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Abstract

Due to its temporal resolution in the millisecond range and other compelling properties such as

noninvasiveness, portability and relatively low costs, electroencephalography (EEG) is the tool of

choice for studying brain dynamics in humans. However, any neurophysiological interpretation of

EEG data is hindered by the fact that the signals related to electrical activity in source brain regions

are spread across the EEG sensors due to a process called volume conduction, the inversion of

which is an ill-posed inverse problem. In the EEG-based analysis of directed information flow

between brain regions, volume conduction poses a serious challenge, since multiple active sources

have to be assumed, the contributions of which, however, mix into all EEG sensors.

With this thesis we contribute to the field of EEG-based brain connectivity analysis. We start

by conducting an extensive survey of relevant approaches and go on to assess their performance

on simulated EEG data, which are realistically generated as mixtures of interacting sources. We

observe that most of the tested methods are not able to determine the connectivity structure of

the underlying sources because either i) the effect of volume conduction is neglected or ii) the

assumptions made to estimate mixed sources do not comply with the requirements of source

connectivity analysis or even with the physics of the EEG.

The central contribution of this thesis is the development of source demixings that meet theo-

retical requirements for source connectivity analysis and are applicable in practice. We achieve

this using two different strategies. In inverse source reconstruction, a given physical model of

EEG generation is inverted under physiologically motivated constraints. We derive an inverse

methodology, S-FLEX, which is able to recover multiple source of arbitrary shape and depth using

a sparsity penalty that assures rotational invariance of the solution. Our method is applicable to

entire time series as a preprocessing step to source connectivity analysis. Its favorable localization

properties are empirically evaluated on real data as well as in simulations and are demonstrated to

be the key to correct source connectivity determination. In the course of the thesis, we also present

a blind source separation (BSS) technique, SCSA, which estimates the underlying brain sources

and their mixing patterns jointly under assumptions on connectivity structure of the sources.

We demonstrate that SCSA performs well on simulated data, if mild assumptions regarding the

non-Gaussianity of the source variables hold. By way of an outlook, we present a hybrid approach

that combines S-FLEX inverse source reconstruction with SCSA blind source separation and

thereby fuses physical and dynamical assumptions on the sources.

In the final part of the thesis, we analyze information transfer between sources of the human

alpha rhythm during rest. Our analysis of S-FLEX source estimates yields a number of insights

which could not have been obtained from mere sensor-space analysis. We observe that generators

of alpha band activity are mostly symmetrically distributed on the cortex. However, the strength of

the sources nor the corresponding interaction patterns are exclusively symmetric. These findings

support the hypothesis of a consistent dominant laterality in the population.
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Zusammenfassung

Aufgrund seiner hohen zeitlichen Auflösung, Nichtinvasivität und Portabilität, sowie seiner rela-

tiv geringen Kosten ist Elektroenzephalografie (EEG) die momentan gebräuchlichste Methode

zur Messung dynamischer Informationsverarbeitung im Gehirn. Die Interpretation von EEG-

Daten unter neurophysiologischen Gesichtspunkten wird jedoch dadurch erschwert, dass die im

Gehirn entstehenden Signale durch Volumenleitung in alle EEG-Sensoren ausstrahlen. Bei der

Schätzung von Interaktionen zwischen Gehirnregionen ist dies besonders hinderlich, da hier stets

mehrere aktive Quellregionen angenommen werden müssen, deren Beiträge sich jedoch infolge

von Volumenleitung in den EEG-Kanälen überlagern.

Mit dieser Dissertation leisten wir Beiträge zur EEG-basierten Analyse von Gehirnkonnekti-

vität. Dazu unterziehen wir zunächst gängige Ansätze einer umfangreichen Evaluation anhand

simulierter EEG-Daten, die in realistischer Weise als Mischung interagierender Quellen erzeugt

werden. Wir beobachten, dass die Mehrzahl der getesteten Methoden nicht in der Lage ist, die

Konnektivitätsstruktur der zugrundeliegenden Quellen zu ermitteln. Dies kann in den meisten

Fällen darauf zurückgeführt werden, dass entweder i) Volumenleitung bei der Modellierung

nicht berücksichtigt wird, oder dass ii) die Annahmen zur Quellschätzung der Existenz von

Interaktionen oder gar physikalischen Gegebenheiten widersprechen.

Das Hauptaugenmerk der Arbeit liegt auf der Entwicklung von Methoden, die sowohl theo-

retisch zur Untersuchung von Quellenkonnektivität geeignet, als auch praktisch einsetzbar sind.

Hierbei verfolgen wir zwei verschiedene Ansätze. Bei der inversen Quellenrekonstruktion wird

ein gegebenes physikalisches Modell der Volumenleitung unter physiologisch motivierten Bedin-

gungen invertiert. Wir präsentieren eine Inversionsmethode namens S-FLEX, die durch geeignete

Annahmen in der Lage ist, aktive Gehirnregionen beliebiger Form und Tiefe anhand von EEG-

Daten zu rekonstruieren. Unsere Methode eignet sich auch zur Rekonstruktion kompletter Quell-

zeitreihen als Ausgangspunkt für die Konnektivitätsanalyse. Unsere empirischen Studien belegen

die höhere Lokalisierungsgenauigkeit von S-FLEX im Vergleich zu Standardmethoden, sowie die

damit einhergehende Verbesserung der Schätzung von Quellenkonnektivität. Im weiteren Verlauf

der Arbeit präsentieren wir eine Methode zur sogenannten blinden Quellenrekonstruktion, die

in der Lage ist, die Zeitreihen der aktiven Gehirnquellen sowie deren Mischungsverhältnisse im

EEG allein anhand der Annahme, dass einige der Quellen untereinander interagieren, zu schätzen.

Wir zeigen empirisch, dass diese, SCSA genannte, Methode korrekte Ergebnisse liefert, sofern

bestimmte Voraussetzungen die Verteilung der Quellvariablen betreffend erfüllt sind.

Im letzten Teil dieser Arbeit analysieren wir den Informationsaustausch zwischen Gehirnregion-

en mit hoher alpha Aktivität im Ruhezustand. Unsere Untersuchung ergibt, dass die entsprechen-

den Regionen symmetrisch auf der Großhirnrinde angeordnet sind. Jedoch ist sowohl die Stärke

der alpha Generatoren als auch deren geschätzte Vernetzung asymmetrisch, was auf eine über die

Stichprobe konsistente dominante Körperhälfte hindeutet.
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1 Introduction

1.1 EEG-based brain connectivity analysis

In the endeavor towards a better understanding of the human brain’s functioning, the analysis of

task-dependent information transfer between brain regions plays a crucial role.

Modern neuroscience began with the first recording of human electroencephalography (EEG)

by Pravdich-Neminsky (1913). About ten years later, Berger started to systematically study the

EEG signal and discovered the human alpha rhythm (Berger, 1938). Since then, a huge number

of neurophysiological phenomena have been discovered and related to experimental variables in

uncountably many psychophysiological studies (Davis, 1939; Sutton et al., 1965; Kornhuber and

Deecke, 1965; Spehlmann, 1965; Sutton et al., 1967; Jeffreys and Axford, 1972; Farwell and Donchin,

1988; Pfurtscheller and Lopez da Silva, 1999, to name some). However, these phenomena could

only be linked to brain anatomical structures with the advent of EEG inverse source reconstruction

(Jeffs et al., 1987; Ioannides et al., 1990; Scherg and Ebersole, 1993; Hämäläinen and Ilmoniemi, 1994;

Pascual-Marqui et al., 1994; Matsuura and Okabe, 1995; Mosher and Leahy, 1999) and alternative

functional neuroimaging modalities such as positron emission tomography (PET, Ter-Pogossian

et al., 1975), functional magnetic resonance imaging (fMRI, Roy and Sherrington, 1890; Ogawa

et al., 1990) and invasive electrophysiological recordings such as electrocorticography (ECoG,

Penfield et al., 1954). These novel techniques facilitated the releases of comprehensive atlases of

brain functions (Talairach and Tournoux, 1988; Rohlfing et al., 2010), as well as atlases depicting the

structural connections between brain regions (Sporns et al., 2005;Murayama et al., 2006; Hagmann

et al., 2007). Concomitant with and even prior to these developments, tremendous progress had

been made in understanding the structural organization of the brain and the physicochemical

mechanisms underlying cerebral information storage and transfer on the cellular level (Deiters,

1865; Golgi, 1885; Gotch, 1902; Ramón y Cajal, 1904; Dale, 1914; Loewi, 1921; Erlanger and Gasser,

1924; von Euler, 1946; Hodgkin and Huxley, 1952; Carlsson et al., 1957; Eccles, 1964; Kebabian

and Greengard, 1971; Kandel et al., 2000). However, there is still a considerable gap to bridge

in linking today’s knowledge about the dynamics of single neurons to the macroscopic effects

observable with present neuroimaging technologies, although large-scale integrative models are

under development (Markram, 2006).

An intermediate step towards unified brain modeling are models that describe the dynamics

and interaction patterns of brain regions on a macroscopic scale. This is the strategy pursued by

the majority of studies in brain connectivity analysis. There exist various competing definitions of

“connectivity” and there is an even greater disagreement on how to properly measure connectivity

according to the various definitions. Regarding the first point, a distinction between structural,

functional and effective connectivity has been widely agreed on (Friston, 1994; Horwitz, 2003; Jirsa

and McIntosh, 2007). Structural connectivity refers to the static anatomical structure of the brain,

which can be acquired, for example, by a single scan using a high-resolution anatomical MRI
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1 Introduction

(Lauterbur, 1973) or diffusion tensor imaging (DTI, Moseley et al., 1990) device. Functional and

effective connectivity are defined with respect to a mental task and refer to “coupled” activity

of two neuroanatomical entities during task execution. The common distinction between the

two is that effective connectivity is directed, i. e., describes a driver-receiver relationship, while

functional connectivity is not. Originally, functional connectivity had been equated with instanta-

neous correlation (Friston, 1994) but it is useful to extend this definition to arbitrary measures

of undirected functional dependencies which are symmetric in their arguments. Analogously,

effective connectivity might be quantified by any asymmetric function. There is an infinite number

of functions complying with these definitions and indeed, the proposed connectivity measures are

numerous and originate from diverse fields such as graph theory, signal processing and Bayesian

statistics. Here, we are primarily concerned with measures of effective connectivity. These can be

roughly divided into dynamic causal modeling and Granger-causal modeling approaches, although

there exist also differing concepts (Sun et al., 2008; Janzing and Schölkopf, 2010).

Dynamic causal modeling (DCM, Friston et al., 2003; Kiebel et al., 2008; Friston, 2009) assumes

that there exist a number of different models of how the observation sequences are generated. The

specifications of these models include hypothetical source regions, the signal transformation from

the source regions to the measurement sensors and a directed graph modeling the causal links

between the souce regions, which are to be tested. There is no standard choice for the models to

be compared; they have to be specified manually using domain knowledge about the mental task

under study. In the DCMmethodology, the parameters of the various models are optimized to

match the data as well as possible, while fulfilling certain prior expectations, which must also be

pre-specified. The most likely model is selected using Bayesian decision theory and its network

topology (including the effective connections) as well as the fitted model parameters are subjected

to neurophysiological interpretation.

A huge class of effective connectivity measures is commonly subsumed under the term Granger-

causal modeling (GCM), which is used to express the presence of the following two properties. First,

in contrast to DCM, the estimation of effective connections between the variables of interest (i. e.,

sources) is usually not restricted by a predetermined network topology. Rather, the presence of

connections is estimated exhaustively for all pairs of variables in a completely data-driven manner.

Second, driver-receiver relationships are defined using the argument that the cause (measured

through the driving variable) temporally precedes the effect (measured through the receiving

variable). In terms of time series, this implies that the sending variable’s time series contains

information about future values of the receiving variable’s time series. Granger-causality is one

way of quantifying this effect. It is based on Granger’s consideration that knowledge of the driver’s

time series at a time should improve the prediction of the receiver’s time series at a later time. This

practical definition has been implemented by a number of estimators (Granger, 1969; Kamiński

and Blinowska, 1991; Baccalá and Sameshima, 2001; Valdés-Sosa et al., 2005) using autoregressive

models and has found widespread applications (e. g., in neuroscience Kamiński et al., 1997; Hesse

et al., 2003; Brovelli et al., 2004; Babiloni et al., 2004; Astolfi et al., 2004; Roebroeck et al., 2005;

Babiloni et al., 2005; Eichler, 2005; Supp et al., 2007; Blinowska et al., 2010). However, not every

approach that adopts the temporal definition of effective connectivity falls into the category of

Granger causality. Counterexamples are Nolte et al. (2004) and Nolte et al. (2008), which are

completely model free approaches to connectivity analysis. Both are based on detecting nonzero

phase lags by analyzing the imaginary part of the time series’ cross-spectrum.

2



1.2 Scientific proposal

There is an ongoing debate on whether DCM, GCM or the analysis of phase lags should be

prefered in brain effective connectivity analysis (Valdes-Sosa et al., 2011). A crucial point to con-

sider is the properties of the measurement modality used to study connectivity. Measures of

metabolic functions such as fMRI and PET allow one to directly study internal brain dynamics

with high spatial resolution, but their temporal resolution lies in the range of a second, which

is disadvantageous for methods which define drivers and receivers in terms of temporal prece-

dence. Indeed, Granger-causal analyses of fMRI data have resulted in only very few significant

connections (Valdés-Sosa et al., 2005; Eichler, 2005), indicating that the temporal resolution of

fMRI is too low to capture time-delayed neuronal information transfer at the relevant scales.

Electrophysiological measurements reflect neuronal activity more directly than fMRI and PET,

and with sampling rates of up to several kHz. However, unlike for fMRI and PET, it is not possible

to exactly reconstruct the brain’s internal activity from electrophysiology measured outside the

head. Therefore, electrophysiology-driven brain effective connectivity analysis requires either

invasive measures, or the (explicit or implicit) solution to an ill-posed inverse problem. Invasive

recordings in humans are rarely indicated, which leaves one with electroencephalography (EEG)

and the related magnetoencephalography (MEG). These modalities utilize extracranial sensors to

pick up signals related to the electric activity of gross populations of synchronized neurons. In the

of case EEG, these are scalp electric potentials, while MEG measures the corresponding magnetic

fields. In both cases the signal is spatially diffused while traversing from the source regions to the

sensors by a process called volume conduction. Regarding the interpretability of EEG/MEG data in

terms of the underlying active source regions, this poses a serious challenge. The situation is most

severe in brain connectivity studies, where multiple sources must be assumed, the contributions of

which, however, mix into all sensors. The fact that volume conduction has to be accounted for in

EEG- and MEG-based brain connectivity studies is receiving more and more attention nowadays

(Nolte et al., 2004; Schlögl and Supp, 2006; Nolte et al., 2006, 2008; Gómez-Herrero et al., 2008;

Nolte and Müller, 2010) and has led to the request for genuine EEG/MEG source connectivity

analysis, i. e., the analysis of brain connectivity on source estimates derived from EEG/MEG data

(Schoffelen and Gross, 2009), which is the subject of this thesis.

1.2 Scientific proposal

The purpose of this work is to contribute to the field of EEG/MEG-based brain connectivity

analysis. We do this in three steps. First, we conduct an extensive survey of the field and evaluate

relevant approaches on simulated data. These simulations signify the two core theses of this work:

i. Volume conduction needs to be accounted for explicitly in EEG/MEG analyses, the results of

which should be subjected to neurophysiological interpretation.

ii. The assumptions used to recover sources in EEG/MEG connectivity studies need to comply with

the theoretical requirements of source connectivity analysis.

In the second step, we are concerned with the development of novel methods for EEG/MEG source

reconstruction and connectivity analysis, in which these insights fully enter. The efficacy of the

novel approaches is validated on the same data. In the third step, the applicability of our concepts

to real data is demonstrated.

