technologies
(MEG, fMRI, and EEG) can be analyzed by means of the
graph theory (see [8] for a recent review). Since a graph is a
mathematical representation of a network, which is essentially
reduced to nodes and connections between them, the use of a
theoretical graph approach seems relevant and useful as first
demonstrated on a set of anatomical brain networks [9], [10].
In those studies, the authors have employed two characteristic
measures, the average shortest path L and the clustering index
C, to extract, respectively, the global and local properties of the
network structure [11]. They have found that anatomical brain
networks exhibit many local connections—i.e., a high C—and
few random long distance connections—i.e., a low L. These
values identify a particular model that interpolate between
a regular lattice and a random structure. Such a model has
been designated as “‘small-world” network in analogy with the
concept of the small-world phenomenon observed more than 30
years ago in social systems [12]. In a similar way, many types
of functional brain networks have been analyzed according to
this mathematical approach. In particular, several studies based
on different imaging techniques—fMRI [6], [13], [14], MEG
[15]-[17], and EEG [18], [19]—have found that the estimated

1534-4320/$25.00 © 2008 IEEE



DE VICO FALLANI et al.: BRAIN NETWORK ANALY SIS FROM HIGH-RESOLUTION EEG RECORDINGS 443

functional networks showed small-world characteristics. In the
functional brain connectivity context, these properties have
been demonstrated to reflect an optimal architecture for the
information processing and propagation among the involved
cerebral structures [20], [21]. However, the performance of
cognitive and motor tasks as well as the presence of neural
diseases has been demonstrated to affect such a small-world
topology, as revealed by the significant changes of L and C.
Moreover, some functional brain networks have been mostly
found to be very unlike the random graphs in their degreedistri-
bution [13], which gives information about the allocation of the
functional links within the connectivity pattern. It was demon-
strated that the degree distributions of these networks follow a
power-law trend [22]. For this reason those networks are called
“scale-free.” They still exhibit the small-world phenomenon
but tend to contain few nodes that act as highly connected
“hubs.” Scale-free networks are known to show resistance to
failure, facility of synchronization and fast signal processing
[20]. Hence, it would be important to see whether the scaling
properties of the functional brain networks are altered under
various pathologies or experimental tasks [23]. Besides these
advanced indexes able to extract the global properties of the
network structure, further measures are available from graph
theory and some of them should be taken into account in order
to inspect the other local basic properties belonging to the brain
networks. In the present work, we propose a body of theoretical
graph indexes in order to evaluate the functional network
estimated from high-resolution EEG recordings in a group of
healthy subjects during the performance of a simple motor
task. In particular, we focused the attention to the preparation
and to the execution of the foot movement by estimating the
time-varying functional connectivity in the frequency domain.
In this way, we were able to track the temporal evolution of the
graph indexes computed from the obtained networks during the
whole period of interest.

II. METHODS

A. High-Resolution EEG

High-resolution EEG technology has been developed to en-
hance the poor spatial information of the EEG activity on the
scalp and it gives a measure of the electrical activity on the cor-
tical surface [24]-[26]. Principally, this technique involves the
use of a larger number of scalp electrodes (64-256). In addi-
tion, high-resolution EEG uses realistic MRI-constructed sub-
ject head models [27], [28] and spatial de-convolution estima-
tions which are commonly computed by solving a linear in-
verse problem based on boundary-element mathematics [29]. In
the present study, the cortical activity was estimated from EEG
recordings by using a realistic head model, whose cortical sur-
face consisted of about 5000 triangles disposed uniformly. Each
triangle represents the electrical dipole of a particular neuronal
population and the estimation of its current density was com-
puted by solving the linear inverse problem according to tech-
niques described in previous works [30], [31]. In this way, the
electrical activity in different regions of interest (ROIs) can be

obtained by averaging the current density of the various dipoles
within the considered cortical area.

B. Time-Varying Connectivity

The oscillatory behavior of the brain electrical activity indi-
cates that frequency coding is one of the major candidates of
its functioning [32]. Hence, many methods have been devel-
oped to estimate functional connections between brain areas
in the frequency domain by using EEG or MEG recordings
[2]. Among these, the partial directed coherence or partial di-
rected coherence (PDC) [33] is a spectral measure used to de-
termine the directed influences between any given pair of sig-
nals in a multivariate data set. It is computed from a multivariate
auto-regressive model (MVAR) that simultaneously models the
whole set of signals. In particular, this measure has been demon-
strated to rely on the Granger causality concept (1969) [34],
according to which an observed time series x(n) can be said
to cause another series y(n) when the prediction error for y(n)
at the present time is reduced by the knowledge of x(n)’s past
measurements. As recently stressed in [35], the multivariate ap-
proach avoids the problem for the estimation of spurious func-
tional links, which are very common with conventional bivariate
approaches like, for instance, the ordinary coherence. In par-
ticular, the PDC is obtained from a unique MVAR model esti-
mated on the entire set of trials according to the method pro-
posed by Ding [36]. The MVAR estimators have been already
applied to high-resolution EEG signals in order to achieve func-
tional connectivity networks during motor tasks (in normal sub-
jects and spinal cord injured patients) and also during cognitive
tasks [30], [31], [37]-[39]. To overcome the limits of the clas-
sical definition of PDC, (mainly the request of stationarity of
the data) a time-varying method for the estimation of PDC was
recently introduced [40], [41]. In these studies, the time-varying
connectivity was based on an adaptive approach. The time de-
pendent parameter matrices were estimated by means of the re-
cursive least squares (RLS) algorithm with forgetting factor, as
described in [42], [59]. In particular, the RLS algorithm repre-
sents a particular variant of the Kalman Filter. This recursive
estimator for the aMVAR-parameter is characterized by a more
universal practicability since it requires less computational ef-
fort and it is possible to extend this approach to the presence of
multiple realizations of the same process. The extension to mul-
tiple trials was introduced by Moller [42] and [59]. The fitting
procedure of the AR parameters, exploits the RLS technique
with the use of a forgetting factor. It is based on the minimiza-
tion of the sum of exponentially weighted prediction errors of
the process past. Thereby, the weighting depends on an adap-
tation constant 0 < ¢ < 1 which controls the compromise be-
tween adaptation speed and the quality of the estimation. Values
close to zero result in a slower adaptation with more stable es-
timations and vice versa. Finally, a mean MVAR fits a set of
trials, each one representing the measurement of the same task.
A comprehensive description of the algorithms may be found in
[42], [43], and [59].

