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Abstract

Due to its temporal resolution in the millisecond range and other compelling properties such as
noninvasiveness, portability and relatively low costs, electroencephalography (EEG) is the tool of
choice for studying brain dynamics in humans. However, any neurophysiological interpretation of
EEG data is hindered by the fact that the signals related to electrical activity in source brain regions
are spread across the EEG sensors due to a process called volume conduction, the inversion of
which is an ill-posed inverse problem. In the EEG-based analysis of directed information flow
between brain regions, volume conduction poses a serious challenge, since multiple active sources
have to be assumed, the contributions of which, however, mix into all EEG sensors.

With this thesis we contribute to the field of EEG-based brain connectivity analysis. We start
by conducting an extensive survey of relevant approaches and go on to assess their performance
on simulated EEG data, which are realistically generated as mixtures of interacting sources. We
observe that most of the tested methods are not able to determine the connectivity structure of
the underlying sources because either i) the effect of volume conduction is neglected or ii) the
assumptions made to estimate mixed sources do not comply with the requirements of source
connectivity analysis or even with the physics of the EEG.

The central contribution of this thesis is the development of source demixings that meet theo-
retical requirements for source connectivity analysis and are applicable in practice. We achieve
this using two different strategies. In inverse source reconstruction, a given physical model of
EEG generation is inverted under physiologically motivated constraints. We derive an inverse
methodology, S-FLEX, which is able to recover multiple source of arbitrary shape and depth using
a sparsity penalty that assures rotational invariance of the solution. Our method is applicable to
entire time series as a preprocessing step to source connectivity analysis. Its favorable localization
properties are empirically evaluated on real data as well as in simulations and are demonstrated to
be the key to correct source connectivity determination. In the course of the thesis, we also present
a blind source separation (BSS) technique, SCSA, which estimates the underlying brain sources
and their mixing patterns jointly under assumptions on connectivity structure of the sources.
We demonstrate that SCSA performs well on simulated data, if mild assumptions regarding the
non-Gaussianity of the source variables hold. By way of an outlook, we present a hybrid approach
that combines S-FLEX inverse source reconstruction with SCSA blind source separation and
thereby fuses physical and dynamical assumptions on the sources.

In the final part of the thesis, we analyze information transfer between sources of the human
alpha rhythm during rest. Our analysis of S-FLEX source estimates yields a number of insights
which could not have been obtained from mere sensor-space analysis. We observe that generators
of alpha band activity are mostly symmetrically distributed on the cortex. However, the strength of
the sources nor the corresponding interaction patterns are exclusively symmetric. These findings
support the hypothesis of a consistent dominant laterality in the population.






Zusammenfassung

Aufgrund seiner hohen zeitlichen Auflésung, Nichtinvasivitit und Portabilitét, sowie seiner rela-
tiv geringen Kosten ist Elektroenzephalografie (EEG) die momentan gebrauchlichste Methode
zur Messung dynamischer Informationsverarbeitung im Gehirn. Die Interpretation von EEG-
Daten unter neurophysiologischen Gesichtspunkten wird jedoch dadurch erschwert, dass die im
Gehirn entstehenden Signale durch Volumenleitung in alle EEG-Sensoren ausstrahlen. Bei der
Schitzung von Interaktionen zwischen Gehirnregionen ist dies besonders hinderlich, da hier stets
mehrere aktive Quellregionen angenommen werden miissen, deren Beitriage sich jedoch infolge
von Volumenleitung in den EEG-Kandlen tiberlagern.

Mit dieser Dissertation leisten wir Beitrage zur EEG-basierten Analyse von Gehirnkonnekti-
vitdt. Dazu unterziehen wir zunichst gangige Ansdtze einer umfangreichen Evaluation anhand
simulierter EEG-Daten, die in realistischer Weise als Mischung interagierender Quellen erzeugt
werden. Wir beobachten, dass die Mehrzahl der getesteten Methoden nicht in der Lage ist, die
Konnektivitatsstruktur der zugrundeliegenden Quellen zu ermitteln. Dies kann in den meisten
Fillen darauf zuriickgefithrt werden, dass entweder i) Volumenleitung bei der Modellierung
nicht berticksichtigt wird, oder dass ii) die Annahmen zur Quellschiatzung der Existenz von
Interaktionen oder gar physikalischen Gegebenheiten widersprechen.

Das Hauptaugenmerk der Arbeit liegt auf der Entwicklung von Methoden, die sowohl theo-
retisch zur Untersuchung von Quellenkonnektivitit geeignet, als auch praktisch einsetzbar sind.
Hierbei verfolgen wir zwei verschiedene Ansitze. Bei der inversen Quellenrekonstruktion wird
ein gegebenes physikalisches Modell der Volumenleitung unter physiologisch motivierten Bedin-
gungen invertiert. Wir prasentieren eine Inversionsmethode namens S-FLEX, die durch geeignete
Annahmen in der Lage ist, aktive Gehirnregionen beliebiger Form und Tiefe anhand von EEG-
Daten zu rekonstruieren. Unsere Methode eignet sich auch zur Rekonstruktion kompletter Quell-
zeitreihen als Ausgangspunkt fiir die Konnektivitdtsanalyse. Unsere empirischen Studien belegen
die hohere Lokalisierungsgenauigkeit von S-FLEX im Vergleich zu Standardmethoden, sowie die
damit einhergehende Verbesserung der Schitzung von Quellenkonnektivitat. Im weiteren Verlauf
der Arbeit prasentieren wir eine Methode zur sogenannten blinden Quellenrekonstruktion, die
in der Lage ist, die Zeitreihen der aktiven Gehirnquellen sowie deren Mischungsverhaltnisse im
EEG allein anhand der Annahme, dass einige der Quellen untereinander interagieren, zu schitzen.
Wir zeigen empirisch, dass diese, SCSA genannte, Methode korrekte Ergebnisse liefert, sofern
bestimmte Voraussetzungen die Verteilung der Quellvariablen betreffend erfiillt sind.

Im letzten Teil dieser Arbeit analysieren wir den Informationsaustausch zwischen Gehirnregion-
en mit hoher alpha Aktivitit im Ruhezustand. Unsere Untersuchung ergibt, dass die entsprechen-
den Regionen symmetrisch auf der Grofihirnrinde angeordnet sind. Jedoch ist sowohl die Stéirke
der alpha Generatoren als auch deren geschitzte Vernetzung asymmetrisch, was auf eine iiber die
Stichprobe konsistente dominante Korperhalfte hindeutet.
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1 Introduction

1.1 EEG-based brain connectivity analysis

In the endeavor towards a better understanding of the human brain’s functioning, the analysis of
task-dependent information transfer between brain regions plays a crucial role.

Modern neuroscience began with the first recording of human electroencephalography (EEG)
by Pravdich-Neminsky (1913). About ten years later, Berger started to systematically study the
EEG signal and discovered the human alpha rhythm (Berger, 1938). Since then, a huge number
of neurophysiological phenomena have been discovered and related to experimental variables in
uncountably many psychophysiological studies (Davis, 1939; Sutton et al., 1965; Kornhuber and
Deecke, 1965; Spehlmann, 1965; Sutton et al., 1967; Jeftfreys and Axford, 1972; Farwell and Donchin,
1988; Pfurtscheller and Lopez da Silva, 1999, to name some). However, these phenomena could
only be linked to brain anatomical structures with the advent of EEG inverse source reconstruction
(Jeffs et al., 1987; Ioannides et al., 1990; Scherg and Ebersole, 1993; Himaldinen and Ilmoniemi, 1994;
Pascual-Marqui et al., 1994; Matsuura and Okabe, 1995; Mosher and Leahy, 1999) and alternative
functional neuroimaging modalities such as positron emission tomography (PET, Ter-Pogossian
et al.,, 1975), functional magnetic resonance imaging (fMRI, Roy and Sherrington, 1890; Ogawa
et al,, 1990) and invasive electrophysiological recordings such as electrocorticography (ECoG,
Penfield et al., 1954). These novel techniques facilitated the releases of comprehensive atlases of
brain functions (Talairach and Tournoux, 1988; Rohlfing et al., 2010), as well as atlases depicting the
structural connections between brain regions (Sporns et al., 2005; Murayama et al., 2006; Hagmann
et al,, 2007). Concomitant with and even prior to these developments, tremendous progress had
been made in understanding the structural organization of the brain and the physicochemical
mechanisms underlying cerebral information storage and transfer on the cellular level (Deiters,
1865; Golgi, 1885; Gotch, 1902; Ramén y Cajal, 1904; Dale, 1914; Loewi, 1921; Erlanger and Gasser,
1924; von Euler, 1946; Hodgkin and Huxley, 1952; Carlsson et al., 1957; Eccles, 1964; Kebabian
and Greengard, 1971; Kandel et al., 2000). However, there is still a considerable gap to bridge
in linking today’s knowledge about the dynamics of single neurons to the macroscopic effects
observable with present neuroimaging technologies, although large-scale integrative models are
under development (Markram, 2006).