3



1 Introduction

We here focus on EEG, which is far more widely used thanMEG due to dramatically lower costs

and better portability. Virtually any analysis discussed in this thesis can, however, be transferred

to the MEG domain without amendments to the mathematics involved (an exception is the

calculation of lead fields, which differs for EEG and MEG). Likewise, we restrict ourselves here to

the analysis of effective connectivity following the temporal definition. Nevertheless, some of the

results presented in this thesis are also relevant for other branches of connectivity analysis.

1.3 Outline of the thesis

Following this introduction, the thesis begins with a chapter on background (Chapter 2), in which

we give an overview on EEG signal generation and the most important neurophysiological EEG

phenomena, before coming to mathematical concepts from machine learning, statistics and signal

processing that are of general use. The last part of the chapter introduces popular measures of

effective connectivity, as well as the two general strategies for obtaining source estimates from

EEG data, inverse source reconstruction and blind source separation.

The following chapter (Chapter 3) introduces a simple simulated EEG dataset, which we use to

evaluate representative measures of effective connectivity under standardized conditions. We also

evaluate a number of preprocessing steps, including prominent inverse source reconstruction and

blind source separation techniques.

Chapters 4 and 5 contain the core methodological contributions of this thesis. Chapter 4

deals with inverse source reconstruction. Here, we successively develop a novel methodology

for estimating possibly interacting sources by inverting a physical model describing the effect

of volume conduction. The core features of the final approach are i) invariance with respect to

rotations of the coordinate system, ii) the ability to reconstruct source regions of arbitrary shape

and depth, iii) the ability to spatially distinguish multiple neighboring source regions and iv) the

applicability to time series data under the assumption of time-invariant spatial signatures of the

sources. While i) and ii) are purely physiologically-motivated, iii) and iv) are crucial requirements

for source connectivity analysis. We propose a measure for comparing the localization accuracy of

arbitrary reconstructed sources, which we use to demonstrate that our approach outperforms the

state-of-the-art on simulated data. This result is confirmed on real data, for which the “ground

truth” is known. Finally, our inverse source reconstruction is successfully applied to the problem

of EEG source connectivity analysis using the simulated data introduced in Chapter 3.

Chapter 5 describes the development of a novel blind source separation (BSS) approach to

source connectivity estimation. We start by proposing two Granger-causal measures of effective

connectivity, by which it is possible to estimate sparse connectivity graphs (i. e., graphs with

few connections). We extend one of these approaches to a BSS setting, in which the mixing of

the sources caused by volume conduction is estimated jointly with the connectivity graph in a

completely data-driven fashion. We further outline an extension, in which the mixing patterns

are constrained to reflect only brain sources with physiologically meaningful spatial signatures.

That is, we integrate inverse source reconstruction techniques developed in Chapter 4 into our

blind source separation framework. Note that our approaches stand in contrast to the majority of

BSS techniques, the assumptions of which either prohibit the analysis of interactions between the

underlying brain sources or disregard physical constraints imposed by volume conduction.

4



1.4 List of included published work

Before summarizing the results of this thesis in Chapter 7, we present an EEG study of human

resting state brain connectivity (Chapter 6). Here, we are able to reproduce results from the

literature, which were obtained by means of sensor-space connectivity analysis. We, however,

show that results obtained in sensor space are generally sensitive to changes of certain technical

parameters, which severely limits their interpretability under neurophysiological aspects. Notably,

this limitation does not apply to source-space approaches such as those presented here. Source

connectivity analysis using the inverse source reconstruction methodology derived in Chapter 4

reveals a number of symmetric source regions, which are active during rest. Interestingly, these

regions exhibit complex and partly asymmetric interaction patterns.

1.4 List of included published work

The following publications are included in large parts into this thesis.
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Advances in Neural Information Processing Systems 21. MIT Press, pp. 617–624.

[3] Haufe, S., Nolte, G., Müller, K.-R., Krämer, N., 2010. Sparse causal discovery in multivari-

ate time series. In: Guyon, I., Janzing, D., Schölkopf, B. (Eds.), Causality: Objectives and

Assessment. Vol. 6 of JMLRW&CP. pp. 97–106.
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2 Fundamentals

In this chapter, we introduce concepts that are fundamental to understanding the thesis. We start

with a section on EEG neurophysiology (Section 2.1), where we explain the generation of the

EEG signal and describe the various features seen in the EEG. The remaining part of the chapter

introduces mathematical tools that are useful for the development of our methods or for general

data analysis, as well as methods from the literature with which we shall compare our methods. We

devote a section to notation and basic definitions (Section 2.2), which is followed by a description of

basic machine learning concepts in the context of EEGmodeling (Section 2.3). Section 2.4 contains

a brief description of the statistical testing approach used throughout the thesis. Signal processing

topics cover the last four sections of the chapter. In Section 2.5, we discuss spectral filtering,

the Fourier transform and autoregressive models. The latter two techniques are fundamental to

the definition of the most prominent measures of time-lagged effective connectivity, which are

introduced in Section 2.6. The last two sections describe techniques for the decomposition of

EEG data. Since the EEG signal is known to be a superposition of source signals due to volume

conduction, most decompositions techniques can be regarded as factorizations of the EEG signal

into the volume conduction (mixing) part and the source signals. If the mixing matrix is obtained

from a physical model we speak of inverse source reconstruction, which is explained in detail in

Section 2.7 along with prominent examples. An alternative to using a constant mixing matrix are

data-driven blind-source separation approaches that identify spatial mixing/demixing coefficients

based on statistical assumptions on the sources. We discuss relevant approaches in Section 2.8.

2.1 Neurophysiology

The electroencephalographic (EEG) signal is an electric potential that is measured on the scalp. It

comprises brain activity caused by electric activity of (mainly) cortical neurons as well as several

types of physiological and non-physiological artifacts. In this section, we briefly discuss the

mechanisms underlying the transformation of cerebral electrical activity into EEG potentials

and describe the two most important neurophysiological phenomena observed in EEG signals,

event-related potentials and oscillations.

2.1.1 EEG signal generation

Information processing in the brain takes place in approximately one-hundred billion intercon-

nected neurons, which are specialized cells that consist of a cell body (the soma), dendrites, an

axon and an enclosing membrane. The electroencephalographic signal arises as a result of syn-

chronous activity of large populations of neurons with similar spatial orientation. Following

Baillet et al. (2001) and Wolters and de Munck (2007), this process can be summarized as follows

(see Figure 2.1 for a depiction). Neurons are electrically charged through transport proteins that
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2 Fundamentals

pump ions across their membranes. An axonal potential leads to the generation of excitatory

postsynaptic potentials (ESPs) at the apical dendritic tree, which causes the dendrite to release

ions through its membrane. The resulting depolarization of the membrane establishes an electrical

potential difference between the apical dendrite and the non-excited cell soma and basal dendrites.

This causes two types of ionic current flows. Currents that directly travel within the neuronal

dentritic trunk are called (intracellular) primary currents. The rule of conservation of electric

charges implies that there is also current flow in the opposite direction. The respective curents are

called (extracellular) secondary currents, because they travel through the exterior of the neuron.

In certain cerebral structures, there exist large populations of equally-aligned neurons. If these

neurons are synchronously activated, their primary currents add. The corresponding secondary

currents, which spread over the whole volume conductor, are strong enough to be measurable as

scalp potentials. The propagation of secondary currents from the sources (the generators of the

primary currents) through the biological tissue towards the measurement sensors is called volume

conduction. Importantly, this process is governed by the geometric and conductive properties

of the traversed media, which are the brain, scull and scalp tissues and the cerebrospinal fluid

(CSF). It is possible to mathematically model the propagation of secondary currents for a given

(primary) current source and volume conductor model using the fact that all currents are passive

in the frequency ranges of interest (see Section 2.7). In general, the electric potential observed at

the scalp surface is more widespread the deeper the generating source is, while it is stronger, the

more neurons are acting synchronously, the more similar their spatial alignment is and the more

superficially they are located. Pyramidal cortical neurons are the likely main contributors to EEG

potentials, because they are superficially located and spatially similarly aligned (perpendicular

to the cortical surface). The dynamics observed in the EEG signals is assumed to be caused by

interacting networks of such active cortical patches (Baillet et al., 2001).

2.1.2 Event-related potentials

Event-related potentials (ERPs) are characteristic reproducable EEG potential changes due to

internal or external stimulation. Internal stimulation may refer, e. g., to the semantic processing as

occuring during the perception of infrequent stimuli (Sutton et al., 1965, 1967), or to the preparation

of movements (Kornhuber and Deecke, 1965). In contrast, external stimulation is associated with

sensory input. Respective ERPs are reported for tactile, electric (Penfield and Boldrey, 1937), visual

(Spehlmann, 1965; Jeffreys and Axford, 1972) and auditory (Davis, 1939) stimulation. The study of

event-related potentials has widespread applications in clinical diagnosis and psychophysiology

(Fabiani et al., 2000), as well as brain-computer interfacing (Farwell and Donchin, 1988; Schreuder

et al., 2010; Blankertz et al., 2011) and mental state monitoring (Haufe et al., 2011b). A sequence of

event-related potentials occuring during induced emergency braking in a simulated driving task

is depicted in Figure 2.2 (a).

Event-related potentials exhibit a spatio-temporal signature that depends on the location of

the active cerebral current sources involved in the mental processing and the spatio-temporal

dynamics of source activition. The amplitude of ER potentials typically lies in the range of 1–20 µV,

which is approximately 1–2 orders of magnitude below the noise (cerebral background activity

and artifacts) level. To increase the signal-to-noise ratio, ERPs are usually estimated from multiple

repetitions of the same mental task by averaging the respective stimulus-locked EEG segments.
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2.1 Neurophysiology

monly called primary currents, while extracellular cur-
rents are known as secondary, return, or volume currents.

Both primary and secondary currents contribute to
magnetic fields outside the head and to electric scalp po-
tentials, but spatially structured arrangements of cells are
of crucial importance to the superposition of neural cur-
rents such that they produce measurable fields.
Macrocolumns of tens of thousands of synchronously ac-
tivated large pyramidal cortical neurons are thus believed
to be the main MEG and EEG generators because of the
coherent distribution of their large dendritic trunks lo-
cally oriented in parallel, and pointing perpendicularly to
the cortical surface [14]. The currents associated with the
EPSPs generated among their dendrites are believed to be
at the source of most of the signals detected in MEG and
EEG because they typically last longer than the rapidly
firing action potentials traveling along the axons of ex-
cited neurons [4]. Indeed, calculations such as those
shown in [10] suggest each synapse along a dendrite may
contribute as little as a 20 fA-m current source, probably
too small to measure in MEG/EEG. Empirical observa-
tions instead suggest we are seeing sources on the order of
10 nA-m, and hence the cumulative summation of mil-
lions of synaptic junctions in a relatively small region.
Nominal calculations of neuronal density and cortical
thickness suggest that the cortex has a macrocellular cur-
rent density on the order of 100 nA/mm2 [10]. If we as-

sume the cortex is about 4 mm thick, then a small patch 5
mm × 5 mm would yield a net current of 10 nA-m, consis-
tent with empirical observations and invasive studies.

At a larger scale, distributed networks of collaborating
and synchronously activated cortical areas are major con-
tributors to MEG and EEG signals. These cortical areas are
compatible with neuroscientific theories that model basic
cognitive processes in terms of dynamically interacting cell
assemblies [15]. Although cortical macrocolumns are as-
sumed to be the main contributors to MEG and EEG sig-
nals [4], some authors have reported scalp recordings of
deeper cortical structures including the hippocampus [16],
cerebellum [17], and thalamus [18], [19].

Measuring EEG and MEG signals
Electroencephalography
EEG was born in 1924 when the German physician Hans
Berger first measured traces of brain electrical activity in
humans. Although today’s electronics and software for
EEG analysis benefit from the most recent technological
developments, the basic principle remains unchanged
from Berger’s time. EEG consists of measurements of a
set of electric potential differences between pairs of scalp
electrodes. The sensors may be either directly glued to the
skin ( for prolonged clinical observation) at selected loca-
tions directly above cortical regions of interest or fitted in

16 IEEE SIGNAL PROCESSING MAGAZINE NOVEMBER 2001

Pyramidal Cell Assembly

Scalp

Skull

CSF

Cortex

Excitatory Post-Synaptic Potentials

Pyramidal Cell Assembly

Neural Activation

CNRS UPR640 - USC - LANL

Primary
Current

Secondary
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� 1. Networks of cortical neural cell assemblies are the main generators of MEG/EEG signals. Left: Excitatory postsynaptic potentials
(EPSPs) are generated at the apical dendritic tree of a cortical pyramidal cell and trigger the generation of a current that flows
through the volume conductor from the non-excited membrane of the soma and basal dendrites to the apical dendritic tree sustain-
ing the EPSPs. Some of the current takes the shortest route between the source and the sink by travelling within the dendritic trunk
(primary current in blue), while conservation of electric charges imposes that the current loop be closed with extracellular currents
flowing even through the most distant part of the volume conductor (secondary currents in red). Center: Large cortical pyramidal
nerve cells are organized in macro-assemblies with their dendrites normally oriented to the local cortical surface. This spatial ar-
rangement and the simultaneous activation of a large population of these cells contribute to the spatio-temporal superposition of the
elemental activity of every cell, resulting in a current flow that generates detectable EEG and MEG signals. Right: Functional networks
made of these cortical cell assemblies and distributed at possibly mutliple brain locations are thus the putative main generators of
MEG and EEG signals.

Figure 2.1: Generation of the EEG signal (figure taken fromBaillet et al. (2001)). Left: Excitatory postsynaptic

potentials at the apical dendritic tree cause itsmembrane to depolarize, bywhichmeans an electrical potential

difference between apical dendrite and cell soma on one hand and the basal dendrites on the other hand

is established. This causes two types of ionic current flows. Primary currents (blue) travel directly within

the neuronal dentritic trunk. Secondary currents (red) travel through the entire volume conductor and

are measurable by EEG, if the corresponding primary currents are strong enough. Center: Synchronously

active populations of pyramidal cortical neurons are the likely main contributors of EEG potentials due to

their superficial location and their homogeneous spatial orientation (perpendicular to the cortical surface),

which causes their primary currents to add. Right: Interacting networks of several active cortical patches

are the assumed main causes for the dynamics observed in the EEG signal.

2.1.3 Rhythmic activity

The EEG power spectrum exhibits a characteristic 1/ f (pink noise) shape, which is in many cases

superimposed by one ore more spectral peaks representing strong oscillatory activity in narrow

frequency ranges. Most notably, a peak within the alpha band (8 to 14Hz), which sometimes co-

occurs with a peak at the doubled frequency range (the beta band, extending from 15 to 30Hz), is

observed inmost subject’s EEG. Alpha activity was recorded in one of the earliest EEG experiments

conducted by Berger (1938). Other physiologically relevant spectral bands include the delta band

(up to 4Hz), the theta band (5 to 8Hz) and the gamma band (30 to more than 100Hz). The

various spectral peaks highly differ in their spatial distribution on the scalp, indicating that they

are generated by differing brain networks. Already the alpha band is known to comprise at least

two functionally distinct rhythms, which differ in their EEG topographies as well as the shapes

of their waveforms. While the so-calledmu rhythm has a more central alignment, the (stronger)

alpha activity is observed in more parieto-occipital scalp sites.