C. Theoretical Graph Indexes

A graph is an abstract representation of a network. It consists
of a set of vertexes—or nodes—and a set of edges—or connec-
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tions—indicating the presence of some of interaction between
the vertexes. The adjacency matrix A contains the information
about the connectivity structure of the graph. When a weighted
and directed edge exists from the node i to j, the corresponding
entry of the adjacency matrix is 4;; # 0; otherwise A;; = 0.
1) Network Density: The simplest attribute for a graph is its
density k, defined as the actual number of connections within the
model divided by its maximal capacity; density ranges from 0 to
1, the sparser is a graph, the lower is its value. When dealing with
weighted networks, a useful generalization of this quantity is
represented by the weighted-density k,,, which evaluates the in-
tensities of the links composing the network. The mathematical
formulation of the network density is given by the following:

> wi (1

i£jEV

where A is the adjacency matrix and w;; is the weight of the re-
spective arc from the point 7 to the point¢. V = 1... N is the
set of nodes within the graph. The weighted-density gives in-
formation about the level of overall connectivity and constitutes
the basis for correct analysis of all other graph parameters.

2) Node Strength: In the same way, the simplest attribute of
a node is its connectivity degree, which is the total number of
connections with other vertexes. In a weighted graph, the nat-
ural generalization of the degree of a node ¢ is the node strength
or node weight or weighted degree [40]. This quantity has to be
split into in strength s;,, and out strength s,,,¢, when directed re-
lationships are being considered. The strength index integrates
the information of the links” number (degrees) with the connec-
tions’ weight, thus representing the total amount of outgoing
intensity from a node or incident intensity into it. The formula-
tion of the in strength index s;,, can be introduced as follows:

sin(i) =D wij. )
JjeEV

It represents the whole functional flow incoming to the vertex .
V is the set of the available nodes and w;; is the weight of the
particular arc from the point j to the point 7. In a similar way,

for the out strength
= wji. 3)

JjeEV

sout

It represents the whole functional flow outgoing from the
vertex i.

3) Strength Distribution: For a weighted graph, the arith-
metical average of all the nodes’ strengths (s) only gives little
information about the distributions of the links intensity within
the system. Hence, it is useful to introduce R(s) as the fraction
of vertexes in the graph that have strength equal to s. In the same
way, R(s) is the probability that a vertex chosen uniformly at
random has weight = s. A plot of R(s) for any network can
be constructed by making a histogram of the vertexes’ strength.
This histogram represents the strength distribution of the graph
and allows a better understanding of the strength allocation in
the system. In particular, when dealing with directed graphs, the
strength distribution has to be split in order to consider in a sep-
arated way the contribution of the incoming and outgoing flows.

-
~>D D
>D> D

Fig. 1. Composition and numeration of all the possible directed motifs with
three nodes (three-motifs).

4) Link Reciprocity: In a directed network, the analysis of
link reciprocity reflects the tendency of vertex pairs to form mu-
tual connections between each other [44]. Here, we computed
the correlation coefficient index p proposed by Garlaschelli and
Loffredo [45], which measures whether double links—with
opposite directions—occur between vertex pairs more or less
often than expected by chance. The correlation coefficient can
be written as follows:

r(4) = Fu(4)

p(A) = —— o (A)

“

In this formula, r is the ratio between the number of links
pointing in both directions and the total number of links, while
k., is the connection density that equals the average probability
of finding a reciprocal link between two connected vertexes in
arandom network. As a measure of reciprocity, p is an absolute
quantity that directly allows one to distinguish between recip-
rocal (p > 0) and anti-reciprocal (p < 0) networks, with mutual
links occurring more and less often than random, respectively.
The neutral or areciprocal case corresponds to p = 0. Note that
if all links occur in reciprocal pairs one has p = 1, as expected.

5) Motifs: By motif it is usually meant a small connected
graph of M vertexes and a set of edges forming a subgraph of
a larger network with N > M nodes. For each N, there are
a limited number of distinct motifs. For N = 3,4, and 5, the
corresponding numbers of directed motifs is 13, 199, and 9364
[46]. In this work, we focus on directed motifs with N = 3.
The 13 different three-node directed motifs are shown in Fig. 1.
Counting how many times a motif appears in a given network
yields a frequency spectrum that contains important informa-
tion on the network basic building blocks. Eventually, one can
looks at those motifs within the considered network that occur
at a frequency significantly higher than in random graphs [44].
It must be noted that the application of the PDC techniques on
the high-resolution EEG data returns a weighted and directed
graph, showing the statistically significant connections between
the analyzed ROIs. However, for the motif detection we used the
methods already tested for several unweighted networks, as pre-
viously suggested in the literature [47], [58]. In addition, the un-
weighted motifs analysis has been recently used for the study of
anatomical brain networks [48]. In order to apply such a method
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we converted the statistically significant links within the func-
tional brain networks into unweighted connections (if the edge
weight was >0, then we changed it into 1).