An intermediate step towards unified brain modeling are models that describe the dynamics
and interaction patterns of brain regions on a macroscopic scale. This is the strategy pursued by
the majority of studies in brain connectivity analysis. There exist various competing definitions of
“connectivity” and there is an even greater disagreement on how to properly measure connectivity
according to the various definitions. Regarding the first point, a distinction between structural,
functional and effective connectivity has been widely agreed on (Friston, 1994; Horwitz, 2003; Jirsa
and MclIntosh, 2007). Structural connectivity refers to the static anatomical structure of the brain,
which can be acquired, for example, by a single scan using a high-resolution anatomical MRI
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(Lauterbur, 1973) or diffusion tensor imaging (DTI, Moseley et al., 1990) device. Functional and
effective connectivity are defined with respect to a mental task and refer to “coupled” activity
of two neuroanatomical entities during task execution. The common distinction between the
two is that effective connectivity is directed, i. e., describes a driver-receiver relationship, while
functional connectivity is not. Originally, functional connectivity had been equated with instanta-
neous correlation (Friston, 1994) but it is useful to extend this definition to arbitrary measures
of undirected functional dependencies which are symmetric in their arguments. Analogously,
effective connectivity might be quantified by any asymmetric function. There is an infinite number
of functions complying with these definitions and indeed, the proposed connectivity measures are
numerous and originate from diverse fields such as graph theory, signal processing and Bayesian
statistics. Here, we are primarily concerned with measures of effective connectivity. These can be
roughly divided into dynamic causal modeling and Granger-causal modeling approaches, although
there exist also differing concepts (Sun et al.,, 2008; Janzing and Schélkopf, 2010).

Dynamic causal modeling (DCM, Friston et al., 2003; Kiebel et al., 2008; Friston, 2009) assumes
that there exist a number of different models of how the observation sequences are generated. The
specifications of these models include hypothetical source regions, the signal transformation from
the source regions to the measurement sensors and a directed graph modeling the causal links
between the souce regions, which are to be tested. There is no standard choice for the models to
be compared; they have to be specified manually using domain knowledge about the mental task
under study. In the DCM methodology, the parameters of the various models are optimized to
match the data as well as possible, while fulfilling certain prior expectations, which must also be
pre-specified. The most likely model is selected using Bayesian decision theory and its network
topology (including the effective connections) as well as the fitted model parameters are subjected
to neurophysiological interpretation.

A huge class of effective connectivity measures is commonly subsumed under the term Granger-
causal modeling (GCM), which is used to express the presence of the following two properties. First,
in contrast to DCM, the estimation of effective connections between the variables of interest (i. e.,
sources) is usually not restricted by a predetermined network topology. Rather, the presence of
connections is estimated exhaustively for all pairs of variables in a completely data-driven manner.
Second, driver-receiver relationships are defined using the argument that the cause (measured
through the driving variable) temporally precedes the effect (measured through the receiving
variable). In terms of time series, this implies that the sending variable’s time series contains
information about future values of the receiving variable’s time series. Granger-causality is one
way of quantifying this effect. It is based on Granger’s consideration that knowledge of the driver’s
time series at a time should improve the prediction of the receiver’s time series at a later time. This
practical definition has been implemented by a number of estimators (Granger, 1969; Kaminski
and Blinowska, 1991; Baccald and Sameshima, 2001; Valdés-Sosa et al., 2005) using autoregressive
models and has found widespread applications (e. g., in neuroscience Kaminski et al., 1997; Hesse
et al., 2003; Brovelli et al., 2004; Babiloni et al., 2004; Astolfi et al., 2004; Roebroeck et al., 200s5;
Babiloni et al., 2005; Eichler, 2005; Supp et al., 2007; Blinowska et al., 2010). However, not every
approach that adopts the temporal definition of effective connectivity falls into the category of
Granger causality. Counterexamples are Nolte et al. (2004) and Nolte et al. (2008), which are
completely model free approaches to connectivity analysis. Both are based on detecting nonzero
phase lags by analyzing the imaginary part of the time series’ cross-spectrum.



1.2 Scientific proposal

There is an ongoing debate on whether DCM, GCM or the analysis of phase lags should be
prefered in brain effective connectivity analysis (Valdes-Sosa et al., 2011). A crucial point to con-
sider is the properties of the measurement modality used to study connectivity. Measures of
metabolic functions such as fMRI and PET allow one to directly study internal brain dynamics
with high spatial resolution, but their temporal resolution lies in the range of a second, which
is disadvantageous for methods which define drivers and receivers in terms of temporal prece-
dence. Indeed, Granger-causal analyses of fMRI data have resulted in only very few significant
connections (Valdés-Sosa et al., 2005; Eichler, 2005), indicating that the temporal resolution of
fMRI is too low to capture time-delayed neuronal information transfer at the relevant scales.
Electrophysiological measurements reflect neuronal activity more directly than fMRI and PET,
and with sampling rates of up to several kHz. However, unlike for fMRI and PET, it is not possible
to exactly reconstruct the brain’s internal activity from electrophysiology measured outside the
head. Therefore, electrophysiology-driven brain effective connectivity analysis requires either
invasive measures, or the (explicit or implicit) solution to an ill-posed inverse problem. Invasive
recordings in humans are rarely indicated, which leaves one with electroencephalography (EEG)
and the related magnetoencephalography (MEG). These modalities utilize extracranial sensors to
pick up signals related to the electric activity of gross populations of synchronized neurons. In the
of case EEG, these are scalp electric potentials, while MEG measures the corresponding magnetic
fields. In both cases the signal is spatially diffused while traversing from the source regions to the
sensors by a process called volume conduction. Regarding the interpretability of EEG/MEG data in
terms of the underlying active source regions, this poses a serious challenge. The situation is most
severe in brain connectivity studies, where multiple sources must be assumed, the contributions of
which, however, mix into all sensors. The fact that volume conduction has to be accounted for in
EEG- and MEG-based brain connectivity studies is receiving more and more attention nowadays
(Nolte et al., 2004; Schlogl and Supp, 2006; Nolte et al., 2006, 2008; Gomez-Herrero et al., 2008;
Nolte and Miiller, 2010) and has led to the request for genuine EEG/MEG source connectivity
analysis, i. e., the analysis of brain connectivity on source estimates derived from EEG/MEG data
(Schoffelen and Gross, 2009), which is the subject of this thesis.

1.2 Scientific proposal

The purpose of this work is to contribute to the field of EEG/MEG-based brain connectivity
analysis. We do this in three steps. First, we conduct an extensive survey of the field and evaluate
relevant approaches on simulated data. These simulations signify the two core theses of this work:

i. Volume conduction needs to be accounted for explicitly in EEG/MEG analyses, the results of
which should be subjected to neurophysiological interpretation.

ii. The assumptions used to recover sources in EEG/MEG connectivity studies need to comply with
the theoretical requirements of source connectivity analysis.

In the second step, we are concerned with the development of novel methods for EEG/MEG source
reconstruction and connectivity analysis, in which these insights fully enter. The efficacy of the
novel approaches is validated on the same data. In the third step, the applicability of our concepts
to real data is demonstrated.
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We here focus on EEG, which is far more widely used than MEG due to dramatically lower costs
and better portability. Virtually any analysis discussed in this thesis can, however, be transferred
to the MEG domain without amendments to the mathematics involved (an exception is the
calculation of lead fields, which differs for EEG and MEG). Likewise, we restrict ourselves here to
the analysis of effective connectivity following the temporal definition. Nevertheless, some of the
results presented in this thesis are also relevant for other branches of connectivity analysis.

1.3 Outline of the thesis

Following this introduction, the thesis begins with a chapter on background (Chapter 2), in which
we give an overview on EEG signal generation and the most important neurophysiological EEG
phenomena, before coming to mathematical concepts from machine learning, statistics and signal
processing that are of general use. The last part of the chapter introduces popular measures of
effective connectivity, as well as the two general strategies for obtaining source estimates from
EEG data, inverse source reconstruction and blind source separation.

The following chapter (Chapter 3) introduces a simple simulated EEG dataset, which we use to
evaluate representative measures of effective connectivity under standardized conditions. We also
evaluate a number of preprocessing steps, including prominent inverse source reconstruction and
blind source separation techniques.

Chapters 4 and 5 contain the core methodological contributions of this thesis. Chapter 4
deals with inverse source reconstruction. Here, we successively develop a novel methodology
for estimating possibly interacting sources by inverting a physical model describing the effect
of volume conduction. The core features of the final approach are i) invariance with respect to
rotations of the coordinate system, ii) the ability to reconstruct source regions of arbitrary shape
and depth, iii) the ability to spatially distinguish multiple neighboring source regions and iv) the
applicability to time series data under the assumption of time-invariant spatial signatures of the
sources. While i) and ii) are purely physiologically-motivated, iii) and iv) are crucial requirements
for source connectivity analysis. We propose a measure for comparing the localization accuracy of
arbitrary reconstructed sources, which we use to demonstrate that our approach outperforms the
state-of-the-art on simulated data. This result is confirmed on real data, for which the “ground
truth” is known. Finally, our inverse source reconstruction is successfully applied to the problem
of EEG source connectivity analysis using the simulated data introduced in Chapter 3.