The posterior alpha rhythm has been related to a number of behavioral markers including

vigilance (Schmidt et al., 2009; Schubert et al., 2009), fatigue (Simon et al., 2011) and the inhibitions

of actions (Klimesch et al., 2007). Most notably, alpha power is modulated by the amount of

relaxation of the visual system, and is strongest when the eyes are closed. The strength of the

mu rhythm, on the other hand, is related to the level of relaxation of the motor system, and
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conditions for eight subjects. Source estimates are obtained from single-
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and previous fMRI studies. The present study hence serves
as a validation of neurophysiological significance of the
Berlin BCI feature extraction. The obtained separability in
source space raises the question whether source reconstruc-
tion methods can also be used to improve BCI accuracy.
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(b)

Figure 2.2: (a) Grand-average (N = 18) event-related potentials (ERP) occuring during induced emergency

braking in a simulated driving task (figure taken fromHaufe et al. (2011b)). Upper panel: ERP curves locked

to the brakelight onset of a preceding car. Lower panel: Topographical maps depicting how well emergency

braking and normal driving situations can be distinguished based on ERPs. (b) Average (N = 1) event-related

desynchronization (ERD) in the mu band during motor imagery of the left hand (magenta color) and right

hand (left color); figure taken from Haufe et al. (2010b). Upper left panel: Spectrum at electrode C4 (right

hemisphere) depicting desynchronization in the mu band during left hand motor imagery. Upper right

panel: time course of log-power in the mu band depicting desynchronization during 3 s of left hand motor

imagery. Lower panel: topographical maps of power in the mu band (left two plots) and differences in mu

power between conditions (red and blue colors depicting the areas in which the power is stronger during

left and right hand imagery, respectively)

decreases when movements are observed, planned, executed or even only imagined (Pfurtscheller

and Lopez da Silva, 1999). Moreover, a dependence on the frontal gamma rhythm has been noted

(Grosse-Wentrup et al., 2011). In line with these findings, the “idling” hypothesis (see, e. g., Palva

and Palva, 2007; Sabate et al., 2011) states that EEG rhythms represent the default mode of the brain

in which large neuronal populations are synchronized in a “feedback loop”, while any recruitment

of neurons for task engagement decreases the number of “idling” neurons and hence decreases

the strength of the oscillation. This process is called (event-related) desynchronization (ERD,

Pfurtscheller and Lopez da Silva, 1999). Figure 2.2 (b) illustrates the phenomenon of event-related

desynchronisation during motor imagery of the hands.
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2.2 Notation and basic definitions

In this work we denote matrices by italic upper-case letters, vectors by bold lower-case letters

and scalars by italic upper- or lower-case letters. Vectors are understood to be in columnar shape

unless otherwise mentioned. The i-th entry of a vector x is denoted by xi , the i-th column of

a matrix A by ai and the entry in the i-th row and j-th column of a matrix A by ai , j. For time

series data, indexing may also be indicated using parentheses, i. e., x(t) denotes the value of the
multivariate times series x at time t, which can also be regarded as the t-th column of a matrix

X. The notation xS with set-valued S denotes a vector composed of the stacked entries xi , i ∈ S.
The transpose of a matrix A is denoted by A⊺ and the inverse (if it exists) of a square matrix is

denoted by A−1. A real-valued matrix A is symmetric if A = A⊺ and antisymmetric if A = −A⊺. An
M-dimensional vector of ones is denoted by 1, while a zero vector is denoted by 0. The M ×M

identity matrix is denoted by IM . The unit vector ei is a vector with all zeros except for ei i = 1. The

vectorization operator vec (A) = (a⊺1 , . . . , a
⊺
m)
⊺ stacks the columns of A vertically. The operator

diag(A) = (a1,1, . . . , aM ,M)
⊺ extracts the diagonal entries of the M ×M matrix A. Analogously,

off(A) is a vector containing the off-diagonal terms of A. The trace of an M × M matrix A is

denoted by Tr{A} = ∑
M
m=1 am,m. The determinant of a square invertible matrix A is denoted by ∣A∣.

The ℓp-norm of an M-dimensional vector x is defined by ∥x∥p = (∑M
m=1 ∣xm∣

p)1/p for p ≥ 1.

A probability density function (pdf) f (x) describes the likelihood of an M-dimensional real-

valued continuous random variable x to occur at any point u ∈ RM . If f is a Lebesgue-integrable

nonnegative function that is normalized such that ∫u∈RM f (u)du = 1, and ifR ⊂ RM has nonzero

measure, then the probability of x to fall into R is Pr[x ∈ R] = ∫u∈R f (u)du. The cumulative

density function (cdf) induced by the pdf f is cdf(u) = ∫u∗≤u f (u∗)du∗, where u∗ ≤ u is true if

and only if u∗m ≤ um holds for all m ∈ {1, . . . ,M}. The expected value of a multivariate random

variable x is defined by E[x] = µx = ∫uRM u f (u)du, while the covariance is defined by Cov[x] =
Σx = E[(x − E[x])(x − E[x])⊺]. The empirical estimator of the expected value is the mean

µ̂x = 1/T∑
T
t=1 x(t), where x(t) are realizations of x. An empirical estimator of the covariance

is Σ̂x = 1/(T − 1)∑
T
t=1[(x(t) − µ̂x)(x(t) − µ̂x)⊺]. The vector of empirical standard deviations is

defined by σx =
√
diag(Σ̂x), where the square-root is applied entrywise. The probability density

function of amultivariate Gaussian distribution with mean µx and covariance Σx is given by

f (x) = ∣2πΣx∣
−1⁄2

exp (− 1

2
(x − µx)⊺Σ−1x (x − µx)) , (2.1)

where exp(x) = ex , e ≈ 2.7183 and π ≈ 3.1415. The notation x ∼ N (µx , Σx) is used to indicate

that a random variable x is multivariate Gaussian distributed. A random variable x is standard
normally distributed if x ∼ N (0, I).

A complex number z has the form z = a+ ib, where i =
√
−1 is the imaginary unit, and a =R(z)

and b = I(z) are the real and imaginary parts of z, respectively. Themodulus of a complex number

z is defined as ∣z∣ =
√
(R(z)2 + I(z)2), whereas the power is defined as ∣z∣2 and the phase as

arg(z) = tan−1(I(z)/R(z)). The complex conjugate of z = a + ib is denoted by z∗ = a − ib.

The matrix of complex conjugate transposed entries of a complex-valued matrix A is called the

Hermitian and is denoted by AH . A matrix A is Hermitian if A = AH . A real-valued square matrix

A is orthogonal if A−1 = A⊺. A complex-valued square matrix A is unitary if A−1 = AH .
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2.3 Machine learning

2.3.1 Amodel of EEG data

The most general generative model of EEG data is given by

x(t) = As(t) + η(t) , (2.2)

where x(t) ∈ RM is the signal of M EEG electrodes recorded at time t, s(t) ∈ RK is the activity of

K brain sources at time t and A ∈ RM×K is a matrix representing instantaneous source mixing due

to volume conduction. The noise term η(t) comprises uncorrelated measurement (sensor) noise

as well as correlated noise, which could be due to non-task-related background activity or artifacts

as caused by, e. g., eye blinks or 50Hz line noise. Notably, EEG activity of cerebral origin is always

correlated due to volume conduction, which is modeled here explicitly using the matrix A. The

variables A and s are not identifiable given the observations x without further assumptions. All

methods introduced later in this thesis are specifications of the general model (2.2) using various

assumptions on A, s and the model error η.

2.3.2 Maximum-likelihood estimation

Setting A = const., rank(A) = K, K ≤ M and assuming η(t) ∼ N (0, σ2IM), the sources s are
uniquely defined by themaximum-likelihood (ML) principle. Let the number of recorded samples

be T . Setting X = (x(1), . . . , x(T)), S = (s(1), . . . , s(T)) and E = (η(1), . . . , η(T)), we have
E = X − AS. The noise probability density as a function of the unknown parameters is called the

likelihood of the observations. In our case, the likelihood reads

p(S) =
T

∏
t=1

M

∏
M=1
(2πσ2)

−1⁄2
exp(−

η2m(t)

2σ2
) . (2.3)

The maximum-likelihood estimate is the variable assignment Ŝ that maximizes the likelihood.

However, it is equivalent and more convenient to obtain Ŝ as the minimizer of the negative

log-likelihood L(S) = − log p(S), i. e.,

Ŝ = argmin
S

TM log (2πσ2)

4σ2
+

T

∑
t=1

M

∑
M=1

η2m(t)

= argmin
S
∥vec (X − AS)∥22

= argmin
S

Tr{(X − AS)⊺(X − AS)} . (2.4)

This derivation shows that, as a result of assuming aGaussian noisemodel, themaximum-likelihood

estimate coincides with the so-called ordinary least squares (OLS) estimate, which minimizes the

sum of the squared error terms. Note that this estimate is independent of the noise variance σ2.

The solution is obtained by setting the first derivative to zero

∂L (S)

S
= 2A⊺AS − 2A⊺X = 0 , (2.5)

from what follows that

Ŝ = (A⊺A)
−1
A⊺X . (2.6)
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2.3.3 Regularization

When the number of observations is small compared to the number of variables, the maximum-

likelihood estimate might overfit, i. e., fit the non-systematic components (noise) too. For example,

if A is square and K = M, the OLS estimate of S in the above example is Ŝ = A−1X and the model

error Ê = X − AŜ is zero regardless of the presence of noise. Overfitting can be counteracted by

imposing constraints that limit the complexity of the solution. This technique is called regulariza-

tion. In the underdetermined case K > M, the OLS/ML estimator is not even uniquely defined.

Here, regularization does not only prevent overfitting; it is rather a necessity in order to obtain a

well-defined estimator.

While there are many ways to perform regularization (Engl et al., 2000), we here focus on

approaches that add a regularization term to the negative log-likelihood. The purpose of such

a regularizer is to penalize variable assignments with high complexity. One important family

of complexity measures are norms. The combination of a least squares error measure and a

regularizer that measures the squared ℓ2-norm of linearly transformed variables is called Tikhonov-

regularization (Tikhonov and Arsenin, 1977). A Tikhonov-regularized estimate of the sources

under our model is given by

Ŝ = argmin
S
∥vec (X − AS)∥22 + λ ∥vec (ΓS)∥

2

2

= (A⊺A+ λΓ⊺Γ)
−1
A⊺X , (2.7)

where the parameter λ controls the relative influence of the error and regularization terms. Note

that λ is proportional to the (typically unknown) noise variance σ2, which hence does enter

the estimation here. The matrix Γ ∈ RK×K is used to encode desired properties of the source

variables. For example, if Γ = IK , sources with minimal energy are sought. This variant is known

as ridge regression. If spatial relations between the sources exist, Γ can enforce, for example, spatial

smoothness of the sources. This is achieved using a matrix of spatial second derivatives, called

the discrete Laplace operator (see also Section 2.7). It is also possible to enforce constraints in the

spatio-temporal domain by considering the more general Tikhonov-regularized solution

vec (Ŝ ) = vec(argmin
S
∥vec (X) − Ãvec (S)∥

2

2
+ λ ∥Γ̃ vec (S)∥

2

2
)

= (Ã ⊺Ã+ λΓ̃ ⊺ Γ̃)
−1
Ã ⊺ vec (X) , (2.8)

where Γ̃ ∈ RKT×KT is a spatio-temporal filter matrix and Ã = IT ⊗ A.

The Tikhonov-regularized estimate has an interpretation as themaximum a-posteriori (MAP)

estimate in a Bayesian sense, since it is the most probable variable assignment assuming a zero-

mean Gaussian prior probability distribution of the (linearly transformed) variables (Berger, 1985).

Similarly, the regularizers discussed in the following can be interpreted asMAP estimates according

to different prior distributions. If the ℓ2-norm in the regularizer is replaced by the ℓ1-norm, sparsity

of the solution can be achieved. For example, the so-called lasso (Tibshirani, 1996) estimate

Ŝ = argmin
S
∥ vec (X − AS) ∥22 + λ∥ vec (S) ∥1 (2.9)

contains (many) zero entries. The use of the ℓ1-norm here corresponds to imposing the Laplace

distribution as a prior on the source variables. The Laplace distribution is a super-Gaussian
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distribution, whichmeans that it has “heavier tails” (more probabilitymass far away from themean)

than the Gaussian distribution. A generalized lasso regularizer λ∥Γ̃ vec (S) ∥1 yields solutions
which are sparse after linear transformation, which can be used, for example, to estimate piecewise

homogeneous functions (Kim et al., 2009).

If the variables havematrix structure, this can be taken into account using dedicated regularizers.

One example is the spectral norm of a matrix, which is the ℓ1 norm of its singular values (see

Section 2.8). Penalizing the spectral norm leads to sparsity of the singular values and hence general

low-rank matrix estimates (Recht et al., 2010). Another example is the ℓ1,2-norm, which is defined

as the sum of the ℓ2-norms of the columns of a matrix

∥S∥1,2 =∑
i

∥si∥2 . (2.10)

The use of the ℓ1,2-norm (or group lasso) regularizer leads to columnwise sparsity. That is, the

columns of the estimated matrix Ŝ are either jointly zero or jointly nonzero (Yuan and Lin, 2006).

Note that ℓ1,2-norm penalties are not restricted to matrices but can be applied to any set of variables

with group structure. Geometric arguments for the sparsifying properties of lasso and group lasso

regularizers are given in Tibshirani (1996) and Yuan and Lin (2006).

2.3.4 Model selection

Penalized models have at least one so-called hyperparameter (such as λ), which adjusts the degree

of regularization. To prevent overfitting, we are interested in choosing hyperparameters such that

the estimated model generalizes well in the sense that it reasonably explains data that has not been

used for the estimation (Hastie et al., 2001; Bishop, 2007). This selection process can be regarded

as a maximization of the out-of-sample likelihood.

Cross-validation (CV) is one way to obtain an estimate of this out-of-sample likelihood and by

this means to select hyperparameters. In k-fold cross-validation, the dataset is split into k parts.

In each fold, the model is fitted on k − 1 (training) parts and the likelihood is evaluated on the

remaining (test) part. The procedure is carried out for different assignments of the hyperparameters.

The assignment that maximize the average test likelihood is selected.

If the data samples are independent and identically distributed (i.i.d.), cross-validation provides

an unbiased estimate of the out-of-sample likelihood. If, however, dependencies exist, their

influence should be mitigated by a suitable splitting scheme. For example, if the data has temporal

structure, it is essential to ensure that the training samples temporally precede the test samples.

Such issues are discussed in Lemm et al. (2011).

Cross-validation is not the only strategy for hyperparameter selection. Another popular ap-

proach, which, however, works only for a single regularization parameter, is to find the corner of

the L-curve, which is a log-log plot of the model error vs. the regularization term (Hansen, 1992).

Other approaches involve the evaluation of the Bayesian Information Criterion (BIC, Schwarz,

1978) or Akaike’s “an information criterion” (AIC, Akaike, 1974).
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2.4 Statistical testing

When data are analyzed empirically, it is important to assess whether the observed effects are

systematic or only due to random fluctuations. This is done by statistical hypothesis testing. The

common practice is to formulate the null hypothesis that no systematic effect is present. Using

assumptions on the distribution of a test statistics derived from the collected data, it is then

calculated how “likely” this null hypothesis is. The p-value is the probability of obtaining the

observed test statistics or a more extreme one given the null hypothesis. If the p-value is smaller

than a certain predefined significance level, the null hypothesis is rejected and the observed effect

is considered “significant”.

If N independent samples are available, the true (population) standard deviation σx of which is

unknown, the statistics t = µ̂x/σ̂x
√
(N) follows Student’s univariate t-distribution with ν = N − 1

degrees of freedom (df), where µ̂x is the sample mean and σ̂x the sample standard deviation (Gosset,

1908). This is used by the one-sample t-test to test whether the mean of the population distribution

is different from zero. The p-value is derived by evaluating the cumulative distribution function of

the t-distribution, which is denoted by cdft(t, ν). The p-value according to a two-sided test (testing

for both positive and negative deviation from zero) is p = 2cdft(−∣t∣, ν).

In some cases we are also interested in testing whether themeans of two population distributions

differ. If the samples are paired, that is, if each experiment yields one sample from each distribution,

the one-sample t-test can be performed on the inter-population differences. If there is no pairing,

the two-sample t-test is appropriate. Assuming equal, but unknown, population standard deviations

σX1
= σX2

and N1 + N2 independent samples, the test statistics

t =
(µ̂x1 − µ̂x2)

sp

√
1

N1
+ 1

N2

, where s2p =
(N1 − 1) σ̂

2
x1
+ (N2 − 1) σ̂

2
x2

N1 + N2 − 2
(2.11)

and σ̂X1/2 are the sample standard deviations, follows a t-distribution with N1 + N2 − 2 degrees of

freedom. The p-value can be obtained from the cdf of this distribution.