6) Network Structure: Two measures are frequently used
to characterize the local and global structure of unweighted
graphs: the average shortest path L and the clustering index
C [11], [49], [50]. The former measures the efficiency of the
passage of information among the nodes, the latter indicates
the tendency of the network to form highly connected clusters
of vertexes. Recently, a more general setup has been examined
in order to investigate weighted networks [51]. In particular,
Latora and Marchiori [52] considered weighted networks and
defined the efficiency coefficient e of the path between two
vertexes as the inverse of the shortest distance between the
vertexes (note that in weighted graphs the shortest path is not
necessarily the path with the smallest number of edges). In the
case where a path does not exist, the distance is infinite and
e = 0. The average of all the pair-wise efficiencies ¢;; is the
global efficiency E, of the graph. Thus, global efficiency can
be defined as

1 1

Ey(A) = NN -D i )

i#£jEV

where IV is the number of vertexes composing the graph. Since
the efficiency e also applies to disconnected graphs, the local
properties of the graph can be characterized by evaluating for
every vertex ¢ the efficiency coefficients of A;, which is the sub-
graph composed by the neighbors of the node 7. The local effi-
ciency F is the average of all the subgraphs global efficiencies

1
E(A) = N Z Egion(A;). (6)
eV

Since the node ¢ does not belong to the subgraph A;, this mea-
sure reveals the level of fault-tolerance of the system, showing
how the communication is efficient between the first neighbors
of 4, when ¢ is removed. Global- (E,) and local-efficiency (E;)
were demonstrated to reflect the same properties of the inverse
of the average shortest path 1/L and the clustering index C
[53]. Hence, the definition of small-world can be rephrased and
generalized in terms of the efficiency indexes [8], [51]. Small-
world networks have high £, (i.e., high 1/L) and high E; (i.e.,
high C). This new definition is attractive since it takes into ac-
count the full information contained in the weighted links of the
graph and provides an elegant solution to handle disconnected
vertexes.

D. Application to Real Data

1) Experimental Design: Five voluntary and healthy sub-
jects participated in the study (age, 26-32 years; five males).
They had no personal history of neurological or psychiatric dis-
order, and they were free from medications, alcohol, or drugs
abuse. For the EEG data acquisition, subjects were comfort-
ably seated on a reclining chair in an electrically shielded and
dimly lit room. They were asked to perform a dorsal flexion
of their right foot. The motor task was repeated every 8 s in a
self-paced manner and 200 single trials were recorded by using a

200-Hz sampling frequency. A 96-channel system (BrainAmp,
Brainproducts GmbH, Germany) was used to record EEG and
EMG electrical potentials by means of an electrode cap and sur-
face electrodes, respectively. The electrode cap was built ac-
cordingly to an extension of the 10-20 international system to
64 channels. Structural MRIs of the subject’s head were taken
with a Siemens 1.5-T Vision Magnetom MR system (Germany).
Three-dimensional electrode positions were obtained by using a
photogrammetric localization (Photomodeler, Eos Systems Inc.,
Vancouver, BC, Canada) with respect to anatomic landmarks:
nasion and the two preauricular points. Trained neurologists vi-
sually inspected EEG data and trials containing artifacts were
rejected. Subsequently, they were baseline adjusted and low-
pass filtered at 45 Hz. In order to inspect the brain dynamics
during the preparation and the execution of the studied move-
ment, a time segment of 2 s was analyzed, after having centered
it on the onset detected by a tibial EMG. The most interesting
cerebral processes concerning the detected movement are actu-
ally thought to occur within this interval [54].

2) Cortical Connectivity: In agreement with the procedure
already described previously in the literature [30], [31], the 5000
time series estimated for each cortical dipole were collapsed
(by spatial averaging) in 16 time varying waveforms related to
the activity of each considered ROIs. The sixteen ROIs were
segmented from the cortical model of each subject. The ROIs
considered for the left (_L) and right (_R) hemisphere were the
primary motor areas of the foot (MF_L and MF_R), the proper
supplementary motor areas (SM_L and SM_R), and the cingu-
late motor areas (CM_L and CM_R). The bilateral Brodmann
areas 6 (6_.L and 6_.R), 7 (7.L and 7_R), 8 (8_L and 8_R), 9
(9_L and 9_R), and 40 (40_L and 40_R) were also considered.
In the following, these cortical regions represent the nodes of
the modeling graph. This data reduction allowed dealing with
mathematically treatable MVAR processes for the estimation
of the significant PDC links. Moreover, due to the fact that in
the present experiment only 16 ROIs were considered the cor-
rection for the multiple comparisons was performed by taking
into account only (16 — 16) comparisons. The PDC was then
normalized, and the normalization was performed on the ac-
tivity entering in each node. The model order was chosen by
means of the Akaike information criterion (AIC), applied to dif-
ferent representative intervals using the mean prediction error.
Based on the recommendations suggested by Schack [55] we fi-
nally chose the maximal order detected. The order of the used
aMVAR models ranged from 14 to 16 for all the experimental
subjects. The application of the PDC to the 16 cortical wave-
forms returned a weighted and directed network for each fre-
quency band of interest. In the present work, we analyzed the
Alpha (7-12 Hz) band.

3) Significant Links: The rough connectivity estimation pro-
duces a full connected weighted and asymmetric matrix, rep-
resenting the Granger-causal influences among all the cortical
regions of interest. In order to consider only the task-related
connections, a filtering procedure based on a statistical valida-
tion was adopted. In each trial, a rest period of 2 s preceding the
movement was selected as element of contrast (from —4 to —2's
before the onset). The connection intensities regarding the pairs
of ROIs for each time sample were collected in order to obtain,
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Fig. 2. Schematic representation of the main steps involved in the EEG data processing. From raw EEG signals, the cortical activity is achieved by means of
high-resolution EEG techniques. Then, functional connectivity is estimated from the cortical time series and eventually the brain network analysis is performed

through a theoretical graph approach.

a distribution of values belonging to the rest period. A threshold
range was then extracted from the values of the rest distribu-
tion by considering a percentile of 0.01 and 0.99, respectively,
for the lowest and highest edge, with the aim of testing the sig-
nificance of the estimated connections throughout the period of
interest. After the statistical filtering, the remaining connections
represent the significant relationships among the ROISs that char-
acterize the experimental task.