Chapter 5 describes the development of a novel blind source separation (BSS) approach to
source connectivity estimation. We start by proposing two Granger-causal measures of effective
connectivity, by which it is possible to estimate sparse connectivity graphs (i. e., graphs with
few connections). We extend one of these approaches to a BSS setting, in which the mixing of
the sources caused by volume conduction is estimated jointly with the connectivity graph in a
completely data-driven fashion. We further outline an extension, in which the mixing patterns
are constrained to reflect only brain sources with physiologically meaningful spatial signatures.
That is, we integrate inverse source reconstruction techniques developed in Chapter 4 into our
blind source separation framework. Note that our approaches stand in contrast to the majority of
BSS techniques, the assumptions of which either prohibit the analysis of interactions between the
underlying brain sources or disregard physical constraints imposed by volume conduction.



1.4 List of included published work

Before summarizing the results of this thesis in Chapter 7, we present an EEG study of human
resting state brain connectivity (Chapter 6). Here, we are able to reproduce results from the
literature, which were obtained by means of sensor-space connectivity analysis. We, however,
show that results obtained in sensor space are generally sensitive to changes of certain technical
parameters, which severely limits their interpretability under neurophysiological aspects. Notably,
this limitation does not apply to source-space approaches such as those presented here. Source
connectivity analysis using the inverse source reconstruction methodology derived in Chapter 4
reveals a number of symmetric source regions, which are active during rest. Interestingly, these
regions exhibit complex and partly asymmetric interaction patterns.

1.4 List of included published work

The following publications are included in large parts into this thesis.
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Assessment. Vol. 6 of JMLR W&CP. pp. 97-106.
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2010. Localization of class-related mu-rhythm desynchronization in motor imagery based
brain-computer interface sessions. In: Engineering in Medicine and Biology Society (EMBC),
2010 Annual International Conference of the IEEE. pp. 5137-5140.
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2 Fundamentals

In this chapter, we introduce concepts that are fundamental to understanding the thesis. We start
with a section on EEG neurophysiology (Section 2.1), where we explain the generation of the
EEG signal and describe the various features seen in the EEG. The remaining part of the chapter
introduces mathematical tools that are useful for the development of our methods or for general
data analysis, as well as methods from the literature with which we shall compare our methods. We
devote a section to notation and basic definitions (Section 2.2), which is followed by a description of
basic machine learning concepts in the context of EEG modeling (Section 2.3). Section 2.4 contains
a brief description of the statistical testing approach used throughout the thesis. Signal processing
topics cover the last four sections of the chapter. In Section 2.5, we discuss spectral filtering,
the Fourier transform and autoregressive models. The latter two techniques are fundamental to
the definition of the most prominent measures of time-lagged effective connectivity, which are
introduced in Section 2.6. The last two sections describe techniques for the decomposition of
EEG data. Since the EEG signal is known to be a superposition of source signals due to volume
conduction, most decompositions techniques can be regarded as factorizations of the EEG signal
into the volume conduction (mixing) part and the source signals. If the mixing matrix is obtained
from a physical model we speak of inverse source reconstruction, which is explained in detail in
Section 2.7 along with prominent examples. An alternative to using a constant mixing matrix are
data-driven blind-source separation approaches that identify spatial mixing/demixing coefficients
based on statistical assumptions on the sources. We discuss relevant approaches in Section 2.8.

2.1 Neurophysiology

The electroencephalographic (EEG) signal is an electric potential that is measured on the scalp. It
comprises brain activity caused by electric activity of (mainly) cortical neurons as well as several
types of physiological and non-physiological artifacts. In this section, we briefly discuss the
mechanisms underlying the transformation of cerebral electrical activity into EEG potentials
and describe the two most important neurophysiological phenomena observed in EEG signals,
event-related potentials and oscillations.

2.1.1 EEG signal generation

Information processing in the brain takes place in approximately one-hundred billion intercon-
nected neurons, which are specialized cells that consist of a cell body (the soma), dendrites, an
axon and an enclosing membrane. The electroencephalographic signal arises as a result of syn-
chronous activity of large populations of neurons with similar spatial orientation. Following
Baillet et al. (2001) and Wolters and de Munck (2007), this process can be summarized as follows
(see Figure 2.1 for a depiction). Neurons are electrically charged through transport proteins that
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pump ions across their membranes. An axonal potential leads to the generation of excitatory
postsynaptic potentials (ESPs) at the apical dendritic tree, which causes the dendrite to release
ions through its membrane. The resulting depolarization of the membrane establishes an electrical
potential difference between the apical dendrite and the non-excited cell soma and basal dendrites.
This causes two types of ionic current flows. Currents that directly travel within the neuronal
dentritic trunk are called (intracellular) primary currents. The rule of conservation of electric
charges implies that there is also current flow in the opposite direction. The respective curents are
called (extracellular) secondary currents, because they travel through the exterior of the neuron.
In certain cerebral structures, there exist large populations of equally-aligned neurons. If these
neurons are synchronously activated, their primary currents add. The corresponding secondary
currents, which spread over the whole volume conductor, are strong enough to be measurable as
scalp potentials. The propagation of secondary currents from the sources (the generators of the
primary currents) through the biological tissue towards the measurement sensors is called volume
conduction. Importantly, this process is governed by the geometric and conductive properties
of the traversed media, which are the brain, scull and scalp tissues and the cerebrospinal fluid
(CSF). It is possible to mathematically model the propagation of secondary currents for a given
(primary) current source and volume conductor model using the fact that all currents are passive
in the frequency ranges of interest (see Section 2.7). In general, the electric potential observed at
the scalp surface is more widespread the deeper the generating source is, while it is stronger, the
more neurons are acting synchronously, the more similar their spatial alignment is and the more
superficially they are located. Pyramidal cortical neurons are the likely main contributors to EEG
potentials, because they are superficially located and spatially similarly aligned (perpendicular
to the cortical surface). The dynamics observed in the EEG signals is assumed to be caused by
interacting networks of such active cortical patches (Baillet et al., 2001).

2.1.2 Event-related potentials

Event-related potentials (ERPs) are characteristic reproducable EEG potential changes due to
internal or external stimulation. Internal stimulation may refer, e. g., to the semantic processing as
occuring during the perception of infrequent stimuli (Sutton et al., 1965, 1967), or to the preparation
of movements (Kornhuber and Deecke, 1965). In contrast, external stimulation is associated with
sensory input. Respective ERPs are reported for tactile, electric (Penfield and Boldrey, 1937), visual
(Spehlmann, 1965; Jeftreys and Axford, 1972) and auditory (Davis, 1939) stimulation. The study of
event-related potentials has widespread applications in clinical diagnosis and psychophysiology
(Fabiani et al., 2000), as well as brain-computer interfacing (Farwell and Donchin, 1988; Schreuder
et al., 2010; Blankertz et al., 2011) and mental state monitoring (Haufe et al., 2011b). A sequence of
event-related potentials occuring during induced emergency braking in a simulated driving task
is depicted in Figure 2.2 (a).

Event-related potentials exhibit a spatio-temporal signature that depends on the location of
the active cerebral current sources involved in the mental processing and the spatio-temporal
dynamics of source activition. The amplitude of ER potentials typically lies in the range of 1-20 uV,
which is approximately 1-2 orders of magnitude below the noise (cerebral background activity
and artifacts) level. To increase the signal-to-noise ratio, ERPs are usually estimated from multiple
repetitions of the same mental task by averaging the respective stimulus-locked EEG segments.
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Figure 2.1: Generation of the EEG signal (figure taken from Baillet et al. (2001)). Left: Excitatory postsynaptic
potentials at the apical dendritic tree cause its membrane to depolarize, by which means an electrical potential
difference between apical dendrite and cell soma on one hand and the basal dendrites on the other hand
is established. This causes two types of ionic current flows. Primary currents (blue) travel directly within
the neuronal dentritic trunk. Secondary currents (red) travel through the entire volume conductor and
are measurable by EEG, if the corresponding primary currents are strong enough. Center: Synchronously
active populations of pyramidal cortical neurons are the likely main contributors of EEG potentials due to
their superficial location and their homogeneous spatial orientation (perpendicular to the cortical surface),
which causes their primary currents to add. Right: Interacting networks of several active cortical patches
are the assumed main causes for the dynamics observed in the EEG signal.

2.1.3 Rhythmic activity

The EEG power spectrum exhibits a characteristic 1/ f (pink noise) shape, which is in many cases
superimposed by one ore more spectral peaks representing strong oscillatory activity in narrow
frequency ranges. Most notably, a peak within the alpha band (8 to 14 Hz), which sometimes co-
occurs with a peak at the doubled frequency range (the beta band, extending from 15 to 30 Hz), is
observed in most subject’s EEG. Alpha activity was recorded in one of the earliest EEG experiments
conducted by Berger (1938). Other physiologically relevant spectral bands include the delta band
(up to 4 Hz), the theta band (5 to 8 Hz) and the gamma band (30 to more than 100 Hz). The
various spectral peaks highly differ in their spatial distribution on the scalp, indicating that they
are generated by differing brain networks. Already the alpha band is known to comprise at least
two functionally distinct rhythms, which differ in their EEG topographies as well as the shapes
of their waveforms. While the so-called mu rhythm has a more central alignment, the (stronger)
alpha activity is observed in more parieto-occipital scalp sites.