When working with neural signals with high inter-subject variability, it is often desirable to

obtain a grand-average p-value for the entire subject population. To this end, it is convenient

to transform the subjects’ individual t-scores (following different t-distributions depending on

the numbers of samples) to standard normally distributed z-scores using the transformation

z = cdf
−1
z (cdft(t, ν)) where cdf

−1
z is the inverse of the cdf of the univariate standard normal

distribution. That is, the obtained z-score leaves the p-value unchanged. The z-scores related to

K subjects can be combined to a grand-average z-score sz = (z1 + z2 + ⋯zK)/
√
K, which is also

standard normally distributed. A grand-average p-value for the entire population of subjects can

be derived fromsz using cdfz.

In this thesis, an effect is considered significant if p≤ 0.05, which corresponds to ∣z∣ ≥ 2. However,

when many statistical tests are carried out simultaneously (e. g., when multiple hypotheses are

tested in exploratory analyses), the probability of obtaining spurious significant results just by

chance is high. In this case, p-values must be corrected. The most simple way to do this is the

Bonferroni procedure (Bonferroni, 1936). The Bonferroni-corrected p-value is the original p-value

multiplied by the number of tests (and thresholded to 1).
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2.5 Spectral decompositions

2.5.1 The discrete Fourier transform

Electroencephalographic data typically contains several rhythmic components with narrow-band

frequency signatures, which are believed to be linked to “idling” of certain brain functional

networks (see Section 2.1). In order to extract these oscillations and to distinguish them from

artifacts, it is helpful to work with a spectral representation of the data. This can be achieved by

means of the discrete Fourier transform (DFT), which decomposes the data into a sum of sinusoids

of differing frequencies and variable delays. The DFT spectrum of a finite discrete univariate time

series x(t), t = 1, . . . , T is given by

x̃( f ) =
1
√
T

T−1
∑
t=0

x(t) exp (− 2πi
T
f t) . (2.12)

The function value x̃( f ) is a complex number, the modulus of which encodes the strength of the

oscillation at frequency f , whereas its phase is the delay of that wave relative to the start of the time

series. The DFT may be evaluated for any real-valued frequency f but it is sufficient to evaluate all

integers between 0 and T − 1 in order to have a complete representation of the signal. To see this

consider that the DFT is a linear operation that can be written as a matrix multiplication x̃ = Fx,
where x̃ = (x̃1, . . . , x̃T)⊺ and x = (x1, . . . , xT)⊺. For frequencies f = 0, . . . , T − 1, F is a unitary

T × T matrix. This implies that the transformation preserves energy, i. e., ∥x̃∥2 = ∥x∥2 and that the

inverse transformation exists and is defined by F−1 = FH .

The empirical cross-spectrum S of two time series xi and x j is defined by

si , j( f ) =
1

K

K

∑
k=1

x̃i ,k( f )
∗x̃ j,k( f ) , (2.13)

which is a mean taken over K repeated simultaneous measuremens of xi( f ) and x j( f ). Diagonal

entries si ,i( f ) of the cross-spectrum correspond to themean power of xi( f ), while for i ≠ j, si , j( f )

is a general complex number, the amplitude of which is an estimate of the combined strength of

the two signals and the phase of which is an estimate of their phase difference.

2.5.2 The autoregressivemodel

The linear autoregressive (AR) process is the most simple model for the dynamics of a discrete

time series (Brockwell and Davis, 1998). It assumes that the present state of a time series can be

approximated by a linear combination of its past P samples, i. e., x(t) = ∑
P
p=1 b(p)x(t − p) + ε(t),

where, ε(t) is noise and b(p) are scalar coefficients describing the influence of x(t − p) on x(t).

Autoregressive processes are driven by nonzero noise terms, which are also called innovations.

Typically, the innovations are assumed to be Gaussian distributed but this is no general requirement

(Haufe et al., 2010c; Hyvärinen et al., 2010). Themultivariate AR (MVAR) model

x(t) =
P

∑
p=1

B(p)x(t − p) + ε(t) (2.14)
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extends the univariatemodel tomultiple time series. Here, B(p) arematrices, the off-diagonal parts

bi , j(p), i ≠ j of which describe influences between different time series.

There exist numerous algorithms for estimating the parameters of AR models (Brockwell and

Davis, 1998; Schlögl, 2006). If T is large enough, a maximum-likelihood approach is appropriate.

The matrix E = (ε(P + 1), . . . , ε(T)) of innovations can be expressed as E = X − B̃X̃, with

B̃ = (B(1), . . . , B(P)), X = (x(P + 1), . . . , x(T)), X̃ = (X1, . . . , XP)
⊺ and Xp = (x(P + 1 −

p), . . . , x(T − p))⊺. Assuming a Gaussian distribution for the innovations, the ML solution is

obtained by ordinary least squares regression analogous to (2.6). The ML/OLS solution can be

obtained iteratively for growing P, which is the idea of the ARFIT algorithm (Neumaier and

Schneider, 2001). When T is small compared to M, it is appropriate to regularize, which could be

done using any of the regularizers discussed in Section 2.3, and more. It is possible to estimate the

frequency spectrum of the data by applying the Fourier transform to the vectors of estimated AR

coefficients (bi , j(1), . . . , bi , j(P))
⊺. This is called the parametric approach to spectrum estimation

as opposed to applying the Fourier transform to raw data.

A reasonable AR process must be stable in order to ensure stationary dynamics. To derive a

condition for stability it is helpful to consider that an AR process of order P can be equivalently

written as an order 1 process x̌(t) = B̌x̌(t − 1) + ε̌(t) with

B̌ =
⎡
⎢
⎢
⎢
⎣

B̃

IM(P−1) 0

⎤
⎥
⎥
⎥
⎦
, (2.15)

x̌(t) = (x(t)⊺, . . . , x(t − P + 1)⊺)⊺ and ε̌m(t) = 0 for m > M. The system is stable if and only if

the largest eigenvalue of B̌ is smaller than one. Otherwise, the innovation noise is amplified in

each time step, leading to divergence. Stability must be ensured in AR estimation as well as for

randomly drawn AR matrices that are used to generate artificial data.

2.5.3 Spectral filters

If signals of interest and noise have different frequency characteristics, it is beneficial to work only

in the frequency range of the signal of interest. A time-domain representation of the signal in the

frequency range of interest can be obtained by spectral filtering, or bandpass filtering if the frequency

range is contiguous. A simple spectral filter can be implemented using the DFT by transforming

the data into the frequency domain, setting the Fourier coefficients corresponding to undesired

frequencies to zero and applying the inverse DFT. However, a DFT-based filter always uses all T

measurements for estimating the filtered signal at time t. As one consequence, the DTF filter is not

causal, that is, it uses information that is “in the future”. For most types of EEG analysis, non-causal

filters are either not suitable or not practical. An alternative are infinite impulse response (IIR)

filters of the form ̃̃x(t) = 1

a0
(∑

Q
q=0 bqx(t − q) −∑

Q
q=1 aq

̃̃x(t − q)) where ̃̃x(t) is the filtered signal,

Q is the filter order, bq and aq are the filter coefficients and ̃̃x(t) = x(t) = 0 for t < 1. There exist

numerous ways of optimizing the filter coefficients for a particular frequency band of interest.

The Butterworth filter is designed to damp all desired (passband) frequencies equally little while

maximally suppressing the remaining (stopband) frequencies (Butterworth, 1930).
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2.6 Measures of time-lagged effective connectivity

While there are multiple ways to define effective connectivity, the most widely accepted definition

is based on a temporal argument: the cause must precede the effect. Respective approaches

are often subsumed under the term Granger-causal modeling, although the technique that is

known as Granger causality is only one way to measure time-lagged influence. In this section,

we introduce popular measures of time-lagged effective connectivity, including various Granger

causal approaches and the phase-slope index.

2.6.1 Granger causality based onmodel errors

Given a multivariate time series x(t), an influence of xi on x j according to the original Granger

causality approach (Granger, 1969) is estimated as follows. Amultivariate ARmodel is fitted for the

full set x{1,...,M} = x, as well as for the reduced set x{1,...,M}∖{i} of available time series. Denoting

the prediction errors of the full model by εfull and those of the reduced model by ε∖i , the Granger
score GC describing the influence of xi on x j is defined as the log-ratio of the mean-squared errors

(MSE) of the two models with respect to x j. I. e.,

gci , j = log

⎛
⎜
⎜
⎝

∑
T
t=P+1 [ε

full
j (t)]

2

∑
T
t=P+1 [ε

∖i
j (t)]

2

⎞
⎟
⎟
⎠

. (2.16)

Note that this definition, which is based on the ratio of prediction errors, is independent of the

scale of the time series xm , 1 < m < M. The Granger score defines a so-called causality or effective

connectivity graph. Time series xi is defined to Granger-cause time series x j if gci , j is (significantly)

greater than zero. The pairwise net flow is obtained by antisymmetrizing GC via gcneti , j = gci , j − gc j,i .

Time series xi is the net driver of time series x j, if gc
net

i , j is (significantly) greater than zero, and the

net receiver, if gcneti , j is (significantly) smaller than zero. These definitions apply analogously to other

causal graphs defined in the following.

2.6.2 Granger causality based on AR-coefficients

One could argue that a Granger-causal dependence of time series x j on time series xi is already

sufficiently evidenced if any of the P coefficients bi , j(p) of the MVAR model fitted on the full set

of available time series is (significantly) different from zero. This is the basic consideration for a

second class of Granger-causal approaches, which are defined directly based on the AR coefficients

rather than prediction errors. While some of these methods operate in the time domain (Valdés-

Sosa et al., 2005; Marinazzo et al., 2008), we here introduce two popular approaches assessing

Granger-causal influence per frequency by evaluating the discrete Fourier transform of the MVAR

coefficients across the time lag dimension (it is also possible to evaluate oscillations in between

the DFT frequency bins). The directed transfer function (DTF, Kamiński and Blinowska, 1991) at

frequency f is defined as

dtf i , j( f ) =
∣(B̃−1)

i , j
( f )∣

2

M

∑
m=1
∣(B̃−1)

j,m
( f )∣

2
. (2.17)
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A related measure is partial directed coherence (PDC), which we define here as the squared absolute

value of the original (complex-valued) quantity introduced in Baccalá and Sameshima (2001).

That is,

pdci , j( f ) =

RRRRRRRRRRRRRRRRR

s

b̃i , j( f )
√
sb̃Hj ( f )

sb̃ j( f )

RRRRRRRRRRRRRRRRR

2

, (2.18)

where
s

B̃( f ) = IM − B̃( f ) is an estimate of the strength of the information flow from xi to

x j. Both DTF and PDC are normalized to take values from the interval [0, 1], but the nor-

malization conditions differ. While DTF is normalized such that each time series has unit in-

flow, i. e., ∑i dtf i , j( f ) = 1, PDC is normalized such that each time series has unit outflow, i. e.,

∑ j pdci , j( f ) = 1. Another difference between the two is, that DTF also reveals indirect influences

not contained in non-vanishing b(p)i , j through the use of inverseMVARmatrices B̃−1( f ). It shares
this property with the original Granger causality approach. Partial directed coherence, which

operates directly on the (Fourier-transformed) AR matrices, only includes direct connections.

2.6.3 The phase-slope index

Another popular measure of interaction at a specific frequency is coherency, a generalization of

correlation in the frequency domain (Nunez et al., 1997, 1999). Coherency (denoted by CHY)

is a complex-valued measure describing the linear relationship of two time series at a specific

frequency. It is defined as the normalized cross-spectrum

chyi , j( f ) =
si , j( f )

(si ,i( f )s j, j( f ))
1⁄2

. (2.19)

Coherence (denoted by CH) is the absolute value of coherency, i. e., chi , j( f ) = ∣ chyi , j( f )∣. It is

often used to quantify the strength of functional connections. Since it is independent of the phase

difference of the two oscillations, coherencemakes no distinction between instantaneous (zero-lag)

correlation and truly time-delayed (cross-) correlation. Instantaneous correlations, however, do not

reflect time-lagged interactions and can occur for trivial reasons. Especially for EEG data, channels

are highly correlated due to volume conduction in the head. These instantaneous correlations

tend to dominate coherence. As a remedy, it has been proposed to look at the imaginary part of

coherency only rather than at the absolute value (Nolte et al., 2004). This is motivated by the fact

that the imaginary part of the cross-spectrum (and coherency) is zero if the phase difference (the

phase of si , j( f ) rsp. chyi , j( f )) is zero. Thus, by looking at the imaginary part only, instantaneous

effects are ignored.

In general, a positive imaginary part of chyi , j( f ) indicates that zi is earlier than x j and informa-

tion appears to be flowing from xi to x j. However, “earlier” and “later” are ambiguous. For example

at 10Hz being 10ms earlier cannot be distinguished from being 90ms later. In order to resolve

this ambiguity, the information at different frequencies can be aggregated within a frequency

band of interest. The idea behind the phase-slope index (PSI, Nolte et al., 2008) is that the phase

difference between sender and recipient increases linearly with frequency, i. e., the slope of the

19



2 Fundamentals

phase spectrum is positive. Consequently, denoting by F a contiguous set of frequencies and by

δ f the frequency resolution, PSI is defined as

ψi , j = I
⎛

⎝
∑
f ∈F

chy
∗
i , j chyi , j( f + δ f )

⎞

⎠
. (2.20)

Note that, in the original formulation, PSI is divided by its estimated standard deviation in order to

assess statistical significance. The issue of statistical testing is, however, considered separately here.

From the Hermitian property of the cross-spectral matrices it follows that PSI is antisymmetric

with ψi , j = −ψ j,i . Hence, PSI already measures net flows. Using the same property, it can be shown

that PSI exactly flips its sign when being applied to temporally reversed data. Moreover, due to the

use of the normalized cross-spectrum, PSI is invariant with respect to rescaling of the data.

2.7 Inverse source reconstruction

Recall that the general model of EEG data is x(t) = As(t) + η(t) (see Section 2.3) with generally

unknown source time series s(t) and mixing matrix A. In reality, the matrix A describes a physical

process, namely the propagation of the brain electric currents from the source regions to the EEG

electrodes. If a suitable physical model of the head exists, it can be used to compute the mixing

patterns of idealized brain sources. This step is called forward modeling and leads to an estimate

of A. Inverse source reconstruction is concerned with the estimation of s given x and A, which

amounts to solving the so-called electromagnetic inverse problem (Baillet et al., 2001; Nunez and

Srinivasan, 2006).

2.7.1 The EEG forwardmodel

We here describe the steps needed to obtain the matrix A via forward modeling. The first step

towards this is the definition of a model of the head as a volume conductor. We consider “realistic”

models, which account for different conductivities of the various tissues, as well as arbitrarily-

shaped tissue compartments. Precisely, the realistic model consists of three nested shells represent-

ing (from inner- to outermost shell) brain, skull and skin. Within each shell, homogeneous electric

conductivity is assumed. The geometry of the three shells is acquired from anatomicalmagnetic

resonance (MR) images of an individual head. These are segmented into the three compartments

based on the grayscale value. The boundaries of the three compartments are triangularized and

stored as 3D meshes.