4) Statistical Comparison With Random Graphs: A contrast
with random graphs was performed in order to assess the
significance of the obtained graph indexes. For each frequency
band and time-sample, 50 random patterns were generated from
the cerebral network of each subject, by randomly shuffling
the original connections. In the present study, the random-
ization procedure does not preserve the degree distributions.
This choice was suggested by the fact that the networks we
are dealing with are rather small. For this reason, the degree
distribution preservation could not lead to evident differences
in the structure contrast. A common number of connections
has been considered in each graph in order to analyze the
cortical networks correctly across all the subjects, frequency
bands, and time samples. This condition prevents that the graph
measures could be affected by a different connection-density.
In the present study, we considered 48 edges—i.e., connection
density = 0.2—for each network obtained by removing the
weakest links from each weighted graph. The preference of this
connection-density was surely the most favorable condition for
the significance of the indexes of the network structure (£, and
E}). At a more specific analysis, it has been found that these
indexes keep their usual independency—characterized by their
ability to detect global and local properties—even in a small
16 nodes-graph (data not shown here). Fig. 2 summarizes the

main methodological steps of the EEG data processing that was
performed in the present work.

III. RESULTS

In the following, we show the results obtained from the use
of theoretical graph methodology applied to the EEG signals
recorded in a group of healthy subjects performing a simple
motor act. As described above, the use of the time-varying
PDC on the high-resolution EEG signals returns a cortical
network for each time sample and for each frequency band. In
the present work, we intend to focus the analysis on a repre-
sentative spectral range—namely the Alpha band—since it has
been suggested as particular responsive to the preparation and
execution of a simple limb movement [54]. The whole time
progress of the strength indexes during the analyzed period
of interest—2 s—was computed for each cortical region of
interest ROI. At the middle of Fig. 3, the locations of the ROIs
are illustrated in color on the realistic model of the cortex.
At the lateral sides of Fig. 3, the average Z-scores of the in
strength indexes s;,, obtained in the Alpha band are illustrated
for the ROISs strictly related to the movement. It is worth of
note that during the large part of the movement preparation
and execution, the in strength values of the cingulate (CM_L,
CM_R) and supplementary (SM_L, SM_R) motor areas are
significantly (p < 0.05) high throughout the analyzed period.
Instead, the primary motor areas (MF_L, MF_R) only present
few significant moments (Z > 1.96). At the top of Fig. 3 the
average Z values of the time-varying in strength distribution
R;, in the Alpha frequency band, are illustrated. The color
encodes the intensity of the computed Z value for the R;,, index.
This measure reveals the significant presence of ROIs that have
an in strength value s;, (y axes) at the time ¢ (x axes). In general
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Fig. 3. Middle: Realistic head model for a representative subject. All the cortical ROIs are displayed in color on the cortex and opportunely labeled. Lateral:
Representation of the time-varying in strength index s;,, in the Alpha band. Each subplot describes the group-averaged Z score of a particular cortical region during
the entire period of the task. The latency from the movement onset is shown on the x axes. The lighter lines around the mean value indicate the profiles of the
25th and 75th percentile. Top: Representation of the time-varying in strength distribution R;,, during the period of interest in the Alpha band. The latency from the
movement onset is shown on the x axes; the in strength ( $in ) values on the y axes. The color encodes the group-averaged intensity of the R;, Z score. In particular,
the light grey color stands for the absence of ROIs with s;,, > 0 at a certain instants.

it is evident that the overall Z scores of R;, are not statistically
significant, with many values between —1.96 and 1.96. With
the same conventions as in the previous picture, Fig. 4 shows
the results obtained for the out strength measures. As regards
the out strengths indexes Sout, only the CM_L and CM_R
present a persistent and significant high level of involvement.
Moreover, the out strength distribution R, index reveals that
the intensity of outgoing links seems to increase as time elapses
from the movement preparation to the movement execution.
This fact can be noted by the shift of the significant Z values
towards high levels of s, throughout the evolution of the
task performance. Fig. 5(A) shows the functional connectivity
patterns in the Alpha frequency band during three representa-
tive moments. In particular, each network shows the intensity
of the connections for a particular experimental subject. One
arrow from the node X to the node Y indicates the existence of a
statistically significant Granger-causality relationship between
the cortical areas they are representing. Fig. 5(B) shows the
average time-varying course of the weighted-density k,, in the
Alpha band during the analyzed period of interest. A progres-
sive increase during the preparation of the movement can be
observed. Instead, during the execution of the movement the
cortical network holds steady high k,, values. Fig. 5 (C) and (D)

shows, respectively, the average Z scores of the time-varying
E, and E; computed from the connectivity patterns in the
Alpha frequency band. The analysis of the network structure
indexes shows a general stable time-course of low £, and
high E; during the preparation and the execution of the foot
movement. However, the time varying profile of these indexes
revealed the presence of several peaks that characterize some
temporal points. In particular, the efficiency indexes clearly
assumed an opposite behavior at about 500 ms after the move-
ment onset, with very low E, (Z < —6) and high E; (Z > 4),
indicating a wide presence of highly connected clusters that
improved the local interactions of the cortical network. The
reciprocity indexes were gathered from the cortical network of
all the subjects in each time instant. In Fig. 6(A) the average
time-varying trend of the correlation coefficient p is shown for
the representative Alpha frequency band. In particular, from
the movement preparation to the movement execution the reci-
procity measure of the cortical networks moves from a relative
high reciprocal state (p ~ 0.25) to a lower (p ~ 0.1) level,
as revealed by the decreasing trend of the index profile. The
involvement of the basic building blocks within the estimated
time-varying functional networks was analyzed by means of the
motifs spectra. Fig. 6(B) shows the average Z values of the time
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Fig. 4. Representation of the time-varying out strength index s,..; and out strength distribution R,,..; in the Alpha band. Same conventions as in Fig. 3.