The posterior alpha rhythm has been related to a number of behavioral markers including
vigilance (Schmidt et al., 2009; Schubert et al., 2009), fatigue (Simon et al., 2011) and the inhibitions
of actions (Klimesch et al., 2007). Most notably, alpha power is modulated by the amount of
relaxation of the visual system, and is strongest when the eyes are closed. The strength of the
mu rhythm, on the other hand, is related to the level of relaxation of the motor system, and
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Figure 2.2: (a) Grand-average (N = 18) event-related potentials (ERP) occuring during induced emergency
braking in a simulated driving task (figure taken from Haufe et al. (2011b)). Upper panel: ERP curves locked
to the brakelight onset of a preceding car. Lower panel: Topographical maps depicting how well emergency
braking and normal driving situations can be distinguished based on ERPs. (b) Average (N =1) event-related
desynchronization (ERD) in the mu band during motor imagery of the left hand (magenta color) and right
hand (left color); figure taken from Haufe et al. (2010b). Upper left panel: Spectrum at electrode C4 (right
hemisphere) depicting desynchronization in the mu band during left hand motor imagery. Upper right
panel: time course of log-power in the mu band depicting desynchronization during 3 s of left hand motor
imagery. Lower panel: topographical maps of power in the mu band (left two plots) and differences in mu
power between conditions (red and blue colors depicting the areas in which the power is stronger during
left and right hand imagery, respectively)

decreases when movements are observed, planned, executed or even only imagined (Pfurtscheller
and Lopez da Silva, 1999). Moreover, a dependence on the frontal gamma rhythm has been noted
(Grosse-Wentrup et al., 2011). In line with these findings, the “idling” hypothesis (see, e. g., Palva
and Palva, 2007; Sabate et al., 2011) states that EEG rhythms represent the default mode of the brain
in which large neuronal populations are synchronized in a “feedback loop”, while any recruitment
of neurons for task engagement decreases the number of “idling” neurons and hence decreases
the strength of the oscillation. This process is called (event-related) desynchronization (ERD,
Pfurtscheller and Lopez da Silva, 1999). Figure 2.2 (b) illustrates the phenomenon of event-related
desynchronisation during motor imagery of the hands.
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2.2 Notation and basic definitions

In this work we denote matrices by italic upper-case letters, vectors by bold lower-case letters
and scalars by italic upper- or lower-case letters. Vectors are understood to be in columnar shape
unless otherwise mentioned. The i-th entry of a vector x is denoted by x;, the i-th column of
a matrix A by a; and the entry in the i-th row and j-th column of a matrix A by a; ;. For time
series data, indexing may also be indicated using parentheses, i. e., x(t) denotes the value of the
multivariate times series x at time ¢, which can also be regarded as the ¢-th column of a matrix
X. The notation xg with set-valued S denotes a vector composed of the stacked entries x;, i € S.
The transpose of a matrix A is denoted by A" and the inverse (if it exists) of a square matrix is
denoted by A™!. A real-valued matrix A is symmetric if A = A” and antisymmetricif A = —-AT. An
M-dimensional vector of ones is denoted by 1, while a zero vector is denoted by 0. The M x M
identity matrix is denoted by Iys. The unit vector e; is a vector with all zeros except for e;; = 1. The
vectorization operator vec (A) = (a/,...,a;,)" stacks the columns of A vertically. The operator
diag(A) = (ay1,...,amm)" extracts the diagonal entries of the M x M matrix A. Analogously,
off(A) is a vector containing the off-diagonal terms of A. The trace of an M x M matrix A is
denoted by Tr{A} = ¥M_ a,, . The determinant of a square invertible matrix A is denoted by |A|.
The £,-norm of an M-dimensional vector x is defined by x|, = (X3, |x,u|?)? for p > 1.

A probability density function (pdf) f(x) describes the likelihood of an M-dimensional real-
valued continuous random variable x to occur at any point u € RM. If f is a Lebesgue-integrable
nonnegative function that is normalized such that [,z f(u)du=1,and if R c RM has nonzero
measure, then the probability of x to fall into R is Pr[x € R] = .5 f(u)du. The cumulative
density function (cdf) induced by the pdf f is cdf(u) = [ . f(u*)du*, where u* < uis true if
and only if u* < u,, holds for all m € {1,..., M}. The expected value of a multivariate random
variable x is defined by E[x] = yy = [ pu uf(u)du, while the covariance is defined by Cov[x] =
%y = E[(x - E[x])(x — E[x])"]. The empirical estimator of the expected value is the mean
ix = 1/T YL, x(t), where x(t) are realizations of x. An empirical estimator of the covariance
is 3y = 1/(T -1) XL [(x(t) - fix) (x(t) = Fix) "] The vector of empirical standard deviations is
defined by oy =/ diag(fx), where the square-root is applied entrywise. The probability density
function of a multivariate Gaussian distribution with mean py and covariance Z is given by

F0) = 274" exp (=5 (x — i) 2 (x - ) (2.1)

where exp(x) = e*, e ~ 2.7183 and 7 ~ 3.1415. The notation x ~ N (px, Zx) is used to indicate
that a random variable x is multivariate Gaussian distributed. A random variable x is standard
normally distributed if x ~ (0, I).

A complex number z has the form z = a + ib, where i = \/~1is the imaginary unit, and a = R(z)
and b = J(z) are the real and imaginary parts of z, respectively. The modulus of a complex number
z is defined as |z| = /(9R(z)? + J(2)?), whereas the power is defined as |z|* and the phase as
arg(z) = tan"'(J(2)/R(z)). The complex conjugate of z = a + ib is denoted by z* = a — ib.
The matrix of complex conjugate transposed entries of a complex-valued matrix A is called the
Hermitian and is denoted by A”. A matrix A is Hermitian if A = AH. A real-valued square matrix
A is orthogonal if A™' = AT. A complex-valued square matrix A is unitary if A™' = AT,

11
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2.3 Machine learning

2.3.1 A model of EEG data
The most general generative model of EEG data is given by
x(t) = As(t) + n(t), (2.2)

where x(t) € RM is the signal of M EEG electrodes recorded at time t, s(t) € RX is the activity of
K brain sources at time ¢ and A € RM*K is a matrix representing instantaneous source mixing due
to volume conduction. The noise term (t) comprises uncorrelated measurement (sensor) noise
as well as correlated noise, which could be due to non-task-related background activity or artifacts
as caused by, e. g., eye blinks or 50 Hz line noise. Notably, EEG activity of cerebral origin is always
correlated due to volume conduction, which is modeled here explicitly using the matrix A. The
variables A and s are not identifiable given the observations x without further assumptions. All
methods introduced later in this thesis are specifications of the general model (2.2) using various
assumptions on A, s and the model error .

2.3.2 Maximum-likelihood estimation

Setting A = const.,rank(A) = K, K < M and assuming 5(t) ~ A(0, 0%I)), the sources s are
uniquely defined by the maximum-Ilikelihood (ML) principle. Let the number of recorded samples
be T. Setting X = (x(1),...,x(T)), S = (s(1),...,s(T)) and E = (5(1),...,5(T)), we have
E = X — AS. The noise probability density as a function of the unknown parameters is called the
likelihood of the observations. In our case, the likelihood reads

L& 2\~ % M (1)

p(S) = H H (2710 ) exp —'”—2 ) (2.3)
t=1 M=1 20

The maximum-likelihood estimate is the variable assignment S that maximizes the likelihood.

However, it is equivalent and more convenient to obtain S as the minimizer of the negative

log-likelihood £(S) = —log p(S), i.e.,
TMlog (27102)

T M
. 2
argmin —M8MMM— + t
gmi 102 ?:1: M§::171m( )

S

arg mSin |vec (X - AS)|>

= arnginTr{(X -AS) (X -AS)}. (2.4)

This derivation shows that, as a result of assuming a Gaussian noise model, the maximum-likelihood
estimate coincides with the so-called ordinary least squares (OLS) estimate, which minimizes the
sum of the squared error terms. Note that this estimate is independent of the noise variance ¢
The solution is obtained by setting the first derivative to zero

BET(S) =2ATAS-2A"X =0, (2.5)

from what follows that X
S=(ATA) ATX. (2.6)

12
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2.3.3 Regularization

When the number of observations is small compared to the number of variables, the maximum-
likelihood estimate might overfit, i. e., fit the non-systematic components (noise) too. For example,
if A is square and K = M, the OLS estimate of $ in the above example is S = A™' X and the model
error E = X — AS is zero regardless of the presence of noise. Overfitting can be counteracted by
imposing constraints that limit the complexity of the solution. This technique is called regulariza-
tion. In the underdetermined case K > M, the OLS/ML estimator is not even uniquely defined.
Here, regularization does not only prevent overfitting; it is rather a necessity in order to obtain a
well-defined estimator.