The EEG potential at time t (omitting the time index in the following) is a scalar function

x ∶ S → R describing the potential difference between a point v ∈ S ⊂ R3 on the border of the skin

shell S and a reference point vref ∈ S . In practice, a set of M electrodes (plus one reference) is used,

the locations vref, v1, . . . , vM of which are known and remain constant during the recording. The

observable EEG potential may therefore be summarized as x = (x1, . . . , xM)⊺ with xm = x(vm).
The reference electrode is commonly placed on the nose or the linkedmastoids. For EEG electrodes,

the standard positioning scheme is the 10-20 system, which places electrodes along geodesic lines

with 10 (20) degrees offset relative to inion, nasion and mastoid reference points. The original

10-20 system (Klem et al., 1999) defines M = 19 electrode positions, but it has been extended
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to up to 256 electrodes (Sharbrough et al., 1991; Oostenveld and Praamstra, 2001). Standard

electrode positions can be easily registered within a head model by, for example, using chemical

indicators that mark the reference points in the anatomical MR images. If electrodes are placed in

nonstandard positions, it is useful to acquire their exact coordinates using 3D tracking hardware.

The primary cerebral current density (at time t) is a vector-valued function (vector-field)

s ∶ B → R3, which describes the primary electrical current at each location u ∈ B ⊂ R3 in-

side the brain shell. The forward mapping describes the functional dependence of the EEG electric

potentials (due to secondary currents) on the primary current density. For frequencies below 1 kHz,

all involved current flows are Ohmic, and the quasi-static approximation of Maxwell’s equations

holds (Sarvas, 1987; Baillet et al., 2001). This leads to

x = ∫u∈B a (u) s (u)du , (2.21)

where the electric lead field a ∶ B → RM × R3 is a general nonlinear function that is specific to

the volume conductor and the location of reference and EEG electrodes. The tuple (u, s(u))
defines a so-called dipole, which is an idealized electrical source of infinitesimal spatial extent at

position uwith current moment vector s(u). The EEG electric potential caused by the single dipole

(u, s(u)) is given by a(u)s(u). While a(u) is generally hard to compute, it can be evaluated for

certain types of volume conductors. In spherical head models, the solution is analytic (Baillet et al.,

2001). For the realistic model discussed here the method of Nolte and Dassios (2005) provides a

numerical solution based on semi-analytic expansions of the lead fields. An interesting approach

is provided by Stahlhut et al. (2010). By adapting the head geometry to empirically recorded data

using Bayesian reasoning, their approach potentially obviates the need for individual head models.

If the integral in (2.21) is replaced by a finite sum, a discretization of the current density is

obtained, which leads to a computable global approximation of the EEG forward mapping. There

are two major strategies for identifying the parameters of the involved dipolar sources. Dipole fits

jointly estimate location u and current moment parameters s(u) of a small number of dipoles,

while distributed inverses estimate only the moments of a large number of dipoles with fixed

locations. While there also exist methods that estimate the location of the sources based on

subspace criteria (Schmidt, 1986; Mosher and Leahy, 1999) or adaptive spatial filters (Van Veen and

Buckley, 1988; Van Veen et al., 1997; Sekihara et al., 2005), we focus on dipole fits and distributed

source imaging in the following.

2.7.2 Dipole fits

The N dipole model assumes that the EEG electric potential is generated by N pointlike activities,

while the largest part of the brain is electrically silent (Scherg and Ebersole, 1993; Baillet et al.,

2001). Denoting by un and sn ≡ s(un) the parameters of the n-th dipole, the approximate forward

mapping reads x = ∑N
n=1 a(un)sn. If 6N is small compared to M, the parameters can be found by

maximum-likelihood. Assuming uncorrelated Gaussian sensor noise, the associated cost function

reads

min
un ,sn
∥x −

N

∑
n=1

a (un) sn∥
2

2

. (2.22)
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For time series, the N dipole model is easily extended to x(t) = ∑N
n=1 a(un)sn(t), which leads

to a similar cost function. Note that in this model the dipole moments depend on t, since they

describe the neuronal dynamics. The dipole locations are assumed to be constant, which encodes

the assumption that the active brain areas do not move over time, which is reasonable regarding a

potential subsequent effective connectivity analysis of the source brain regions. A local minimum

of (2.22) can be found by means of nonlinear optimization. However, due to the nonconvexity

of this function, it cannot be guaranteed that the global minimum is found. Indeed, for N > 2,

dipole fits tend to get trapped in local minima easily.

2.7.3 Distributed inverse imaging

Assuming constant locations u1, . . . , uN , the discrete forward model becomes the linear function

x =
N

∑
n=1

Ansn = As , (2.23)

where An = a(un), s = (s⊺1 , . . . , s
⊺
N)
⊺ and A = (A1, . . . ,AN). The large matrix A is called the lead

field matrix. Notably, it is this equation that motivates the basic linear model (2.2) of the EEG

introduced in the beginning.

The idea behind distributed inverse imaging is to model dipolar sources at many locations within

the brain (or alternatively, only in the cortical areas), and to estimate the activity at those locations

jointly by inverting the linear system (2.23). In most cases, the dipoles are arranged in a grid,

where each dipole represents the activity in a cubic voxel. The inter-voxel distance is denoted by

h. The number of sources do not have to be specified a-priori. Rather, the local maxima of the

current distribution are interpreted as the active (source) regions. Naturally, the number of voxels

N is large (in the thousands) when h is small. As a result, (2.23) is highly underdetermined, so

that the maximum-likelihood estimator is not uniquely defined. To illustrate how severe the lack

of information is, consider that the space of exact solutions to (2.23) is (3N −M)-dimensional,

while vectors that are not solutions span only an M-dimensional space. In a typical scenario with

M ∼ 100 and N ∼ 2 000, the solution space is thus orders of magnitude more high-dimensional. In

this setting, it is crucial to regularize the maximum likelihood solution by introducing additional

penalties. Regularization then serves three purposes. Besides resolving the ambiguity of the ML

estimator and preventing overfitting, it can also be used to constrain the solution to be consistent

with prior domain knowledge. Note that this latter point is particularly important for the solution

of inverse problems, where the goal is not only to achieve good generalization performance but

also to interpret the model parameters.

Historically, there exist two contradicting assumptions on the spatial distribution of brain

sources: smoothness and sparsity. At least one of these assumptions is (directly or indirectly)

encoded in virtually any distributed source imaging method. Smoothness of the current density is

motivated by the argument that neighboring voxels are likely to be functionally related and hence

to be co-activated. The sparsity assumption, on the other hand, is based on the argument that

cognitive processing related to a specific task should only activate a small part of the brain. This

does not imply an overall sparse current density in general, since there might be non-task-related

activity (brain noise) in other parts of the brain. However, the argument holds for averaged data,

in which brain noise cancels.
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2.7 Inverse source reconstruction

Low resolution tomography (LORETA)

Smoothness is explicitly enforced in the low resolution tomography (LORETA) estimate (Pascual-

Marqui et al., 1994)

ŝ LOR
= argmin

s
∥x − As∥22 + λ∥(I3 ⊗ DLOR

)Ws∥22 (2.24)

by means of the N × N Laplace operator DLOR, which measures the sum of the discrete second

derivatives of the current density in all three spatial directions. The entries of DLOR are given by

dLOR

i , j =
1

h2

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−6 ∥ui − u j∥2 = 0

1 ∥ui − u j∥2 = h

0 else .

(2.25)

The matrixW is a full-rank depth compensation matrix, the purpose of which is explained below.

The LORETA problem is an instance of Tikhonov-regularization and can be solved analytically

(see Section 2.3). The solution is the smoothest current density that explains the data to a certain

extent (adjusted by λ). The Laplacian utilized by LORETA employs vanishing boundary conditions

for the sake of invertibility, which leads to uniqueness of the LORETA solution. As a result, the

activity towards the brain boundary as estimated by LORETA always approaches zero, which is a

disadvantage given that superficial (i. e., cortical) sources are assumed to be the main generators

of the EEG signal.

Pascual-Marqui et al. (1994) propose transforming the lead field matrix and the data into a

common average reference before performing the inverse calculation, which is reasonable especially

if the true position of the reference electrode and the position assumed in the head model do

not match. Common-average-reference-transformed data and lead field matrices are obtained by

A← HA and x ← Hx, where the transformation matrix H is defined by H = IM − 11⊺/1⊺1.

The weightedminimum-norm estimate

Interestingly, the weighted minimum-norm (WMN) estimate (Jeffs et al., 1987; Ioannides et al.,

1990; Hämäläinen and Ilmoniemi, 1994)

ŝWMN
= argmin

s
∥x − As∥22 + λ∥Ws∥22 (2.26)

tends to be very blurred (smooth), although no spatial filtering operator is involved. The rea-

son for this “implicit” smoothness is that WMN (just as LORETA) is an instance of Tikhonov-

regularization, which implies that its solution can be expressed as a linear combination of the

EEG data (see Section 2.3). As a result, linear methods are characterized by a low spatial reso-

lution of the source estimates, which means that the estimated current density can (at best) be

a spatially lowpass-filtered version of the true source distribution (Grave de Peralta-Menendez

and Gonzalez-Andino, 1998). The occurrence of side-lobes (sometimes called “ghost sources”) is

another phenomenon occuring with linear methods (Matsuura and Okabe, 1995).
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Theminimum-current estimate

Sparsity-inducing inverse methods promise spatial resolution in the range of the grid-size h, since

their estimated active regions consist of single isolated voxels. The original sparse inverse solution

is the weightedminimum-current (MC) estimate (Matsuura and Okabe, 1995)

ŝMC
= argmin

s
∥x − As∥22 + λ∥Ws∥1 . (2.27)

Another well-known sparse inverse method is the FOCUSS (Gorodnitsky et al., 1995) approach.

The FOCUSS solution is defined algorithmically as the iteratively reweighted ℓ2-norm-regularized

solution. It has been shown byWipf andNagarajan (2009) that this corresponds to (approximately)

minimizing the ℓ0-quasinorm of the sources.

Depth compensation

The matrixW that occurs in the cost functions of LORETA,WMN andMC is called a weighting or

depth-compensationmatrix, because its purpose is to counteract a location bias in the estimation.

It is known that forW = I3N all these methods tend to estimate superficial sources as a result of

the fact that the measurable electric potential falls off quadratically with the distance between

source and sensor, which implies that deep sources must be stronger than superficial sources in

order to reach similar explanatory power. Since, however, the regularization terms in (2.24), (2.26)

and (2.27) effectively penalize the source strengths (as a side-effect of measuring smoothness or

sparsity), solutionswith all-superfical sources are often selected instead of deep (but smooth/sparse)

sources. As a remedy,W is used to increase the cost of superficial sources. Often,W is chosen to

be diagonal with entries wi ,i = ∥ai∥2 (Jeffs et al., 1987; Ioannides et al., 1990; Pascual-Marqui et al.,

1994; Matsuura and Okabe, 1995).

Standardized LORETA

A depth-compensation is implicitly performed in the standardized low resolution tomography

(sLORETA, Pascual-Marqui, 2002) approach, which employs post-hoc standardization of the

conventional (unweighted) minimum-norm solution (i. e., the solution of (2.26) withW = I3N ).

Using the common-average-reference-transformed lead field matrix A, Pascual-Marqui (2002)

derive the covariance estimate

V̂ = A⊺(AA⊺ + λIM)
−1A (2.28)

of the minimum-norm solution, which is used to compute the voxel-wise standardized source

power estimate

p̂n = ( ŝWMN

n )
⊺V−1n ( ŝ

WMN

n ) , (2.29)

where Vn is the n-th 3× 3 block on the diagonal of V̂ (the intra-voxel covariance at the n-th voxel).

It can be shown, that sLORETA has “zero location bias”, in the sense that the estimated source

power p̂ has a global maximum at p̂n, if there is no noise and only one underlying dipolar source

at voxel n (Pascual-Marqui, 2002).
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2.8 Blind source separation

2.8 Blind source separation

Inverse source reconstruction is a powerful approach, by which it is possible to reconstruct not

only source activity but also respective source locations. However, it relies on the availability of an

accurate forward model, which usually requires an individual head model in combination with

exact electrode positions (although Stahlhut et al. (2010) devise an approach for adjusting the head

model to the individual subject based on recorded data). Instead of using a possibly inaccurate

forward model and carrying out its ill-posed inversion, the mixing matrix can also be estimated

jointly with the source time series in a completely data-driven way. This approach is called blind

source separation (BSS). Basically any matrix factorization can be regarded as a BSS technique.

However, not all of them deliver meaningful estimates of the source and mixing matrices given the

physical restrictions of the EEG signal generation; and only an even smaller fraction of methods is

suitable for source connectivity analysis.

2.8.1 Principal component analysis

Principal component analysis (PCA) is an eigendecomposition

Σ = ADA⊺ (2.30)

of the empirical covariance matrix Σ of the data x(t), where A ∈ RM×M is orthogonal and D ∈

RM×M is diagonal with d1,1 ≥ d2,2, . . . , ≥ dM ,M . The columns of A are called eigenvectors in PCA

terminology. In principle, they could be regarded as source mixing patterns, and the transformed

time series s(t) = A⊺x(t) could be interpreted as source time series, the variance of which is

encoded in the diagonal entries (eigenvalues) of D. Notably, the time series s(t) are uncorrelated,
which can be seen from the fact that their covariance matrix A⊺ΣA = D is diagonal.

While uncorrelatedness of the source time series is reasonable to assume for EEG sources

originating in different parts of the brain, orthogonality of the mixing patterns cannot generally be

assumed for different brain sources. For that reason, PCA-filtered time series are not commonly

interpreted as source estimates. However, PCA is a useful dimensionality-reducing preprocessing

due to the fact that it provides uncorrelated components which are ordered by variance. Denoting

by AK , K = {1, . . . ,K} the first K columns of A, (corresponding to the K largest eigenvalues), the

projected data A⊺Kx represents the full-rank data up to a reconstruction error of

T

∑
t=1
∥x(t) − AKA⊺Kx∥

2
=

M

∑
k=K+1

dk,k , (2.31)

and there is no K-dimensional subspace in which the data can be represented with lower error

(Pearson, 1901). The question of optimally selecting the number of principal components is

discussed in Hansen et al. (1999).

Note that a PCA decomposition of Σ is strongly related to a singular value decomposition (SVD)

of the data matrix X. In particular, the eigenvectors of Σ are identical to the singular vectors of

X, and the eigenvalues of Σ are the squared singular values of X. The concept of PCA/SVD has

been generalized tomulti-way data (tensors), which is helpful for decomposing time-frequency

EEG data, or if there are multiple trials of EEG activity recorded under the same experimental

condition (Mørup et al., 2006, 2008).
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2.8.2 Independent component analysis

Diagonalization of covariance matrices as performed by PCA corresponds to decorrelation of

the data. For multivariate Gaussian distributed data without time structure this is equivalent to

removing any dependence between the source time series: the distribution of the sources factorizes

into univariate Gaussians. For non-Gaussian source signals, however, decorrelation is not sufficient

for achieving independence. Since, from a macroscopic perspective, many cognitive processes

appear to occur independently of each other, it is therefore natural to search for “maximally

independent” sources, which is the idea of independent component analysis (ICA, Molgedey and

Schuster, 1994; Cardoso and Souloumiac, 1996; Belouchrani et al., 1997; Ziehe and Müller, 1998;

Hyvärinen and Oja, 2000; Højen-Sørensen et al., 2002; Koldovský et al., 2006).

Statistical dependence cannot be measured as such, for which reason practical ICA implemen-

tations focus on minimizing certain aspects of dependence. Joint diagonalization of appropriate

matrices is one way to achieve this. In the joint approximate diagonalization (JADE) approach

(Cardoso and Souloumiac, 1996), slices of the fourth-order cumulant tensor are simultaneously

diagonalized in order to extract source time series with distinct non-Gaussian distributions.

Molgedey and Schuster (1994) employ second-order statistics (correlation) only but take time-

lagged cross-correlation into account as an additional measure of temporal dependence. Their

approach employs a generalized eigenvalue decomposition in order to simultaneously diagonalize

the covariance matrix and a time-lagged cross-covariance matrix

C(p) = 1

2(T−1)

T

∑
t=p+1
(x(t) − µ̂x) (x(t − p) − µ̂x)⊺ + (x(t − p) − µ̂x) (x(t) − µ̂x)⊺ , (2.32)

related to a single nonnegative integer time lag p. The second order blind identification (SOBI)

approach (Belouchrani et al., 1997) and the related temporal decorrelation source separation

(TDSEP) approach (Ziehe and Müller, 1998) extend this idea to the joint diagonalization of more

than two symmetrized cross-correlation matrices related to multiple time lags p (including p = 0).