varying motifs spectrum in the Alpha band. On the ordinates
all the possible 13 motif classes with three nodes are listed. On
the abscissas, the time in seconds is displayed while the grey
scale codes the average values of the resulting Z-scores. The
significant (p < 0.01) role of two type of building blocks (the
third and the eleventh called, respectively, “single-input” and
“uplinked-mutual-dyad”) is revealed by the persistent high Z
values (Z > 1.96) observed during the entire period of in-
terest. In addition, the fifth motif (called “feed-forward-loop”)
presents an interesting involvement. Its general profile shows
that it moves from a nonsignificant presence during the move-
ment preparation (from about —1 to the onset) to a significant
(p < 0.05) presence during the movement execution (from the
onset to +1 s), as revealed by the higher Z values (Z > 1.96).

IV. DiscussioN

The use of graph theory in small networks is rather new if
compared to its usual employment in biological context. How-
ever, the need for the analysis of small cerebral networks has
been recently underlined [18], [19], [56]. In the present study,
we would like to emphasize that the opportunity to deal with
cortical activity permits the representation of the graph nodes
as particular Brodmann areas on the cortex [57]. The use of
raw EEG signals instead returns less powerful results, since
the nodes within the network represent scalp electrodes, which
could have indirect links with the cortical areas beneath them. In

this context, the adaptive PDC could represent a major improve-
ment in the analysis and interpretation of EEG and MEG data. In
fact, the possibility to deal explicitly with weighted and asym-
metric relationships, as well as the observation of transient cou-
plings, would provide the analytical tools to observe the specific
cortical network dynamics during the task. Since the present
work would represent a methodological study, we presented re-
sults in a particular spectral content (i.e., Alpha 7-12 Hz), which
represents one of the most responsive channels for the prepara-
tion and the execution of simple motor acts [54]. As a demon-
stration of the effectiveness of the methodology here presented,
some indexes deriving from graph theory have been applied to
the time-varying networks estimated from a set of high-resolu-
tion EEG data in a group of healthy subjects during the prepa-
ration and the execution of the foot movement. The analysis of
the strength indexes in the Alpha band revealed the major in-
volvement of particular cortical areas throughout the task. The
high Z values of in and out strength for the cingulate motor areas
(CM_L, CM_R) indicate that they presented the main target for
a large number of functional connections taking origin from
the other investigated cortical areas and, at the same time, they
represented the main sources of outgoing flows towards all the
other ROIs. It is worth of note that the PDC was normalized,
and the normalization was performed on the activity entering
in each node. It may be argued if such normalization has an
effect on the statistical assessment of in strength s;, and out
strength s,y values. However, s, and s,,; were computed on
statistically significant values of PDC, which were assessed by
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percentile. The latency from the movement onset is shown on the x axes. (D) Group-averaged time-varying global-efficiency E; in the Alpha band. The red line

represents the evolving average Z score. Same conventions as in Fig. 5(C).

taking into account the normalization performed. Later, we eval-
uated the Z score of such indexes with respect to the same in-
dexes obtained from random networks. Since separate analyses
were performed to the two different parameters, the normaliza-
tion has not an affect on such assessment. The average profiles
of the strength-distributions revealed a different behavior be-
tween the distributions of the incoming and outgoing strength
indexes. In fact, the out strength distribution only indicated a
significant (p < 0.01) presence of few cortical areas acting as
“hubs,” characterized by a very high level of outgoing functional
flows. Looking more closely at the strength values of the ROIs
previously analyzed, we can deduce that the CM_L and CM_R
operated as the center of outgoing flows for the estimated cor-
tical functional network. This fact suggests a central role of the
cingulate motor areas, which hold the highest level of outgoing
links, since their removal would immediately corrupt the or-
ganization of the estimated functional network by reducing the
overall level of connectivity. Interestingly, it may be observed
that the out strength Z scores of the contralateral cortex MF_L is
almost nonsignificant (7 < 2) throughout the entire period of
analysis. A similar behavior can be also observed for other cor-

tical sites that are related to the movement (SM_L, SM_R, and
MF_R). However, this lack of significant outgoing connections
from the contralateral primary motor cortex does not mean or
imply a low activity of such cortex. In fact, the analyzed index
(Sout) only measures the amount of actual statistically signif-
icant connections outgoing from the considered cortical area
(in such a case the primary motor area of the foot) to the other
ones. A zero value of this parameter means that the considered
cortical area still remains active in a “disconnected” way, i.e.,
without having particular connections with other cortical areas.
This is consistent with the view that the primary cortical areas
are prone to deliver the motor commands for the actual execu-
tion of the movement, while the other cortical areas have to per-
form the coordination about the necessary timing of the opera-
tion. In particular, it must be emphasized that each flow is ac-
tually representing a “Granger” causal interaction between two
active cortical areas. For this reason, a significant out strength
value should not be interpreted as a significant “activity” of a
specific ROL. In fact, graph indexes and electrical activity belong
to different levels of analysis and the respective results/conclu-
sions may put in evidence on different ROIs of the analyzed
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cortex. As a matter of fact, in the acquired EEG data we were
able to observe the typical strong event-related desynchroniza-
tion [54] in proximity of the movement onset for the contralat-
eral cortex MF_L. This activity is typically very high for the
motor areas when they are engaged in motor tasks. The evalua-
tion of the average weighted-density k,, associated to the evo-
lution of the cortical network returned further information re-
garding the varying level of overall connectivity. In the Alpha
band, the average intensity of the network links showed a char-
acteristic increase during the preparation (from —0.5 s to the
onset) of the movement, reflecting the need for a higher ex-
change of information among the considered ROIs in order to
perform the subsequent movement execution. The study of the
structural properties of the cortical network was performed by
calculating the global-efficiency E, and the local-efficiency F.
In the Alpha band, the network structure seemed to maintain
a steady configuration, since the efficiency indexes remained
in the significant (p < 0.05) part, with low E, and high E;
throughout the analyzed period. In particular, these values iden-
tified a regular and ordered configuration [11], in which the local
property of clustering is privileged with respect to the overall
communication. Besides this consideration, the evolving nature
of the calculated indexes allowed for the extraction of char-
acteristic time points. In particular, the presence of clustering
connections reached its maximum rate during the proper exe-
cution of the movement at about 500 ms after the onset. The