While there are many ways to perform regularization (Engl et al., 2000), we here focus on
approaches that add a regularization term to the negative log-likelihood. The purpose of such
a regularizer is to penalize variable assignments with high complexity. One important family
of complexity measures are norms. The combination of a least squares error measure and a
regularizer that measures the squared ¢,-norm of linearly transformed variables is called Tikhonov-
regularization (Tikhonov and Arsenin, 1977). A Tikhonov-regularized estimate of the sources
under our model is given by

S = argmsinHvec(X—AS)H;+/\Hvec(1"S)||§

= (ATA+ATTT)ATX, (2.7)

where the parameter A controls the relative influence of the error and regularization terms. Note
that A is proportional to the (typically unknown) noise variance o2, which hence does enter
the estimation here. The matrix I' € RX*K is used to encode desired properties of the source
variables. For example, if I = I, sources with minimal energy are sought. This variant is known
as ridge regression. If spatial relations between the sources exist, I' can enforce, for example, spatial
smoothness of the sources. This is achieved using a matrix of spatial second derivatives, called
the discrete Laplace operator (see also Section 2.7). It is also possible to enforce constraints in the
spatio-temporal domain by considering the more general Tikhonov-regularized solution

—_

vec(S) = vec(argmsinHvec(X)—Kvec(S)H;+)tvaec(S)Hi)
= (ZTZ+AFTF)_1ZT vec (X) , (2.8)

where T € RKT*KT g a spatio-temporal filter matrix and A = I ® A.

The Tikhonov-regularized estimate has an interpretation as the maximum a-posteriori (MAP)
estimate in a Bayesian sense, since it is the most probable variable assignment assuming a zero-
mean Gaussian prior probability distribution of the (linearly transformed) variables (Berger, 1985).
Similarly, the regularizers discussed in the following can be interpreted as MAP estimates according
to different prior distributions. If the £,-norm in the regularizer is replaced by the ¢;-norm, sparsity
of the solution can be achieved. For example, the so-called lasso (Tibshirani, 1996) estimate

S-= argmsin |vec (X — AS) |5 + A| vec(S) |1 (2.9)

contains (many) zero entries. The use of the £;-norm here corresponds to imposing the Laplace
distribution as a prior on the source variables. The Laplace distribution is a super-Gaussian

13
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distribution, which means that it has “heavier tails” (more probability mass far away from the mean)
than the Gaussian distribution. A generalized lasso regularizer A|T vec (S) |, yields solutions
which are sparse after linear transformation, which can be used, for example, to estimate piecewise
homogeneous functions (Kim et al., 2009).

If the variables have matrix structure, this can be taken into account using dedicated regularizers.
One example is the spectral norm of a matrix, which is the ¢; norm of its singular values (see
Section 2.8). Penalizing the spectral norm leads to sparsity of the singular values and hence general
low-rank matrix estimates (Recht et al., 2010). Another example is the ¢ ,-norm, which is defined
as the sum of the ¢;-norms of the columns of a matrix

1Sz = [Isi]2 - (2.10)
i

The use of the ¢ ,-norm (or group lasso) regularizer leads to columnwise sparsity. That is, the
columns of the estimated matrix S are either jointly zero or jointly nonzero (Yuan and Lin, 2006).
Note that ¢; -norm penalties are not restricted to matrices but can be applied to any set of variables
with group structure. Geometric arguments for the sparsifying properties of lasso and group lasso
regularizers are given in Tibshirani (1996) and Yuan and Lin (2006).

2.3.4 Model selection

Penalized models have at least one so-called hyperparameter (such as 1), which adjusts the degree
of regularization. To prevent overfitting, we are interested in choosing hyperparameters such that
the estimated model generalizes well in the sense that it reasonably explains data that has not been
used for the estimation (Hastie et al., 2001; Bishop, 2007). This selection process can be regarded
as a maximization of the out-of-sample likelihood.

Cross-validation (CV) is one way to obtain an estimate of this out-of-sample likelihood and by
this means to select hyperparameters. In k-fold cross-validation, the dataset is split into k parts.
In each fold, the model is fitted on k — 1 (training) parts and the likelihood is evaluated on the
remaining (test) part. The procedure is carried out for different assignments of the hyperparameters.
The assignment that maximize the average test likelihood is selected.

If the data samples are independent and identically distributed (i.i.d.), cross-validation provides
an unbiased estimate of the out-of-sample likelihood. If, however, dependencies exist, their
influence should be mitigated by a suitable splitting scheme. For example, if the data has temporal
structure, it is essential to ensure that the training samples temporally precede the test samples.
Such issues are discussed in Lemm et al. (2011).

Cross-validation is not the only strategy for hyperparameter selection. Another popular ap-
proach, which, however, works only for a single regularization parameter, is to find the corner of
the L-curve, which is a log-log plot of the model error vs. the regularization term (Hansen, 1992).
Other approaches involve the evaluation of the Bayesian Information Criterion (BIC, Schwarz,

>«

1978) or Akaike’s “an information criterion” (AIC, Akaike, 1974).
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2.4 Statistical testing

When data are analyzed empirically, it is important to assess whether the observed effects are
systematic or only due to random fluctuations. This is done by statistical hypothesis testing. The
common practice is to formulate the null hypothesis that no systematic effect is present. Using
assumptions on the distribution of a test statistics derived from the collected data, it is then
calculated how “likely” this null hypothesis is. The p-value is the probability of obtaining the
observed test statistics or a more extreme one given the null hypothesis. If the p-value is smaller
than a certain predefined significance level, the null hypothesis is rejected and the observed effect
is considered “significant”.

If N independent samples are available, the true (population) standard deviation o, of which is
unknown, the statistics t = fi /0x/(N) follows Student’s univariate ¢-distribution with v = N — 1
degrees of freedom (df), where i, is the sample mean and 0, the sample standard deviation (Gosset,
1908). This is used by the one-sample t-test to test whether the mean of the population distribution
is different from zero. The p-value is derived by evaluating the cumulative distribution function of
the t-distribution, which is denoted by cdfi(t, v). The p-value according to a two-sided test (testing
for both positive and negative deviation from zero) is p = 2cdf (|t v).

In some cases we are also interested in testing whether the means of two population distributions
differ. If the samples are paired, that is, if each experiment yields one sample from each distribution,
the one-sample t-test can be performed on the inter-population differences. If there is no pairing,
the two-sample t-test is appropriate. Assuming equal, but unknown, population standard deviations
ox, = 0x, and Nj + N, independent samples, the test statistics

T — 10 Ny -1)02 + (N, - 1) 7}
— (#xl sz) ,Where 52 :( 1 ) X1 ( 2 ) X2 (2‘11)
1 1 P N+ N, -2

SV TN,

t

and 0y, ), are the sample standard deviations, follows a t-distribution with N; + N, — 2 degrees of
freedom. The p-value can be obtained from the cdf of this distribution.

When working with neural signals with high inter-subject variability, it is often desirable to
obtain a grand-average p-value for the entire subject population. To this end, it is convenient
to transform the subjects’” individual t-scores (following different t-distributions depending on
the numbers of samples) to standard normally distributed z-scores using the transformation
z = cdf,"(cdfi(t,v)) where cdf,’ is the inverse of the cdf of the univariate standard normal
distribution. That is, the obtained z-score leaves the p-value unchanged. The z-scores related to
K subjects can be combined to a grand-average z-score z = (z; + 25 + ---zx ) /\/K, which is also
standard normally distributed. A grand-average p-value for the entire population of subjects can
be derived from Z using cdf;.

In this thesis, an effect is considered significant if p < 0.05, which corresponds to |z| > 2. However,
when many statistical tests are carried out simultaneously (e. g., when multiple hypotheses are
tested in exploratory analyses), the probability of obtaining spurious significant results just by
chance is high. In this case, p-values must be corrected. The most simple way to do this is the
Bonferroni procedure (Bonferroni, 1936). The Bonferroni-corrected p-value is the original p-value
multiplied by the number of tests (and thresholded to 1).
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2.5 Spectral decompositions

2.5.1 The discrete Fourier transform

Electroencephalographic data typically contains several rhythmic components with narrow-band
frequency signatures, which are believed to be linked to “idling” of certain brain functional
networks (see Section 2.1). In order to extract these oscillations and to distinguish them from
artifacts, it is helpful to work with a spectral representation of the data. This can be achieved by
means of the discrete Fourier transform (DFT), which decomposes the data into a sum of sinusoids
of differing frequencies and variable delays. The DFT spectrum of a finite discrete univariate time
series x(t),t=1,..., T is given by

1 T-1

%’(f):ﬁ;x(t)exp(—%ft) . (2.12)

~

The function value X( f) is a complex number, the modulus of which encodes the strength of the
oscillation at frequency f, whereas its phase is the delay of that wave relative to the start of the time
series. The DFT may be evaluated for any real-valued frequency f but it is sufficient to evaluate all
integers between 0 and T — 1 in order to have a complete representation of the signal. To see this
consider that the DFT is a linear operation that can be written as a matrix multiplication X = Fx,
whereX = (X1,...,X7)" and x = (x1,...,x7)". For frequencies f = 0,..., T —1, F is a unitary
T x T matrix. This implies that the transformation preserves energy, i.e., [X||2 = | x> and that the
inverse transformation exists and is defined by F~! = F,
The empirical cross-spectrum S of two time series x; and x; is defined by

sij(f) = %kz_:fi,k(f)*fj,k(f) ; (2.13)

which is a mean taken over K repeated simultaneous measuremens of x;(f) and x;(f). Diagonal
entries s; ; (f) of the cross-spectrum correspond to the mean power of x; (), whilefor i # j, s; ;(f)
is a general complex number, the amplitude of which is an estimate of the combined strength of
the two signals and the phase of which is an estimate of their phase difference.