In this case, exact joint diagonalization is not possible in general, for which reason a cost function

is defined, which is minimized using nonlinear optimization (e. g., Ziehe et al., 2004). This cost is

the sum of squares of the off-diagonal elements of the transformed matrices. In the case of TDSEP

the optimization criterion reads

Â = argmin
A

P

∑
p=0
∥off (A−1C(p)A−T)∥

2

2
(2.33)

s. t. ∣A∣ = 1 .

Independent component analysis has been successfully applied to the demixing of EEG signals

(Makeig et al., 1997; Calhoun et al., 2001; Eichele et al., 2008) and artifact reduction (Jung et al.,

2000a,b; Ziehe et al., 2000; McKeown et al., 2003; Tangermann et al., 2009; Winkler et al., 2011).

Some authors have also used ICA in source synchronization and connectivity analyses, where

sources are actually assumed to be dependent (Beckmann et al., 2005; Meinecke et al., 2005; Astolfi

et al., 2007).
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2.8.3 Pairwise interacting sources analysis

Nolte et al. (2006) remark that antisymmetric parts of cross-correlation matrices cannot be

explained by independent sources and therefore relate to genuine interaction. Consequently, they

devise a method called pairwise interacting sources analysis (PISA), which decomposes the sensor

data into pairs of interacting sources by jointly diagonalizing antisymmetrized cross-correlation

matrices

D(p) = 1

2(T−1)

T

∑
t=p+1
(x(t) − µ̂x) (x(t − p) − µ̂x)⊺ − (x(t − p) − µ̂x) (x(t) − µ̂x)⊺ . (2.34)

It turns out that this is only possible using a complex-valued matrix A−1, the columns of which

contain the interacting sources’ field patterns in their real and imaginary parts. However, since the

joint diagonalization operation is invariant with respect to phase transformations, the sender’s

and receiver’s patterns are arbitrarily mixed within these two-dimensional subspaces and have to

be disentangled using additional assumptions, for example, on spatial properties of their inverse

source reconstructions (Marzetti et al., 2008; Nolte et al., 2009).

Instead of diagonalizing antisymmetrized cross-correlation matrices, it is also possible to di-

agonalize their respective Fourier-transforms, which are identical to the imaginary parts of the

cross-spectrum (Nolte et al., 2006). Thus, PISA can be regarded as a BSS technique that identifies

source pairs exhibiting genuine time-lagged interaction. Since the temporal delay between the

estimated sources might, however, be different in each frequency bin, PISA is more suitable for

studying functional (undirected) than effective (directed) connectivity.

2.8.4 Convolutive ICA

The concept of BSS has been extended to the so-called blind deconvolution setting

x(t) =
P

∑
p=0

A(p)s(t − p) + ε(t) , (2.35)

where the observation sequence is a spatio-temporally-filtered version of source signals (Attias and

Schreiner, 1998; Parra and Spence, 2000; Anemüller et al., 2003; Dyrholm et al., 2007). Methods that

estimate A(p) and s under the assumption of mutual independence of the convolutional sources

s are called convolutive ICA (CICA) approaches. The convolutive ICA with an auto-regressive

inverse model approach (CICAAR, Dyrholm et al., 2007) estimates the parameters A(p) under

the assumption of non-Gaussian distributed source signals s(t) and no noise. For K = M (the

case K < M can be modeled, too) this leads to the maximum likelihood solution

L
CICAAR

({A(p)}) = T
2
log ∣A(0)

⊺
A(0)∣ −

T

∑
t=1

log p( ŝ (t)) (2.36)

ŝ (t) = A−1(0)
⎛

⎝
x(t) −

P

∑
p=1

A(p) ŝ (t − p)
⎞

⎠
, (2.37)

where in practice the convolutive sources are modeled using the super-Gaussian hyperbolic secant

(sech) distribution as p(s(t)) =∏M
m=1 sech(sm(t)).
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The relevance of the convolutive ICA model for EEG data is not directly apparent when one

considers that the propagation of secondary brain electrical currents is purely instantaneous.

However, we show in Chapter 5 that the variables s of the CICAAR model have an interpretation

as innovations of a source MVAR process (where “sources” refers to the instantaneously demixed

time series as in (2.2)), for which an independence assumption is reasonable. Hence, CICAAR can

be used to assess source effective connectivity.

2.8.5 MVARICA

The multivariate autoregression + independent component analysis (MVARICA) approach by

Gómez-Herrero et al. (2008) is a blind source separation technique that is especially tailored to

the analysis of source effective connectivity. It assumes the model x(t) = As(t) and a multivariate

AR model s(t) = ∑P
p=1 B(p)s(t − p) + ε(t) for the sources. This implies that the EEG time series

follows a multivariate AR model

x(t) =
P

∑
p=1

AB(p)A−1x(t − p) + Aε(t) (2.38)

with transformed coefficients B̃(p) = AB(p)A−1 and correlated noise ε̃(t) = Aε(t). The MVAR

model is fitted using the ARFIT algorithm (Neumaier and Schneider, 2001) under the assumption

that the innovation terms are Gaussian distributed. The remaining mutual dependence of the

innovations is removed in a subsequent ICA step on the innovation time series, which is performed

using efficient fast independent component analysis (EFICA, Koldovský et al., 2006). This leads

to an estimate of the mixing matrix A, which is used to obtain the underlying sources’ time series

s(t) = A−1x(t) and the source MVAR coefficients B(p) = A−1B̃(p)A. The latter can be used to

perform source connectivity analysis using, e. g., the directed transfer function or partial directed

coherence.
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3 Reconstruction of simulated source connectivity
using existing approaches

Electroencephalographic recordings have been widely used in neuroscience to estimate brain

(functional or effective) connectivity (e. g., Kamiński et al., 1997; Babiloni et al., 2004; Astolfi et al.,

2004; Babiloni et al., 2005; Silberstein, 2006; Srinivasan et al., 2007; Supp et al., 2007; Blinowska

et al., 2010). However, to our knowledge, there has been no simulation study so far that could

approve the general eligibility of EEG-based connectivity analysis. Neither has the performance of

different popular connectivity measures and preprocessing schemes been evaluated in a unified

way. Efforts in that direction have been carried out in Astolfi et al. (2006b), where partial directed

coherence is applied to simulated data. Similarly, the phase-slope index has been compared to

Granger causality on simulated data under (mixed) noise influence (Nolte et al., 2008, 2010).

However, the results of these studies do not transfer to the EEG case, since none of the respective

simulation settings includes source mixing as caused by volume conduction.

In this chapter, we assess existing measures of effective connectivity in terms of their ability to

infer source interactions from realistic EEG recordings under various conditions and after various

common preprocessing steps. The connectivity measures we consider are Granger-causality (GC),

partial directed coherence (PDC) and the phase-slope index (PSI). A fourth measure, the directed

transfer function (DTF), has been found to perform in a similar way as PDC in all the simulations

carried out here (in fact, it can be shown that both are equivalent for M = 2), for which reason

we omit reporting on DTF separately. We focus on the most simple model that includes source

interaction, namely a two-dipole model with linear dynamics and a time-delayed linear influence

of one source on the other. To ensure comparability, we use the same sources throughout the

various experiments conducted in this study.

The results obtained in each of the experiments are underpinned by statistical analysis. These

statistics are merely related to the findings as such and do not indicate the correctness of the

findings, since it is an open question to quantify correctness of a connectivity estimate under

source mixing. For certain source-space approaches such as blind source separation techniques, it

is possible to quantify the success of both the demixing and the source connectivity analysis steps

separately, if the numbers of true and simulated sources coincide. This is the approach pursued in

Section 3.10 and in an exhaustive numerical evaluation of BSS approaches presented in Section 5.2.

Regarding sensor-space analyses, we are not aware of any objective measure that could be used

to judge the quality of a connectivity estimate. The same holds for inverse source reconstruction

approaches. For this reason, we feel that it is important to provide a qualitative assessment of

such analyses in terms of the plots that would normally be interpreted by neurophysiologists.

To increase comprehensibility, we do not restrict ourselves here to the analysis of a subset of

electrodes but utilize so-called head-in-head plots (see Section 3.2), which are capable of visualizing

full pairwise connectivity graphs in a manner that allows one to link the observed results directly

to the known topographical field patterns of the underlying simulated sources.

29



3 Reconstruction of simulated source connectivity using existing approaches

The study consists of ten experiments. In Section 3.1, we apply measures of effective connectivity

to simulated unmixed source time series. Section 3.2 deals with realistic EEG comprising volume

conduction and noise. Section 3.3 demonstrates the effect of data normalization on PDC. In

Section 3.4, we devise a test that allows one to judge whether estimated connections are related to

time-lagged interaction. Section 3.5 investigates whether the problem of biased PDC estimates

can be overcome by a permutation test using reshuffled data. Sections 3.6 and 3.7 demonstrate the

influence of the choice of the reference electrode and the signal-to-noise ratio (SNR) on connectivity

estimates, respectively. The last three experimental sections evaluate the performance of existing

EEG demixings as preprocessing steps for connectivity estimation. In particular, we test the

effectiveness of the scalp Laplacian (Section 3.8), linear inverse source reconstruction (Section 3.9)

and various blind source separation techniques (Section 3.10). As part of our discussion in

Section 3.11, we motivate the development of new algorithms for demixing connected sources. The

results presented in this chapter are part of an upcoming publication.

3.1 Experiment 1: two interacting sources

Setting

We start with assessing effective connectivity analysis methodologies on the source level, where no

instantaneous mixing of signals due to volume conduction takes place. We simulate a system with

only two sources s1/2(t) following a bivariate AR process of order P = 5, from which we generate

T = 10 000 source samples. The MVAR coefficients are sampled independently fromN ∼ (0, 0.01).

By setting the off-diagonal coefficients b1,2(p), 1 ≤ p ≤ P to zero, while all other coefficients remain

nonzero, unidirectional flow from s1 to s2 is modeled. The sampling process is repeated until a

stable system is obtained. The innovations ε(t) of the source AR process are drawn from the

univariate standard normal distribution. We perform 100 repetitions of the experiment. For each

repetition, we generate a dataset comprising distinct innovation terms and source AR coefficients.

Note that, since in practice source time series cannot be observed, the present experiment serves

mainly as a proof-of-concept for effective connectivitymeasures and a baseline for source demixing

algorithms. We consider the noiseless case here, while the influence of noise has been investigated

in the literature (see below).

We apply Granger causality, partial directed coherence and the phase-slope index to the source

time series. The phase-slope index is computed using an implementation provided by Nolte et al.

(2008)1, while the “Granger Causal Connectivity Analysis” toolbox (Seth, 2010)2 is used to compute

GC, and theMVARICA toolbox (Gómez-Herrero et al., 2008, code not anymore publicly available)

is used to compute PDC. The ARmodel underlying the computation of PDC is estimated using the

ARFIT package (Neumaier and Schneider, 2001)3. Since the source time series are generated using

time-domain MVAR models, interactions affect all frequency bins, for which reason information

flow is estimated here using the complete frequency spectrum of the data. For PDC, that means

that we average the respective frequency-wise scores to obtain a global measure of interaction. A

two-sided one-sample t-test is performed to assess whether the estimated net information flow

1http://ml.cs.tu-berlin.de/causality
2http://www.informatics.sussex.ac.uk/users/anils/aks_code.htm
3http://www.gps.caltech.edu/~tapio/arfit
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3.2 Experiment 2: realistic EEG

according to each of the connectivity measures significantly differs from zero in one or the other

direction. For reporting the results, t-scores are converted into z-scores as outlined in Section 2.4.

Results

All connectivity measures correctly indicate significant net information flow from s1 to s2 with

z-scores exceeding the significance level by far (z > 11). This is not surprising given that the

generating MVAR model introduces a time-lagged influence of s1 on s2, which is exactly the

assumption of all three measures. Moreover, the dynamical model underlying GC and PDC is

exactly the linear multivariate ARmodel, so that correct connectivity estimation here boils down to

the problem of correct AR estimation. Note that, when the source activity is superimposed by noise,

the results can be quite different from those obtained here. Nolte et al. (2008) consider unmixed

sources in the presence of correlated mixed noise and discover that Granger causality tends to

yield spurious interaction if the SNR is low. Moreover, Nolte et al. (2010) show that this behaviour

occurs even with temporally white noise and that the effect depends on the autocorrelation of the

sender’s time series.

3.2 Experiment 2: realistic EEG

Setting

In this experiment, we consider realistic simulated EEG comprising volume conduction and noise.

We assess connectivity directly between sensor-space signals, which is common practice in the

literature (e. g., Kamiński et al., 1997; Hesse et al., 2003; Blinowska et al., 2010). The pseudo-EEG

signal is generated according to

x(t) =
(1 − γ) ( 1

2 ∑
2
i=1

ai s i(t)
∥(ST)i∥2

)

∥ vec (S) ∥2
+ γ

η(t)
∥ vec (E) ∥2

, (3.1)

where x is the EEG signal, s1/2 are the source time series, the generation of which is described

in the previous section, a1/2 are the spread patterns of the dipolar sources evaluated at 59 EEG

electrode positions, η is noise and γ, 0 ≤ γ ≤ 1 is a parameter that adjusts the SNR. Moreover,

E = (η(1), . . . , η(T)) and S = (s(1), . . . , s(T)). The normalizing terms ∥(S⊺)i∥2 are used to

equalize the power of driver and receiver time series, while the normalization by ∥ vec (S) ∥2 and
∥ vec (E) ∥2, respectively, allows precise adjustment of the SNR by means of γ. Here, we set γ = 0.5,

corresponding to a balanced SNR.

We use a head model with realistically-shaped brain, skull and skin shells (Holmes et al., 1998).

Moreover, we assume standard electrode positions as defined in the extended 10-20 system, and

a nose reference. The source dipoles are placed in the left and right hemispheres of the brain,

3 cm below C3 (s1) and C4 (s2), respectively. The moment vectors of both dipoles are chosen to be

tangentially oriented, leading to bipolar field patterns, which do not overlap much. This scenario

can be regarded as a simulation of active sources in the left and right sensorimotor cortices, where

information flows from the left to the right cortex.
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3 Reconstruction of simulated source connectivity using existing approaches

F3 Fz F4

C3 Cz C4

P3 Pz P4

Oz

Figure 3.1: Spatial arrangement of

ten representative electrodes.

The field patterns describing the spread of the source dipoles

to the EEG sensors are computed according to Nolte and Das-

sios (2005). Both the dipolar sources and their correspond-

ing EEG field patterns are depicted in Figure 3.2. These field

patterns are indeed similar to those obtained from electrical

stimulation of the Medianus nerve at the left and right hand,

respectively (see Figure 4.4 (a)). We consider a set of ten desig-

nated electrodes, for which we report results explicitly. These

comprises three frontal electrodes (F3, Fz and F4), three cen-

tral electrodes (C3, Cz and C4), three parietal electrodes (P3,

Pz and P4) and one occipital electrode (Oz). Results on Oz

are only reported in Section 3.9. Three of the electrodes are

located in the left hemisphere (F3, C3 and P3), three in the right

hemisphere (F4, C4 and P4) and four over the central sulcus (Fz, Cz, Pz and Oz). The positions

of these electrodes are marked by circles in Figure 3.2 and their relative arrangement is shown in

Figure 3.1. Notably, the scalp electrical activity at the electrodes under which the sources are located

(C3 and C4) is close to zero, owing to the bipolar structure of the field patterns. The maximal

signal deflection of the patterns is instead achieved at the F3 and F4 electrodes, respectively, while

the minimal (but maximal in absolute terms) deflection is measured at P3 and P4.