analysis of the average time-varying reciprocity index revealed
the significant presence of mutual links within the cortical net-
works during the entire period analyzed. In particular, in the
Alpha frequency band the functional network moved from a
high (p ~ 0.25) to a lower (p ~ 0.1) reciprocal state fol-
lowing a decreasing trend throughout the movement. This as-
pect emphasizes the role of the preparation in which a higher
level of mutual exchange of information is required to speed
up the cortical process in expectation of the subsequent exe-
cution. In the present study, we dealt with rather small cor-
tical networks of sixteen nodes, derived by the analysis of the
time-varying waveforms estimated from each considered ROI.
For this reason, the research of the three-motifs seems a rea-
sonable approach. Larger motifs could be justified within larger
cortical networks than those employed here. In particular, the
average time-varying spectra of the three-motifs revealed the
involvement of the feed-forward-loop motif that tends to sig-
nificantly (p < 0.01) increase during the proper movement ex-
ecution (from about O to +1 s). This type of building block is
known to play an important functional role in information pro-
cessing. In fact, one possible function of this circuit is to activate
output only if the input signal is persistent and to allow a rapid
deactivation when the input goes off [58]. Another interesting
aspect was revealed by the significant (p < 0.01) “persistence”
of the single-input motif that represented the highest recurrent
pattern of interconnections within the cortical network during
the entire evolution of the foot movement. The main function of
this motif is known to involve the “activation” of several parallel
pathways by a single activator [58]. Altogether, our findings aim
at proving how the use of some theoretical graph measures were
able to extract important information about the time-frequency
dynamics of the cortical networks estimated from a set of high-
resolution EEG data during the performance of a simple foot
movement. In particular, the obtained results are rather stable
across subjects as revealed by the small dispersion of the es-
timated graph values. This fact reflects a small variability in
the structure of the estimated connectivity patterns. The present
paper intends to support the development of a mathematical tool
consisting in a body of indexes based on the graph theory. In this
way, the “brain network analysis” (in analogy with the social
network analysis that has emerged as a key technique in modern
sociology) could actually represent an effective methodology to
improve the comprehension of the complex interactions in the
brain.

REFERENCES

[1] B. Horwitz, “The elusive concept of brain connectivity,” Neurolmage,
vol. 19, pp. 466-470, 2003.

[2] O. David, D. Cosmelli, and K. J. Friston, “Evaluation of different
measures of functional connectivity using a neural mass model,”
Neurolmage, vol. 21, no. 2, pp. 659-673, 2004.

[3] L. Lee, L. M. Harrison, and A. Mechelli, “The functional brain connec-
tivity workshop: Report and commentary,” Neurolmage, vol. 19, pp.
457-465, 2003.

[4] G. Tononi, O. Sporns, and G. M. Edelman, “A measure for brain com-
plexity: Relating functional segregation and integration in the nervous
system,” in Proc. Nat. Acad. Sci. USA, 1994, vol. 91, pp. 5033-5037.

[5] C. J. Stam, “Functional connectivity patterns of human magnetoen-
cephalographic recordings: A “small-world” network?,” Neurosci.
Lett., vol. 355, pp. 25-28, 2004.



DE VICO FALLANI et al.: BRAIN NETWORK ANALY SIS FROM HIGH-RESOLUTION EEG RECORDINGS

[6] R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and

E. Bullmore, “Neurophysiological architecture of functional magnetic
resonance images of human brain,” Cereb. Cortex, vol. 15, no. 9, pp.
1332-1342, 2005.

[7] O. Sporns, , R. Kétter, Ed., “Graph theory methods for the analysis of

neural connectivity patterns,” in Neuroscience Databases. A Practical
Guide. Norwell, MA: Kluwer, 2002, pp. 171-186.

[8] C.J.Stam and J. C. Reijneveld, “Graph theoretical analysis of complex

networks in the brain,” Nonlinear Biomed. Phys., vol. 1, 2007.

[9] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, pp.

[10]

[11
[12

[13

[14

[15

[16

[17

[18

[19

1
1
1

]

1

1

]

1

[20]

[21

[22

[23

[24

[25

[26

[27

[28

1

]

]

1

]
]

268-276, 2001.

O. Sporns, , R. Kétter, Ed., “2002 Graph theory methods for the anal-
ysis of neural connectivity patterns,” in Neuroscience Databases. A
Practical Guide. Norwell, MA: Kluwer, pp. 171-186.

D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-world”
networks,” Nature, vol. 393, pp. 440442, 1998.

S. Milgram, “The small world problem,” Psychol. Today, pp. 60-67,
1967.

V. M. Eguiluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Ap-
karian, “Scale-free brain functional networks,” Phys. Rev. Lett., vol. 94,
p. 018102, 2005.

S. Achard and E. Bullmore, “Efficiency and cost of economical
brain functional networks,” PLoS Comp. Biol., vol. 3, no. 2, p. el7,
2007.

C. J. Stam, B. F. Jones, I. Manshanden, A. M. van Cappellen
van Walsum, T. Montez, J. P. Verbunt, J. C. de Munck, B.
W. van Dijk, H. W. Berendse, and P. Scheltens, “Magnetoen-
cephalographic evaluation of resting-state functional connectivity
in Alzheimer’s disease,” Neurolmage, vol. 32, pp. 1335-1344,
2006.