2.5.2 The autoregressive model

The linear autoregressive (AR) process is the most simple model for the dynamics of a discrete
time series (Brockwell and Davis, 1998). It assumes that the present state of a time series can be
approximated by a linear combination of its past P samples, i. e., x(t) = 25:1 b(p)x(t—p)+e(t),
where, ¢(t) is noise and b(p) are scalar coefficients describing the influence of x(t — p) on x(t).
Autoregressive processes are driven by nonzero noise terms, which are also called innovations.
Typically, the innovations are assumed to be Gaussian distributed but this is no general requirement
(Haufe et al., 2010¢; Hyvirinen et al., 2010). The multivariate AR (MVAR) model

P
x(t) = ) B(p)x(t - p) +&(t) (2.14)
p=1
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extends the univariate model to multiple time series. Here, B(p) are matrices, the off-diagonal parts
bij(p),i # j of which describe influences between different time series.

There exist numerous algorithms for estimating the parameters of AR models (Brockwell and
Davis, 1998; Schlogl, 2006). If T is large enough, a maximum-likelihood approach is appropriate.
The matrix E = (&(P +1),...,&(T)) of innovations can be expressed as E = X — BX, with
B = (B(1),...,B(P)), X = (x(P +1),...,x(T)), X = (Xy,...,Xp)  and X, = (x(P +1-
P),-...x(T = p))". Assuming a Gaussian distribution for the innovations, the ML solution is
obtained by ordinary least squares regression analogous to (2.6). The ML/OLS solution can be
obtained iteratively for growing P, which is the idea of the ARFIT algorithm (Neumaier and
Schneider, 2001). When T is small compared to M, it is appropriate to regularize, which could be
done using any of the regularizers discussed in Section 2.3, and more. It is possible to estimate the
frequency spectrum of the data by applying the Fourier transform to the vectors of estimated AR
coefficients (b; j(1),...,b; j(P))". This is called the parametric approach to spectrum estimation
as opposed to applying the Fourier transform to raw data.

A reasonable AR process must be stable in order to ensure stationary dynamics. To derive a
condition for stability it is helpful to consider that an AR process of order P can be equivalently
written as an order 1 process X(t) = Bx(t — 1) + £(t) with

1§=[ B ] , (2.15)
Invep-1) 0

x(t) = (x(8)7,....,x(t=P+1)")" and &,,(t) = 0 for m > M. The system is stable if and only if
the largest eigenvalue of B is smaller than one. Otherwise, the innovation noise is amplified in
each time step, leading to divergence. Stability must be ensured in AR estimation as well as for
randomly drawn AR matrices that are used to generate artificial data.

2.5.3 Spectral filters

If signals of interest and noise have different frequency characteristics, it is beneficial to work only
in the frequency range of the signal of interest. A time-domain representation of the signal in the
frequency range of interest can be obtained by spectral filtering, or bandpass filtering if the frequency
range is contiguous. A simple spectral filter can be implemented using the DFT by transforming
the data into the frequency domain, setting the Fourier coefficients corresponding to undesired
frequencies to zero and applying the inverse DFT. However, a DFT-based filter always uses all T
measurements for estimating the filtered signal at time t. As one consequence, the DTF filter is not
causal, that is, it uses information that is “in the future”. For most types of EEG analysis, non-causal
filters are either not suitable or not practical. An alternative are infinite impulse response (IIR)
filters of the form X(t) = aio (Z;{O byx(t—q) - Z{?:l aq§(t — q)) where X(t) is the filtered signal,
Q is the filter order, b, and a, are the filter coefficients and x(t) = x(t) = 0 for £ < 1. There exist
numerous ways of optimizing the filter coefficients for a particular frequency band of interest.
The Butterworth filter is designed to damp all desired (passband) frequencies equally little while
maximally suppressing the remaining (stopband) frequencies (Butterworth, 1930).
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2.6 Measures of time-lagged effective connectivity

While there are multiple ways to define effective connectivity, the most widely accepted definition
is based on a temporal argument: the cause must precede the effect. Respective approaches
are often subsumed under the term Granger-causal modeling, although the technique that is
known as Granger causality is only one way to measure time-lagged influence. In this section,
we introduce popular measures of time-lagged effective connectivity, including various Granger
causal approaches and the phase-slope index.

2.6.1 Granger causality based on model errors

Given a multivariate time series x(¢), an influence of x; on x; according to the original Granger
causality approach (Granger, 1969) is estimated as follows. A multivariate AR model is fitted for the
the prediction errors of the full model by ¢™! and those of the reduced model by £, the Granger
score GC describing the influence of x; on x; is defined as the log-ratio of the mean-squared errors
(MSE) of the two models with respect to x;. L. e.,

Lo [0
S pa[e (0]

Note that this definition, which is based on the ratio of prediction errors, is independent of the
scale of the time series x,,,1 < m < M. The Granger score defines a so-called causality or effective
connectivity graph. Time series x; is defined to Granger-cause time series x; if gc; ; is (significantly)

greater than zero. The pairwise net flow is obtained by antisymmetrizing GC via g, = gc; ; — 8¢, ;.
Time series x; is the net driver of time series x;, if gc‘l.‘e]‘. is (significantly) greater than zero, and the
net receiver, if gci; is (significantly) smaller than zero. These definitions apply analogously to other

causal graphs defined in the following.

(2.16)

gCi,j = 108

2.6.2 Granger causality based on AR-coefficients

One could argue that a Granger-causal dependence of time series x; on time series x; is already
sufficiently evidenced if any of the P coefficients b; j(p) of the MVAR model fitted on the full set
of available time series is (significantly) different from zero. This is the basic consideration for a
second class of Granger-causal approaches, which are defined directly based on the AR coefficients
rather than prediction errors. While some of these methods operate in the time domain (Valdés-
Sosa et al., 2005; Marinazzo et al., 2008), we here introduce two popular approaches assessing
Granger-causal influence per frequency by evaluating the discrete Fourier transform of the MVAR
coefficients across the time lag dimension (it is also possible to evaluate oscillations in between
the DFT frequency bins). The directed transfer function (DTF, Kaminski and Blinowska, 1991) at
frequency f is defined as
~ 2
dtf (B, )
W) = 50— .
5 |(B),,, ()

(2.17)
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2.6 Measures of time-lagged effective connectivity

A related measure is partial directed coherence (PDC), which we define here as the squared absolute
value of the original (complex-valued) quantity introduced in Baccald and Sameshima (2001).

That is,

B 2
bi,;(f)
VBB
where E( f) = Iy — B(f) is an estimate of the strength of the information flow from x; to
xj. Both DTF and PDC are normalized to take values from the interval [0,1], but the nor-
malization conditions differ. While DTF is normalized such that each time series has unit in-

flow, i.e., ¥;dtf; j(f) = 1, PDC is normalized such that each time series has unit outflow, i.e.,
2 ;jpdc; ;(f) = 1. Another difference between the two is, that DTF also reveals indirect influences

pdci,j (f) = (2.18)

not contained in non-vanishing b( p);, ; through the use of inverse MVAR matrices B7(f). It shares
this property with the original Granger causality approach. Partial directed coherence, which
operates directly on the (Fourier-transformed) AR matrices, only includes direct connections.

2.6.3 The phase-slope index

Another popular measure of interaction at a specific frequency is coherency, a generalization of
correlation in the frequency domain (Nunez et al., 1997, 1999). Coherency (denoted by CHY)
is a complex-valued measure describing the linear relationship of two time series at a specific
frequency. It is defined as the normalized cross-spectrum

si,j(f) ‘
(sii(f)sii()) .

Coherence (denoted by CH) is the absolute value of coherency, i.e., ch; j(f) = [chy, ,(f)|. Itis
often used to quantify the strength of functional connections. Since it is independent of the phase
difference of the two oscillations, coherence makes no distinction between instantaneous (zero-lag)
correlation and truly time-delayed (cross-) correlation. Instantaneous correlations, however, do not
reflect time-lagged interactions and can occur for trivial reasons. Especially for EEG data, channels
are highly correlated due to volume conduction in the head. These instantaneous correlations
tend to dominate coherence. As a remedy, it has been proposed to look at the imaginary part of
coherency only rather than at the absolute value (Nolte et al., 2004). This is motivated by the fact
that the imaginary part of the cross-spectrum (and coherency) is zero if the phase difference (the
phase of s; j(f) rsp. chy; j (f)) is zero. Thus, by looking at the imaginary part only, instantaneous
effects are ignored.