The noise terms η(t) = ηsensor + Abiol.ηbiol. are composed of sensor noise ηsensor, which is drawn

independently for each sensor and time point from a standard normal distribution. Furthermore,

we include biological noise, representing cerebral background activity. We compute time courses

of ten noise sources ηbiol.1 (t), . . . , η
biol.
10 (t) using random stable univariate AR models of order ten.

These are mixed into the pseudo-EEG using a spread matrix Abiol. related to ten randomly placed

dipoles with random current moment vectors. Thus, the biological noise is correlated in sensor

space but causes no time-lagged dependencies (interactions). Sensor and biological noises are

scaled to contribute equally to the overall noise η.
We generate 100 pseudo-EEG datasets, in which the underlying source dipoles and their spread

patterns are kept constant, whereas distinct innovations of source and noise AR processes, as

well as distinct source and noise AR coefficients and distinct noise dipole locations are drawn. A

z-score is computed for each entry of the sensor-space connectivity matrices that are estimated by

GC, PDC and PSI, respectively.

Results

The connectivity graphs estimated by GC, PDC and PSI are visualized in Figure 3.3 (a) using

head-in-head plots (Nolte et al., 2004, 2008). Each head-in-head plot is composed of 19 small

circles representing the human scalp. These are arranged within one large scalp plot according

to the positions of the 19 electrodes of the original 10-20 electrode placement system. Each of

the small scalp plots thereby shows the estimated interaction of the respective electrode to all 58

other electrodes, where red and yellow colors (z > 0) stand for information outflow and blue and

cyan colors (z < 0) stand for information inflow. Bonferroni correction is used to account for

multiple testing. The Bonferroni factor is determined to be 551, which is the number of electrode

pairs (19 ⋅ (59 − 1)/2) visualized. The corresponding Bonferroni-corrected significance threshold
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3.2 Experiment 2: realistic EEG

SOURCE 1 PAT 1 LAP PAT 1 P3REF PAT 1

SOURCE 2 PAT 2 LAP PAT 2 P3REF PAT 2

Figure 3.2: Two simulated dipolar sources (SOURCE 1/2) and their corresponding EEG field patterns (PAT

1/2). Sources are placed 3 cm below the C3 (left) and C4 (right) electrodes and are oriented tangentially to

the scalp. Also shown are field patterns after Laplace transformation (LAP PAT 1/2) and after changing the

reference to the P3 electrode (P3REF PAT 1/2).

is z = 4.0 and is indicated by a thin black line in the colorbar, while the z-score corresponding to

an uncorrected p-value of p = 0.05 (z = 2.0) is indicated by a thick black line.

Granger causality yields rather noisy connectivity patterns (see Figure 3.3) with no significant

(z > 4.0) interactions between the nine frontal, central and parietal electrodes. We here report

also connections that do not surpass Bonferroni correction but are otherwise significant (i. e.,

z > 2.0). The respective flows are measured from F3, P3 and P4 to Fz, P3 and P4 to Pz, C3 to C4

and Cz to P4. Hence, we observe mainly symmetric flow from lateralized electrodes, where the

underlying sources are strongest, to central electrodes, where they are weakest. This is in line with

an observation made by Nolte et al. (2008), where it is stated that Granger causality is affected by

asymmetries in the noise distributions as caused, for example, by unequal signal-to-noise ratios.

Notably, GC hardly makes any distinction between the driving and the receiving hemisphere.

While it does indicate flow from C3 to C4, it is questionable whether this reflects the true flow

between the underlying sources when one considers that their field patterns have almost zero

activity at C3 and C4, respectively.

Partial directed coherence yields significant (z > 4.0) information flow from F3, C3, Fz, Cz,

F4 and C4 to P3, from F3, C3, Fz, Cz, F4, C4 to P4, from C3, Cz and C4 to Fz, from F3, C3, Fz,

Cz, F4 and C4 to Pz, from C3 and Cz to F3 and from Cz to F4. That is, PDC indicates gross

symmetric bilateral information exchange from electrodes with low SNR to electrodes with high

SNR, regardless of whether the electrode belongs to the “driving” or “receiving” hemisphere. We

identify this behaviour of PDC to be related to asymmetries in the scaling of the data rather

than the SNR. In fact, we observe that PDC estimates significant interaction even on temporally

and spatially white noise time series, which are differently scaled. This bias is caused by the fact

that (the maximum-likelihood estimate of) the MVAR coefficients modeling the flow from low-

to high-amplitude electrodes need to have larger amplitudes than those modeling the opposite

direction, even though the data are completely random.

33



3 Reconstruction of simulated source connectivity using existing approaches

If there is no noise at all, the maximum-likelihood estimators of the MVAR models underlying

PDC are not uniquely defined. The result of this method then additionally depends on regularizing

assumptions made in the MVAR estimation. We observe that in this scenario the ARFIT estimate

yields results vastly differing from, for example, the MVAR coefficients with minimum ℓ2-norm.

PSI correctly reveals information flow from the left to the right hemisphere, where the respective

connectivity pattern resembles the true field patterns of the underlying sources. That is, almost

all electrodes in the right hemisphere receive information from almost all electrodes in the left

hemisphere, while the most significant flow passes from those regions in which the driving source

is most strongly expressed to those in which the receiving source is most strongly expressed. In

particular, PSI estimates significant (z > 4.0) flow from F3, C3, P3, Fz and Pz to F4, from F3, P3 and

Fz to C4, from F3, C3, P3, Fz and Pz to P4, from F3 and P3 to Fz and from F3 and P3 to Pz. Generally,

we can derive the empirical rule that (if driving and receiving sources are similarly strong and noise

sources contribute equally much to all sensors) PSI roughly varies with log(∣a1,i ∣∣a2, j∣/∣a2,i ∣∣a1, j∣),

which we call the driver-receiver ratio related to a pair of electrodes (i , j) and a pair of driving

and receiving sources. Assuming that s1 is the driver and s2 is the receiver, PSI estimates flow

from channel xi to channel x j if the driver-receiver ratio is positive and flow from x j to xi if the

driver-receiver ratio is negative.

3.3 Experiment 3: normalization

Setting

Having demonstrated PDC’s dependence on the scale of the signals, we now study normalized

EEG data xm(t) ← (xm(t) − µxm)/σxm , m = 1, . . . ,M. We apply the normalization to the same

data that is used in Section 3.2.

Results

Granger causality and the phase-slope index are invariant with respect to the scaling of the data (see

Section 2.6), for which reason the connectivity maps related to both measures are identical to those

related to the original data (c. f. Figure 3.3 (b) and Figure 3.3 (a)). In contrast, the flow according to

PDC roughly reverses using normalized time series, indicating a further asymmetry in the MVAR

Figure 3.3 (following page): Comparison of effective connectivity of simulated EEG as estimated by Granger

causality (GC), partial directed coherence (PDC) and the phase-slope index (PSI). Two source dipoles with

tangential orientations are modeled 3 cm below the C3/4 electrodes. Information flow from the left (C3) to

the right (C4) source is modeled by means of a bivariate AR model. The simulated EEG is superimposed by

non-interacting biological and sensor noise (SNR= 1). The significance of estimated interactions ismeasured

in terms of z-scores and visualized as head-in-head plots, where red and yellow colors (z > 0) stand for

information outflow and blue and cyan colors (z < 0) stand for information inflow. The Bonferroni-corrected

significance level is indicated by a thin black line in the colorbar, while the uncorrected significance level

is indicated by a thick black line. (a) Analysis of “raw” EEG data. (b) Analysis of normalized data. (c)

Analysis of normalized time-reversed data. (d) Analysis of normalized time-reshuffled data. (e) Analysis

using a two-sample statistical test for differences between normalized original and time-reshuffled data.
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3 Reconstruction of simulated source connectivity using existing approaches

coefficients that was previously masked by the asymmetry introduced by the signal scale. To be

precise, the direction of all significant connections reverses, except for new connections from F3

and F4 to C4, and from P3 and P4 to Pz, as well as the lack of connections from F3 to C3, and Pz

to F3, Fz and F4. While we could not reproduce these effects on purely (temporally and spatially)

white data, it also occurs on time-reversed as well as temporally-reshuffled data (see Sections 3.4

and 3.5). Hence, we conclude that the spurious effects we observe here are related to differences in

the channels’ signal-to-noise ratios and the concomitant differences in inter-channel correlations.

As we note later, this should be distinguished from the influence the SNR has on Granger causality,

which appears only if the data is in correct temporal order.

3.4 Experiment 4: time reversal

Setting

While we have identified a number of artifactual confounders affecting Granger-type connectivity

measures in the previous sections, we are now concerned with the problem of assessing whether

such confounders are the predominant reason for a given detected connection. Precisely, we

introduce a simple test to assess whether an estimated interaction is truly time-lagged. According

to this idea, assuming that the driver precedes the receiver, the driver-receiver relationship reverses

if the temporal order of the time series is reversed. Hence, if significant flow is estimated on the

original data, its direction (sign) should ideally flip under time inversion, while it is also acceptable

if the estimated flow in the “wrong” direction completely vanishes. If, however, original and

time-reversed signals yield the same flow direction, the effect cannot be related to a measurable

time-lag of the interaction and artifactual confounders are the likely reason. We apply our test on

time-reversed versions of the normalized data used in the previous section.

Results

The connectivity patterns obtained on time-reversed data are shown in Figure 3.3 (c). Due to

the Hermitian property of the cross-spectrum, PSI exactly changes its sign under time inversion

(see Section 2.6), which is the desired behaviour. For GC, no significant connections are found.

Connections associated with z-scores greater than two are found to pass from P4 to F3, C3, P3

and Pz, from F4 to C3 and C4, and from C4 to P4. That is, the original normalized and the

time-reversed data share a presumed connection from P4 to Pz, while no connection reverses

after time-reversal. The remaining connections estimated by GC on time-reversed data do not

occur (in neither direction) on the original normalized data. Hence, the connection from P4 to Pz

is unlikely to relate to time-lagged interaction, while the outcome of the test is undefined for all

other connections. Partial directed coherence applied to time-reversed data shares all connections

with the result obtained from original data, except for a missing connection from F3 to C4 and

three additional connections from F3 and F4 to C3 and From Pz to F4. These results indicate that

most effects found by PDC are artifacts not related to time-lagged interaction.
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3.5 Experiment 5: permutation testing

3.5 Experiment 5: permutation testing

Setting

In Kamiński et al. (2001) it is suggested to use permutation tests for assessing the significance

of connections estimated by partial directed coherence. This is reasonable, since it may be the

case that a two-sample test for differences between results obtained on original and randomly

permuted time series cancels out artifactual effects while revealing smaller effects that are possibly

related to genuine information flow. In this experiment, we adopt the idea of a permutation test.

Using the generation scheme of the normalized dataset described in Section 3.3, we create an

additional version in which the data are temporally permuted. Electrode-wise differences between

the two datasets are assessed by means of a two-sample t-test and transformed into z-scores. For

completeness, a one-sample statistical test is also performed on the reshuffled dataset.

Results

The one-sample test does not yield any significant connection with associated z-scores greater

than four for GC and PSI, while z scores exceeding two are found for very few connections (from

P3 to C3 and Cz to P4 for GC and from P3 to C3 and C4 to Fz for PSI, see Figure 3.3 (d)). The lack

of estimated interaction is the desired behaviour given that the temporal structure of the data is

destroyed by the reshuffling. The analysis of PDC on this data, however, yields the same picture

as on non-shuffled data except for missing connections from F4 to Cz, P3 to Pz and F4 to C4,

plus additional connections from F3 to C3 and from Pz to F3, Fz and F4. That is, PDC estimates

gross significant information flow from high-SNR to low-SNR sensors even in the absence of any

temporal structure in the data.

When comparing original and reshuffled data using the two-sample test (see Figure 3.3 (e)),

GC yields connections (z > 2.0) from F3 and P3 to Fz, and from C4 and P4 to Pz, none of which

is significant after Bonferroni correction. This means that there is almost no difference between

one-sample and two-sample testing for this method (c.f. the results in Section 3.3). The same

holds for PSI, which yields the same significant connections (z > 4.0) as in one-sample testing,

except for two missing connections from C3 to F4 and from Fz to C4. In contrast, PDC yields no

significant connections anymore. This is explained by the dominance of artifactual confounders

both in the original and the reshuffled data, which cancel out when comparing the two. Probable

interactions (z > 2.0) are detected from F3 to Fz and from P4 to Pz and C4. That is, as a result of

using two-sample testing the PDC estimate is similar to the GC estimate, with which it shares two

out of four connections. In sum, appears that PDC suffers in two ways from unequal signal-to-

noise ratios in the data. While the larger effect, an asymmetry in the MVAR coefficients caused by

unequal degrees of correlation in EEG channel pairs, can be eliminated by permutation testing,

the smaller effect related to the fact that high-SNR channels are better suited for predicting the

future of low-SNR channels than vice-versa, remains.
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3 Reconstruction of simulated source connectivity using existing approaches

3.6 Experiment 6: influence of the reference electrode

Setting

The results obtained so far in sensor space indicate that effective connectivity measures based

on the idea of Granger causality suffer from a number of estimation biases, which prevent them

from recovering the true inter-hemispheric information flow in our simulated example. PSI, in

contrast, reveals that flow. However, the correct interpretion of head-in-head plots is difficult even

when PSI is used. In Section 3.2, we noted that PSI designates two electrodes as driver and receiver,

respectively, if the corresponding driver-receiver ratio is large enough. Unfortunately, this ratio

depends on how much signal the reference electrode picks up from the underlying driving and

receiving sources. In this experiment, we construct an example in which the change of reference

drastically affects the driver-receiver ratio. While all previous simulations were carried out using a

nose reference, we now consider data that is re-referenced by subtracting the activity of the P3

electrode. Note that this choice is particularly harmful, since the driving source is most strongly

expressed in P3 (see Figure 3.2). We consider the original EEG data, which are described Section 3.2.

After re-referenciation, these data are normalized and subjected to effective connectivity analysis.

As in all experiments except for the previous one, we use a one-sample test for statistical evaluation.

Results

Figure 3.4 (a) shows sensor-space connectivity maps obtained on re-referenced data. Granger

causality does not yield significant (z > 4.0) information flow, whereas there are three probable

connections (from F3 to Fz and F4, and from P4 to F4) with z scores greater than two. The maps

related to PDC and PSI both differ substantially from those obtained from original normalized

data (see Figure 3.3 (b)). For PDC, left parietal regions are designated to receive information from

all other regions (z > 4.0), which is incorrect but understandable since PDC on normalized data is

biased towards estimating flow from high-SNR to low-SNR channels. Precisely, PDC estimates

connections from F3, Fz, Cz, F4, C4 and P4 to C3, from F3, C3, Fz, Cz, Pz, F4, C4 and P4 to P3,

from F3, Fz and F4 to Cz, from F3, C3, Fz, Cz, F4, C4 and P4 to Pz, from F3 to F4, from F3, Fz

and F4 to C4, and from F3, Fz and F4 to P4. Regarding PSI, the left frontal region is estimated as

the only driving region, while no significant interaction is estimated for the left posterior region.

Significant connections (z > 4.0) are estimated from F3 to Fz, from F3, Cz and C4 to Pz, from F3,

Cz and C4 to F4, and from F3, C3, Fz, Cz, Pz and C4 to P4. For understanding this behaviour of

PSI, it is helpful to inspect the re-referenced field patterns of the interacting sources, which are

depicted in Figure 3.2. According to these, the sending source is much weaker than before in the

region around P3, which causes changes in the global driver-receiver ratio.

In line with our findings, a problematic influence of the choice of the reference electrode

on sensor-space coherency estimates has been noted in Nunez et al. (1997) and Marzetti et al.