D. S. Bassett, A. Meyer-Linderberg, S. Achard, Th. Duke, and E. Bull-
more, “Adaptive reconfiguration of fractal small-world human brain
functional networks,” Proc. Nat. Acad. Sci., vol. 103, pp. 19518-19523,
2006.

F. Bartolomei, I. Bosma, M. Klein, J. C. Baayen, J. C. Reijneveld,
T. J. Postma, J. J. Heimans, B. W. van Dijk, J. C. de Munck, A. de
Jongh, K. S. Cover, and C. J. Stam, “Disturbed functional connec-
tivity in brain tumour patients: Evaluation by graph analysis of syn-
chronization matrices,” Clin. Neurophysiol., vol. 117, pp. 2039-2049,
2006.

S. Micheloyannis, E. Pachou, C. J. Stam, M. Vourkas, S. Erimaki, and
V. Tsirka, “Using graph theoretical analysis of multi channel EEG to
evaluate the neural efficiency hypothesis,” Neurosci. Lett., vol. 402, pp.
273-2717, 2006.

C. J. Stam, B. F. Jones, G. Nolte, M. Breakspear, and Ph. Scheltens,
“Small-world networks and functional connectivity in Alzheimer’s dis-
ease,” Cereb. Cortex, vol. 17, pp. 92-99, 2007.

L. F. Lago-Fernandez, R. Huerta, F. Corbacho, and J. A. Siguenza,
“Fast response and temporal coherent oscillations in small-world net-
works,” Phys. Rev. Lett., vol. 84, pp. 2758-2761, 2000.

0. Sporns, G. Tononi, and G. E. Edelman, “Connectivity and com-
plexity: The relationship between neuroanatomy and brain dynamics,”
Neural Netw., vol. 13, pp. 909-922, 2000.

A. L. Barabasi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, pp. 509-512, 1999.

S. Achard, R. Salvador, B. Whitcher, J. Suckling, and Bullmore, Eds.,
“A resilient low-frequency, small-world human brain functional net-
work with highly connected association cortical hubs,” J. Neurosci.,
vol. 26, no. 1, pp. 63-72, 2006.

J. Le and A. Gevins, “A method to reduce blur distortion from EEG’s
using a realistic head model,” IEEE Trans. Biomed. Eng., vol. 40, no.
6, pp. 517-528, Jun. 1993.

A. Gevins, J. Le, N. Martin, P. Brickett, J. Desmond, and B. Reutter,
“High resolution EEG: 124-channel recording, spatial deblurring and
MRl integration methods,” Electroenceph. Clin. Neurophysiol., vol. 39,
pp. 337-358, 1994.

P. L. Nunez, Neocortical Dynamics and Human EEG Rhythms.
York: Oxford Univ. Press, 1995, p. 708.

F. Babiloni, C. Babiloni, F. Carducci, L. Fattorini, C. Anello, P. Ono-
rati, and A. Urbano, “High resolution EEG: A new model-dependent
spatial deblurring method using a realistically-shaped MR-constructed
subject’s head model,” Electroenceph. Clin. Neurophysiol., vol. 102,
pp. 69-80, 1997.

F. Babiloni, C. Babiloni, L. Locche, F. Cincotti, P. M. Rossini, and
F. Carducci, “High resolution EEG: Source estimates of Laplacian-
transformed somatosensory-evoked potentials using a realistic subject
head model constructed from magnetic resonance images,” Med. Biol.
Eng. Comput., vol. 38, pp. 512-519, 2000.

New

[29]

[30]

[31

—

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]
[46]

[47]

(48]

[49]

451

M. R. Grave de Peralta and A. S. L. Gonzalez, , C. Uhl, Ed., “Dis-
tributed source models: Standard solutions and new developments,”
in Analysis of Neurophysiological Brain Functioning. New York:
Springer Verlag, 1999, pp. 176-201.

F. Babiloni, F. Cincotti, C. Babiloni, F. Carducci, A. Basilisco, P. M.
Rossini, D. Mattia, L. Astolfi, L. Ding, Y. Ni, K. Cheng, K. Christine, J.
Sweeney, and B. He, “Estimation of the cortical functional connectivity
with the multimodal integration of high resolution EEG and fMRI data
by directed transfer function,” Neurolmage, vol. 24, no. 1, pp. 118-123,
2005.

L. Astolfi, F. Cincotti, C. Babiloni, F. Carducci, A. Basilisco, P. M.
Rossini, S. Salinari, D. Mattia, S. Cerutti, D. Ben Dayan, L. Ding, Y.
Ni, B. He, and F. Babiloni, “Estimation of the cortical connectivity
by high resolution EEG and structural equation modeling: Simulations
and application to finger tapping data,” IEEE Trans. Biomed. Eng., vol.
52, no. 5, pp. 757-768, May 2005.

E. Basar, Memory and Brain Dynamics: Oscillations Integrating At-
tention, Perception, Learning and Memory. Boca Raton, FL: CRC,
2004.

K. Sameshima and L. A. Baccala, “Using partial directed coherence to
describe neuronal ensemble interactions,” J. Neurosci. Methods, vol.
94, pp. 93-103, 1999.

C. W. J. Granger, “Investigating causal relations by econometric
models and cross-spectral methods,” Econometrica., vol. 37, pp.
424-438, 1969.

R. Kus, M. Kaminski, and K. J. Blinowska, “Determination of EEG
activity propagation: Pair-wise versus multichannel estimate,” IEEE
Trans. Biomed. Eng., vol. 51, no. 9, pp. 1501-1510, Sep. 2004.

M. Ding, S. L. Bressler, W. Yang, and H. Liang, “Short-window spec-
tral analysis of cortical event-related potentials by adaptive multivariate
autoregressive modeling: Data preprocessing, model validation, and
variability assessment,” Biol. Cybern., vol. 83, pp. 35-45, 2000.