In general, a positive imaginary part of chy; ; (f) indicates that z; is earlier than x; and informa-
tion appears to be flowing from x; to x;. However, “earlier” and “later” are ambiguous. For example
at 10 Hz being 10 ms earlier cannot be distinguished from being 90 ms later. In order to resolve
this ambiguity, the information at different frequencies can be aggregated within a frequency
band of interest. The idea behind the phase-slope index (PSI, Nolte et al., 2008) is that the phase
difference between sender and recipient increases linearly with frequency, i. e., the slope of the

(2.19)

chy, (f) =
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phase spectrum is positive. Consequently, denoting by F a contiguous set of frequencies and by
0 f the frequency resolution, PSI is defined as

yij=3 ( 3" chychy, (f + 8f)) . (220)

feF

Note that, in the original formulation, PSI is divided by its estimated standard deviation in order to
assess statistical significance. The issue of statistical testing is, however, considered separately here.
From the Hermitian property of the cross-spectral matrices it follows that PSI is antisymmetric
with y; j = —y; ;. Hence, PSI already measures net flows. Using the same property, it can be shown
that PSI exactly flips its sign when being applied to temporally reversed data. Moreover, due to the
use of the normalized cross-spectrum, PSI is invariant with respect to rescaling of the data.

2.7 Inverse source reconstruction

Recall that the general model of EEG data is x(t) = As(t) + n(t) (see Section 2.3) with generally
unknown source time series s(t) and mixing matrix A. In reality, the matrix A describes a physical
process, namely the propagation of the brain electric currents from the source regions to the EEG
electrodes. If a suitable physical model of the head exists, it can be used to compute the mixing
patterns of idealized brain sources. This step is called forward modeling and leads to an estimate
of A. Inverse source reconstruction is concerned with the estimation of s given x and A, which
amounts to solving the so-called electromagnetic inverse problem (Baillet et al., 2001; Nunez and
Srinivasan, 2006).

2.7.1 The EEG forward model

We here describe the steps needed to obtain the matrix A via forward modeling. The first step
towards this is the definition of a model of the head as a volume conductor. We consider “realistic”
models, which account for different conductivities of the various tissues, as well as arbitrarily-
shaped tissue compartments. Precisely, the realistic model consists of three nested shells represent-
ing (from inner- to outermost shell) brain, skull and skin. Within each shell, homogeneous electric
conductivity is assumed. The geometry of the three shells is acquired from anatomical magnetic
resonance (MR) images of an individual head. These are segmented into the three compartments
based on the grayscale value. The boundaries of the three compartments are triangularized and
stored as 3D meshes.

The EEG potential at time ¢ (omitting the time index in the following) is a scalar function
x : § — R describing the potential difference between a point v € S ¢ R? on the border of the skin
shell S and a reference point v,f € S. In practice, a set of M electrodes (plus one reference) is used,
the locations Vief, Vi, . . ., Vas of which are known and remain constant during the recording. The
observable EEG potential may therefore be summarized as x = (xy,...,xp)" with x,,, = x(v;,).
The reference electrode is commonly placed on the nose or the linked mastoids. For EEG electrodes,
the standard positioning scheme is the 10-20 system, which places electrodes along geodesic lines
with 10 (20) degrees offset relative to inion, nasion and mastoid reference points. The original
10-20 system (Klem et al., 1999) defines M = 19 electrode positions, but it has been extended
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2.7 Inverse source reconstruction

to up to 256 electrodes (Sharbrough et al., 1991; Oostenveld and Praamstra, 2001). Standard
electrode positions can be easily registered within a head model by, for example, using chemical
indicators that mark the reference points in the anatomical MR images. If electrodes are placed in
nonstandard positions, it is useful to acquire their exact coordinates using 3D tracking hardware.

The primary cerebral current density (at time t) is a vector-valued function (vector-field)
s : B - R’ which describes the primary electrical current at each location u € B ¢ R® in-
side the brain shell. The forward mapping describes the functional dependence of the EEG electric
potentials (due to secondary currents) on the primary current density. For frequencies below 1kHz,
all involved current flows are Ohmic, and the quasi-static approximation of Maxwell’s equations
holds (Sarvas, 1987; Baillet et al., 2001). This leads to

X = -/:IEB a(u)s(u)du, (2.21)

where the electric lead field a : B — RM x R? is a general nonlinear function that is specific to
the volume conductor and the location of reference and EEG electrodes. The tuple (u,s(u))
defines a so-called dipole, which is an idealized electrical source of infinitesimal spatial extent at
position u with current moment vector s(u). The EEG electric potential caused by the single dipole
(u,s(u)) is given by a(u)s(u). While a(u) is generally hard to compute, it can be evaluated for
certain types of volume conductors. In spherical head models, the solution is analytic (Baillet et al.,
2001). For the realistic model discussed here the method of Nolte and Dassios (2005) provides a
numerical solution based on semi-analytic expansions of the lead fields. An interesting approach
is provided by Stahlhut et al. (2010). By adapting the head geometry to empirically recorded data
using Bayesian reasoning, their approach potentially obviates the need for individual head models.

If the integral in (2.21) is replaced by a finite sum, a discretization of the current density is
obtained, which leads to a computable global approximation of the EEG forward mapping. There
are two major strategies for identifying the parameters of the involved dipolar sources. Dipole fits
jointly estimate location u and current moment parameters s(u) of a small number of dipoles,
while distributed inverses estimate only the moments of a large number of dipoles with fixed
locations. While there also exist methods that estimate the location of the sources based on
subspace criteria (Schmidt, 1986; Mosher and Leahy, 1999) or adaptive spatial filters (Van Veen and
Buckley, 1988; Van Veen et al.,, 1997; Sekihara et al., 2005), we focus on dipole fits and distributed
source imaging in the following.

2.7.2 Dipolefits

The N dipole model assumes that the EEG electric potential is generated by N pointlike activities,
while the largest part of the brain is electrically silent (Scherg and Ebersole, 1993; Baillet et al.,
2001). Denoting by u,, and s,, = s(u,,) the parameters of the n-th dipole, the approximate forward
mapping reads x = ¥ a(u,)s,. If 6N is small compared to M, the parameters can be found by
maximum-likelihood. Assuming uncorrelated Gaussian sensor noise, the associated cost function

reads
2

min (2.22)
Uy,Sy

N
X - Za(un) Sy
n=1

2
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For time series, the N dipole model is easily extended to x(¢) = XN a(u,)s,(t), which leads
to a similar cost function. Note that in this model the dipole moments depend on ¢, since they
describe the neuronal dynamics. The dipole locations are assumed to be constant, which encodes
the assumption that the active brain areas do not move over time, which is reasonable regarding a
potential subsequent effective connectivity analysis of the source brain regions. A local minimum
of (2.22) can be found by means of nonlinear optimization. However, due to the nonconvexity
of this function, it cannot be guaranteed that the global minimum is found. Indeed, for N > 2,
dipole fits tend to get trapped in local minima easily.

2.7.3 Distributed inverse imaging

Assuming constant locations uy, . . . , uy;, the discrete forward model becomes the linear function
N

X = Z Ayus, = As, (2.23)
n=1

where A, =a(u,),s=(s/,...,sy,)  and A = (A}, ..., Ay). The large matrix A is called the lead
field matrix. Notably, it is this equation that motivates the basic linear model (2.2) of the EEG
introduced in the beginning.

The idea behind distributed inverse imaging is to model dipolar sources at many locations within
the brain (or alternatively, only in the cortical areas), and to estimate the activity at those locations
jointly by inverting the linear system (2.23). In most cases, the dipoles are arranged in a grid,
where each dipole represents the activity in a cubic voxel. The inter-voxel distance is denoted by
h. The number of sources do not have to be specified a-priori. Rather, the local maxima of the
current distribution are interpreted as the active (source) regions. Naturally, the number of voxels
N is large (in the thousands) when £ is small. As a result, (2.23) is highly underdetermined, so
that the maximum-likelihood estimator is not uniquely defined. To illustrate how severe the lack
of information is, consider that the space of exact solutions to (2.23) is (3N — M)-dimensional,
while vectors that are not solutions span only an M-dimensional space. In a typical scenario with
M ~ 100 and N ~ 2000, the solution space is thus orders of magnitude more high-dimensional. In
this setting, it is crucial to regularize the maximum likelihood solution by introducing additional
penalties. Regularization then serves three purposes. Besides resolving the ambiguity of the ML
estimator and preventing overfitting, it can also be used to constrain the solution to be consistent
with prior domain knowledge. Note that this latter point is particularly important for the solution
of inverse problems, where the goal is not only to achieve good generalization performance but
also to interpret the model parameters.

Historically, there exist two contradicting assumptions on the spatial distribution of brain
sources: smoothness and sparsity. At least one of these assumptions is (directly or indirectly)
encoded in virtually any distributed source imaging method. Smoothness of the current density is
motivated by the argument that neighboring voxels are likely to be functionally related and hence
to be co-activated. The sparsity assumption, on the other hand, is based on the argument that
cognitive processing related to a specific task should only activate a small part of the brain. This
does not imply an overall sparse current density in general, since there might be non-task-related
activity (brain noise) in other parts of the brain. However, the argument holds for averaged data,
in which brain noise cancels.
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2.7 Inverse source reconstruction

Low resolution tomography (LORETA)

Smoothness is explicitly enforced in the low resolution tomography (LORETA) estimate (Pascual-
Marqui et al., 1994)

1% = argmin ||x - As|3 + 1| (I3 ® D**) Ws|3 (2.24)
N

by means of the N x N Laplace operator D*°%, which measures the sum of the discrete second
derivatives of the current density in all three spatial directions. The entries of D"°® are given by

1 -6 Hu,-—uj||2:0
d?f}R =02 1 Jui-ujf,=h (2.25)

0 else.

The matrix W is a full-rank depth compensation matrix, the purpose of which is explained below.
The LORETA problem is an instance of Tikhonov-regularization and can be solved analytically
(see Section 2.3). The solution is the smoothest current density that explains the data to a certain
extent (adjusted by 1). The Laplacian utilized by LORETA employs vanishing boundary conditions
for the sake of invertibility, which leads to uniqueness of the LORETA solution. As a result, the
activity towards the brain boundary as estimated by LORETA always approaches zero, which is a
disadvantage given that superficial (i. e., cortical) sources are assumed to be the main generators
of the EEG signal.

Pascual-Marqui et al. (1994) propose transforming the lead field matrix and the data into a
common average reference before performing the inverse calculation, which is reasonable especially
if the true position of the reference electrode and the position assumed in the head model do
not match. Common-average-reference-transformed data and lead field matrices are obtained by
A < HA and x < Hx, where the transformation matrix H is defined by H = Iy —117/171.

The weighted minimum-norm estimate

Interestingly, the weighted minimum-norm (WMN) estimate (Jeffs et al., 1987; Ioannides et al,,
1990; Hamaldinen and Ilmoniemi, 1994)

VMY = argmin |x - As||3 + 1| Ws|3 (2.26)
N

tends to be very blurred (smooth), although no spatial filtering operator is involved. The rea-
son for this “implicit” smoothness is that WMN (just as LORETA) is an instance of Tikhonov-
regularization, which implies that its solution can be expressed as a linear combination of the
EEG data (see Section 2.3). As a result, linear methods are characterized by a low spatial reso-
lution of the source estimates, which means that the estimated current density can (at best) be
a spatially lowpass-filtered version of the true source distribution (Grave de Peralta-Menendez
and Gonzalez-Andino, 1998). The occurrence of side-lobes (sometimes called “ghost sources”) is
another phenomenon occuring with linear methods (Matsuura and Okabe, 1995).
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The minimum-current estimate

Sparsity-inducing inverse methods promise spatial resolution in the range of the grid-size h, since
their estimated active regions consist of single isolated voxels. The original sparse inverse solution
is the weighted minimum-current (MC) estimate (Matsuura and Okabe, 1995)

V¢ = argmin |x - As|3+ A|Ws|; . (2.27)
S

Another well-known sparse inverse method is the FOCUSS (Gorodnitsky et al., 1995) approach.
The FOCUSS solution is defined algorithmically as the iteratively reweighted £,-norm-regularized
solution. It has been shown by Wipfand Nagarajan (2009) that this corresponds to (approximately)
minimizing the €y-quasinorm of the sources.

Depth compensation

The matrix W that occurs in the cost functions of LORETA, WMN and MC is called a weighting or
depth-compensation matrix, because its purpose is to counteract a location bias in the estimation.
It is known that for W = I3y all these methods tend to estimate superficial sources as a result of
the fact that the measurable electric potential falls oft quadratically with the distance between
source and sensor, which implies that deep sources must be stronger than superficial sources in
order to reach similar explanatory power. Since, however, the regularization terms in (2.24), (2.26)
and (2.27) effectively penalize the source strengths (as a side-effect of measuring smoothness or
sparsity), solutions with all-superfical sources are often selected instead of deep (but smooth/sparse)
sources. As a remedy, W is used to increase the cost of superficial sources. Often, W is chosen to
be diagonal with entries w;; = ||a; |, (Jeffs et al., 1987; Ioannides et al., 1990; Pascual-Marqui et al.,
1994; Matsuura and Okabe, 1995).

Standardized LORETA

A depth-compensation is implicitly performed in the standardized low resolution tomography
(sLORETA, Pascual-Marqui, 2002) approach, which employs post-hoc standardization of the
conventional (unweighted) minimum-norm solution (i. e., the solution of (2.26) with W = I3y).
Using the common-average-reference-transformed lead field matrix A, Pascual-Marqui (2002)
derive the covariance estimate

V=AT(AAT + M)A (2.28)

of the minimum-norm solution, which is used to compute the voxel-wise standardized source
power estimate

Pu= (G VIEM), (2.29)

where V;, is the n-th 3 x 3 block on the diagonal of V (the intra-voxel covariance at the n-th voxel).
It can be shown, that SLORETA has “zero location bias”, in the sense that the estimated source
power P has a global maximum at p,,, if there is no noise and only one underlying dipolar source
at voxel n (Pascual-Marqui, 2002).
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2.8 Blind source separation

2.8 Blind source separation

Inverse source reconstruction is a powerful approach, by which it is possible to reconstruct not
only source activity but also respective source locations. However, it relies on the availability of an
accurate forward model, which usually requires an individual head model in combination with
exact electrode positions (although Stahlhut et al. (2010) devise an approach for adjusting the head
model to the individual subject based on recorded data). Instead of using a possibly inaccurate
forward model and carrying out its ill-posed inversion, the mixing matrix can also be estimated
jointly with the source time series in a completely data-driven way. This approach is called blind
source separation (BSS). Basically any matrix factorization can be regarded as a BSS technique.
However, not all of them deliver meaningful estimates of the source and mixing matrices given the
physical restrictions of the EEG signal generation; and only an even smaller fraction of methods is
suitable for source connectivity analysis.

2.8.1 Principal component analysis
Principal component analysis (PCA) is an eigendecomposition

> = ADA’ (2.30)

of the empirical covariance matrix ¥ of the data x(t), where A ¢ RM*M is orthogonal and D €

RM*M g diagonal with d; > d, ..., > dy m. The columns of A are called eigenvectors in PCA
terminology. In principle, they could be regarded as source mixing patterns, and the transformed
time series s(t) = A"x(t) could be interpreted as source time series, the variance of which is
encoded in the diagonal entries (eigenvalues) of D. Notably, the time series s(¢) are uncorrelated,
which can be seen from the fact that their covariance matrix AT2A = D is diagonal.

While uncorrelatedness of the source time series is reasonable to assume for EEG sources
originating in different parts of the brain, orthogonality of the mixing patterns cannot generally be
assumed for different brain sources. For that reason, PCA-filtered time series are not commonly
interpreted as source estimates. However, PCA is a useful dimensionality-reducing preprocessing
due to the fact that it provides uncorrelated components which are ordered by variance. Denoting
by Ak, K ={1,...,K} the first K columns of A, (corresponding to the K largest eigenvalues), the
projected data A} x represents the full-rank data up to a reconstruction error of

T M

> Ix(t) ~ AxAgx|? = 3 dik, (2.31)
t=1 k=K+1

and there is no K-dimensional subspace in which the data can be represented with lower error

(Pearson, 1901). The question of optimally selecting the number of principal components is

discussed in Hansen et al. (1999).

Note that a PCA decomposition of X is strongly related to a singular value decomposition (SVD)
of the data matrix X. In particular, the eigenvectors of X are identical to the singular vectors of
X, and the eigenvalues of X are the squared singular values of X. The concept of PCA/SVD has
been generalized to multi-way data (tensors), which is helpful for decomposing time-frequency
EEG data, or if there are multiple trials of EEG activity recorded under the same experimental
condition (Merup et al., 2006, 2008).
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2.8.2 Independent component analysis

Diagonalization of covariance matrices as performed by PCA corresponds to decorrelation of
the data. For multivariate Gaussian distributed data without time structure this is equivalent to
removing any dependence between the source time series: the distribution of the sources factorizes
into univariate Gaussians. For non-Gaussian source signals, however, decorrelation is not sufficient
for achieving independence. Since, from a macroscopic perspective, many cognitive processes
appear to occur independently of each other, it is therefore natural to search for “maximally
independent” sources, which is the idea of independent component analysis (ICA, Molgedey and
Schuster, 1994; Cardoso and Souloumiac, 1996; Belouchrani et al., 1997; Ziehe and Miiller, 1998;
Hyvirinen and Oja, 2000; Hojen-Serensen et al., 2002; Koldovsky et al., 2006).

Statistical dependence cannot be measured as such, for which reason practical ICA implemen-
tations fo