L. Astolfi, F. Cincotti, D. Mattia, M. G. Marciani, L. Baccala, F. De
Vico Fallani, S. Salinari, M. Ursino, M. Zavaglia, L. Ding, J. C. Edgar,
G. A. Miller, B. He, and F. Babiloni, “A comparison of different
cortical connectivity estimators for high resolution EEG recordings,”
Human Brain Mapp., vol. 28, no. 2, pp. 143-157, 2006.

L. Astolfi, F. De Vico Fallani, F. Cincotti, D. Mattia, M. G. Marciani, S.
Bufalari, S. Salinari, A. Colosimo, L. Ding, J. C. Edgar, W. Heller, G.
A. Miller, B. He, and F. Babiloni, “Imaging functional brain connec-
tivity patterns from high-resolution EEG and fMRI via graph theory,”
Psychophysiology, vol. 44, no. 6, pp. 880-893, 2007.

F. De Vico Fallani, L. Astolfi, F. Cincotti, D. Mattia, M. G. Marciani, S.
Salinari, J. Kurths, S. Gao, A. Cichocki, A. Colosimo, and F. Babiloni,
“Cortical functional connectivity networks in normal and spinal cord
injured patients: Evaluation by graph analysis,” Hum. Brain Mapp., vol.
28, pp. 1334-1336, 2007.

L. Astolfi, F. Cincotti, D. Mattia, F. De Vico Fallani, A. Tocci, A.
Colosimo, S. Salinari, M. G. Marciani, W. Hesse, H. Witte, M. Ursino,
M. Zavaglia, and F. Babiloni, “Tracking the time-varying cortical con-
nectivity patterns by adaptive multivariate estimators,” IEEE Trans.
Biomed. Eng., vol. 55, no. 3, pp. 902-913, Mar. 2008.

M. Winterhalder, B. Schelter, W. Hesse, K. Schwabb, L. Leistritz, D.
Klan, R. Bauer, J. Timmer, and H. Witte, “Comparison of linear signal
processing techniques toinfer directed interactions in multivariate
neural systems,” Signal Process., vol. 85, no. 11, pp. 2137-2160,
2005.

E. Moeller, B. Schack, M. Arnold, and H. Witte, “Instantaneous
multivariate EEG coherence analysis by means of adaptive high-di-
mensional autoregressive models,” J. Neurosci. Methods, vol. 105, p.
143/58, 2001.

W. Hesse, E. Moller, M. Arnold, and B. Schack, “The use of time-
variant EEG Granger causality for inspecting directed interdependen-
cies of neural assemblies,” J. Neurosci. Methods, vol. 124, pp. 27-44,
2003.

S. Wasserman and K. Faust, Social Network Analysis.
U.K.: Cambridge Univ. Press, 1994.

D. Garlaschelli and M. 1. Loffredo, “Patterns of link reciprocity in di-
rected networks,” Phys. Rev. Lett., vol. 93, p. 268701, 2004.

F. Harary and E. M. Palmer, Graphical Enumeration. New York:
Academic, 1973, p. 124.

R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U.
Alon, “Network motifs: Simple building blocks of complex networks,”
Science, vol. 298, pp. 824-827, 2002.

0. Sporns and R. Koétter, “Motifs in brain networks,” PLoS Biol., vol.
2, p. €369, 2004.

M. E. J. Newman, “The structure and function of complex networks,”
SIAM Rev., vol. 45, pp. 167-256, 2003.

Cambridge,



452 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 16, NO. 5, OCTOBER 2008

[50] M. G. Grigorov, “Global properties of biological networks,” Drug Dis-
covery Today, vol. 10, pp. 365-372, 2005.

[51] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang,
“Complex networks: Structure and dynamics,” Phys. Rep., vol. 424,
pp. 175-308, 2006.

[52] V. Latora and M. Marchiori, “Efficient behaviour of small-world net-
works,” Phys. Rev. Lett., vol. 87, p. 198701, 2001.

[53] V. Latora and M. Marchiori, “Economic small-world behaviour in
weighted networks,” Eur. Phys. JB, vol. 32, pp. 249-263, 2003.

[54] G. Pfurtsheller and F. H. Lopes da Silva, “Event-related EEG/EMG
synchronizations and desynchronization: Basic principles,” Clin. Neu-
rophysiol., vol. 110, pp. 1842-1857, 1999.

[55] B. Schack, “Dynamic topographic spectral analysis of cognitive pro-
cesses,” in Analysis of Neurophysiological Brain Functioning. New
York: Springer, 1999, pp. 230-251.

[56] C.C.Hilgetag, G. A.P.C.Burns, M. A. O’Neill, J. W. Scannell, and M.
P. Young, “Anatomical connectivity defines the organization of clusters
of cortical areas in the macaque monkey and the cat,” Philos. Trans. R.
Soc. Lond. B. Biol. Sci., vol. 355, pp. 91-110, 2000.

[57] F. De Vico Fallani, L. Astolfi, F. Cincotti, D. Mattia, A. Tocci, M. G.
Marciani, A. Colosimo, S. Salinari, S. Gao, A. Cichocki, and F. Ba-
biloni, “Extracting information from cortical connectivity patterns es-
timated from high resolution EEG recordings: A theoretical graph ap-
proach,” Brain Topogr., vol. 19, no. 3, pp. 125-136, 2007.

[58] S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network motifs in
the transcriptional regulation network of Escherichia Coli,” Nature Ge-
netics, vol. 31, pp. 64-68, 2002.

[59] S. H. Yook, H. Jeong, A. Barabdsi, and Y. Tu, “Weighted evolving
networks,” Phys. Rev. Lett., vol. 86, no. 25, pp. 5835-5838, 2001, [40].

Authors’ photographs and biographies not available at the time of publication.