(2007). Marzetti et al. propose the standardized infinity reference as a potential mitigation, which

is, however, only available in a spherical head model. Moreover, there exist a number of ways to

transform the data into a reference free representation (see Sections 3.8–3.10).
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3.7 Experiment 7: influence of the SNR

Setting

Whether an estimated effective connection is significant or not naturally depends on the overall

signal-to-noise ratio, which is adjusted by γ. While this is somehow trivial, we, however, also

observe that results obtained at different SNR’s may lead to different conclusions regarding the

size and location of the underlying interacting brain regions, which we consider an issue worth

mentioning. In this experiment, we study the influence of low (γ = 0.25) and high (γ = 0.75) SNR.

We consider normalized data generated as in Section 3.2.

Results

Connectivity estimates for γ = 0.25 and γ = 0.75 are depicted in Figure 3.4 (b) and (c), while the

case γ = 0.5 is depicted in Figure 3.3 (b). Granger causality is relatively unaffected by the SNR in

that, regardless of the choice of γ, the estimated connections are not significant after Bonferroni

correction. Connections corresponding to z-scores greater than two are noted from C3 to F3, Cz

to P3, F3 to Fz, C3 to Cz, P3 to Pz, F3 to F4, and from F3, P3 and Cz to P4 for γ = 0.25, which is

similar to the results obtained for γ = 0.5. Interestingly, there are fewer connections with z-scores

greater than two for γ = 0.75 (that is, at high SNR). The respective connections pass from C3 and

P4 to F3, from C3 and P4 to Fz, from C3 and P4 to Pz, and from P4 to C4. Regarding PDC and

PSI, we note that, the higher γ is, the broader the regions are in which the estimated information

flow is significant with z > 4.0. In contrast to the case γ = 0.5, PDC misses all connections except

those from P3 and P4 to Fz for γ = 0.25. For γ = 0.75, additional connections are estimated from

F3 and F4 to C3, from C3 and C4 to Cz, and from Pz to F4, while the connection from P3 to Pz

is missing. Similarly, for PSI, additional connections are estimated from P3 to F3, from C3 to Fz,

from F3, C3 and P3 to Cz, from C3 to Pz and C4, from Pz to C4, and from F4 to P4 for γ = 0.75,

while the connection from P3 to P4 is the only one retained for γ = 0.25. Importantly, the analysis

of data generated with γ = 0.25 suggests smaller interacting brain areas than it is the case for

γ = 0.5, since the upper lobes of the two bipolar field patterns do not reach significance, which

might lead to a totally different assessment of the number of underlying sources and their location

for γ = 0.25. Analogously, for γ = 0.75 one might come to the conclusion that larger areas within

both hemispheres are interacting, although, in fact, the underlying simulated sources are point

sources without spatial extent.

3.8 Experiment 8: Laplace filtering

Setting

Having assessed the possibility of performing connectivity analysis in sensor space, we now turn to

investigating preprocessing steps that promise to provide estimates of the actual underlying sources.

We start with examining the discrete Laplace operator, which is defined as the sum of the second

spatial derivatives of the scalp electrical potential. The Laplacian is known to locally enhance

the signal-to-noise ratio, which is beneficial, e. g., for brain-computer interfacing classification

(Sannelli et al., 2011). Several studies investigate the use of scalp Laplacians in the context of
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3 Reconstruction of simulated source connectivity using existing approaches

coherence analysis and come to the conclusion that Laplace spatial filtering reasonably supresses

volume conduction (Srinivasan et al., 1998, 2007; Babiloni et al., 2004). Since the Laplacian is a

spatial highpass filter, Laplace-transformed EEG data is sometimes regarded as an estimate of the

source activity directly below the electrodes. Notably, the Laplacian is independent of the choice

of the reference electrode and thereby provides a standardized way of analyzing EEG datasets.

In this experiment, we apply Laplace spatial filtering as a preprocessing step to EEG-based

effective connectivity analysis. We use an implementation called current source density (CSD,

Kayser and Tenke, 2006), which employs spherical spline interpolation of the scalp surface. We

apply the Laplace filter to the original EEG time series described in Section 3.2. To restore the

full rank of the data (Laplace filtering reduces the rank by one), we add a small amount of white

Gaussian noise, which is several orders of magnitude smaller than the signal level. The resulting

time series are then normalized and analyzed using GC, PDC and PSI.

Results

The Laplace transformation does not affect Granger causality in the sense that no statistically

significant (after Bonferroni correction) connections arise as a result of this preprocessing (see

Figure 3.4 (d)). Connections with z-scores greater than two are noted to pass from C3 to F3, Fz

and Cz to P3, C4 to Pz, Fz to F4, and P4 to C4. For PDC and PSI, Laplace filtering leads to higher

frequency structures in the sensor-space connectivity maps, compared to the maps obtained from

the original normalized EEG data. However, the spurious effects noted previously are still prevalent

in the PDC estimate (while having higher spatial complexity). In particular, we note significant

(z > 4.0) connections from F3, P3, Fz, Pz, F4 and P4 to C3, from F3, P3, F4 and P4 to Fz, from F3,

P3, Fz, Pz, F4 and P4 to Cz, from F3, P3, F4 and P4 to Pz, and from F3, P3, Fz, Pz, F4 and P4 to C4.

For PSI, we note significant (z > 4.0) connections from P3 to Fz, Cz, F4, C4 and P4, from F3 to F4

and P4, and from C3, Fz and Cz to P4. All results obtained on Laplace transformed normalized

data are hence qualitatively similar to those obtained on the original normalized data. This is

also apparent from the Laplace filtered field patterns of the interacting sources (see Figure 3.2),

which exhibit slightly more focal active regions than the original patterns, but have the same

bipolar structure. We thus conclude that Laplace filtering is not effective in demixing sources with

tangential orientation. Note that, due to operating only in a neighborhood of electrodes, it is also

ineffective in the case of low-frequent field patterns as induced by deep sources.

3.9 Experiment 9: linear inverse preprocessing

Setting

While Laplace filtering is not helpful if the underlying sources are deep and/or tangentially-oriented,

this restriction does not apply to genuine solutions of the EEG inverse problem, which are also

reference-free. Working on inverse solutions moreover allows one to study brain interaction

directly in terms of the estimated signal-generating brain structures, which are otherwise hard

to infer from sensor-space connectivity maps. And finally, inverse solutions are ideally unmixed,

which may even justify Granger-causal analysis of the sources. Motivated by these considerations,

a number of studies have investigated effective connectivity by means of Granger-causal analysis
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Figure 3.4: Comparison of effective connectivity of simulated EEG as estimated by Granger causality (GC),

partial directed coherence (PDC) and the phase-slope index (PSI). Two source dipoles with tangential

orientations are modeled 3 cm below the C3/4 electrodes. Information flow from the left (C3) to the right

(C4) source is modeled by means of a bivariate AR model. The simulated EEG is superimposed by non-

interacting biological and sensor noise (SNR = 1). The significance of estimated interactions is measured

in terms of z-scores and visualized as head-in-head plots, where red and yellow colors (z > 0) stand for

information outflow and blue and cyan colors (z < 0) stand for information inflow. The Bonferroni-corrected

significance level is indicated by a thin black line in the colorbar, while the uncorrected significance level is

indicated by a thick black line. (a) Analysis of re-referenced normalized data. (b/c) Analysis of normalized

data at different signal-to-noise ratios (SNR). (d) Analysis of Laplace-transformed normalized data.
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of cortically-constrained minimum-norm source estimates (e. g., Babiloni et al., 2005; Astolfi

et al., 2006a; Gow et al., 2008). In this experiment, we follow a similar approach by applying

the weighted-minimum norm estimate (WMN) to the original EEG data used in Section 3.2.

The depth-compensation matrix W of WMN is chosen as in focal vectorfield reconstruction,

which is introduced later (see Section 4.1). This choice has been shown to outperform the original

suggestion (Jeffs et al., 1987; Matsuura and Okabe, 1995) in terms of localization accuracy (Haufe

et al., 2008). The regularization parameter λ is chosen using 5-fold cross-validation, which is

implemented by splitting the set of electrodes randomly into five folds. The same regularization

parameter is selected for all time indices t. The localization is conducted in the same head model

in which the data was simulated, that is, the “Montreal” head with nose reference. We define the

interior of the whole brain shell as the source space, which is partitioned into N = 2 142 voxels of

10mm side length. In the center of each voxel, a dipolar source is modeled, the current moment

vector of which is estimated for each time point using WMN. The resulting time courses are the

basis of the subsequent connectivity assessment.

Estimating effective connectivity on inverse source estimates provided by a distributed linear

inverse method poses three challenges. The first one refers to the fact that each dipolar brain

source has three orientation parameters describing the amplitude of the current in each of the

three spatial directions. As a consequence, no less than nine distinct combinations of source

time series have to be considered when assessing the information flow between two dipoles. The

second challenge is posed by the large number of dipoles that are required to sample the source

space with sufficient spatial resolution. Computing the full connectivity matrix for all 3N = 6426

time series is computationally expensive using PSI, while it is intractable for all Granger-causal

methods. Hence, a dimensionality reduction must be performed prior to source connectivity

estimation. The third challenge refers to the visualization of the effective connectivity graph, since

it is not straightforward to visualize all pairwise interactions in source space in a similar way as it

is possible in sensor space using head-in-head plots.

In order to reduce the dimensionality in source space, we define regions-of-interest (ROIs) similar

to Babiloni et al. (2005) and Astolfi et al. (2006a). Since we are only concerned with simulated

data, we do not define these regions anatomically but partition the source space according to the

nearest (in the Euclidean sense) EEG electrode. Doing so enables us to present the results using

the familiar head-in-head plots. Dipoles that are further than 5 cm away from any electrode are

not assigned to any region. The source activity within each ROI is averaged separately for each

spatial dimension to yield a 3M-dimensional time series. Since this time series has at most rank

M, a small amount of noise is added in order to establish full rank. The resulting time series are

normalized and subjected to effective connectivity analysis. The application of each of the effective

connectivity measures yields a 3M × 3M connectivity matrix consisting of 3 × 3 blocks R(i , j),

which describe the interactions (net flows) between the i-th and the j-th dipole in all three spatial

dimensions. We define the total net flow from the i-th to the j-th voxel as the sum over all entries

of R(i , j). This operation yields an antisymmetric M ×M matrix, the entries of which are tested

for being significantly different from zero using one-sample testing.
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Results

The result of theWMN inverse source reconstruction is depicted in the upper left panel of Figure 3.5

as a heat map showing estimated dipole moment vector amplitudes (averaged over all time instants

and repetitions). The plot is overlaid with arrows depicting the true interacting dipolar sources.

Evidently, the source activity estimated by WMN is spread over the entire brain. The true sources

are not well separated, as the source amplitude map exhibits only one local maximum, which is in

between the two true dipoles. As a consequence, it is not possible to estimate source connectivity

between “active” regions based on the WMN estimate. Rather, a ROI-based approach has to be

taken, as pursued here. The mean amplitude of source activity in each ROI is depicted in the upper

right panel of Figure 3.5 as a scalp map. While large portions of activity are concentrated under

central electrodes around C3 and C4, there is also a lot of deep activity which is closer to occipital

electrodes.

The estimated effective connectivity between ROIs is depicted in the lower panel of Figure 3.5

using head-in-head plots. Note that the interpretation of these plots here is not the same as

in previous sections, since the depicted connectivity maps do not reflect interactions between

electrodes but interactions between ROIs below these electrodes. Since information flow is not so

meaningful if it is estimated between (almost) inactive regions, the information about the strength

of the source activity is encoded in the visualization by means of the transparency value. Here, the

ROI with maximal strength is drawn with full opacity, while 10% opacity is used for the ROI with

minimal strength. Transparency values for ROIs in between are assigned using a monotonous

sigmoidal nonlinearity.

To account for the more diverse activity patterns of the WMN source estimates compared to the

sensor-space field patterns, we extend the set of electrodes (and corresponding ROIs) for which

we explicitly report z statistics by the occipital channel Oz, which is located posterior to all other

channels (see Figures 3.2 and 3.1). We here report connections only for pairs of active ROIs, the

combined strength (measured as the product of the mean source amplitudes) of which is at least

0.25 times as strong as the maximal strength measured for all combinations of ROIs.

The connectivity map according to PSI exhibits information flow from gross regions in the left

hemisphere to gross regions in the right hemisphere. This involves the correct lateralized central

regions in which strong source activity is estimated by WMN, but also an occipital area which has

similarly strong presumed source activity. This latter region is estimated to transmit information

from the left central area to the right central area, which is incorrect. Precisely, there are significant

interactions (z > 4.0) from the regions below F3, C3 and P3 to the region below Oz, from the

region below C3 to the regions below C4 and P4, and from the region below Oz to the regions

below C4 and P4. Hence, it appears that WMN is not only incapable of localizing the true source

regions accurately. It also only insufficiently demixes the sensor signals, which causes the spurious

detection of interaction between active regions.

Regarding GC, we note that WMN linear inverse preprocessing does not lead to the detection

of any notable (z > 2.0) flow between active ROIs. Partial directed coherence analysis on ROIs

does not yield connections that are significant after Bonferroni correction, while we observe z

scores greater than two related to connections from regions below F3, C3, P3 and C4 to the region

below Oz. Note that there are no connections with z scores greater than two for GC and PDC, if

two-sample instead of one-sample testing is used.
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Figure 3.5: Comparison of effective connectivity of simulated EEG as estimated by Granger causality (GC),

partial directed coherence (PDC) and the phase-slope index (PSI) after application of weighted minimum

norm (WMN) linear inverse source reconstruction. Two source dipoles with tangential orientations are

modeled 3 cm below the C3/4 electrodes. Information flow from the left (C3) to the right (C4) source

is modeled by means of a bivariate AR process. The simulated EEG is superimposed by non-interacting

biological and sensor noise (SNR = 1). Upper left panel: average source strength (dipole amplitude) per voxel.

Upper right panel: average source strength in regions-of-interest associated with the closest EEG electrode.

Lower panel: Connectivity between regions-of-interest in source space, which are defined based on the

nearest EEG electrode. The significance of estimated interactions between regions is measured in terms of

z-scores and visualized as head-in-head plots, where red and yellow colors (z > 0) stand for information

outflow and blue and cyan colors (z < 0) stand for information inflow. The Bonferroni-corrected significance

level is indicated by a thin black line in the colorbar, while the uncorrected significance level is indicated by

a thick black line.

3.10 Experiment 10: blind source separation preprocessing

Setting

An alternative to source reconstruction based on a physical model is blind source separation (BSS),

which amounts to demixing the sensor signals solely based on statistical assumptions. The aim of

this experiment is to evaluate popular BSS techniques regarding their ability to demix EEG sources

with mutual interaction structure, as those simulated here. We here consider four methods, namely

MVARICA, which has been explicitly designed to study source effective connectivity, CICAAR,

for which we note in Section 5.2 that it may be used for source connectivity analysis, and two

variants of ICA, namely temporal decorrelation source separation (TDSEP) and joint approximate

diagonalization (JADE). The latter are included here, because ICA has been frequently employed

in EEG synchronization and connectivity studies (Beckmann et al., 2005; Meinecke et al., 2005;
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Astolfi et al., 2007), although their independence assumption technically contradicts such analysis.

We do not consider PISA here, since this method is tailored to detecting functional connectivity,

while we are interested in also determining the direction of flow. Moreover, PISA itself provides

only estimates of two-dimensional subspaces containing pairs of interacting sources, relying on

additional post-processing steps to demix these source pairs.

The most popular BSS technique, principal component analysis (PCA), is a demixing into instan-

taneously decorrelated time series with orthogonal spatial patterns. Owing to the orthogonality

constraint, PCA is unable to correctly estimate the mixing patterns in general, for which reason

we use it here mainly to reduce the dimensionality of the data prior to an additional subsequent

demixing. We apply all BSS methods to normalized source time series associated with the five

strongest PCA components, where the number K = 5 is chosen to be lower than the known number

of simulated interacting brain sources. We use implementations of MVARICA, CICAAR, TDSEP

and JADE provided by the respective authors of Gómez-Herrero et al. (2008), Dyrholm et al.

(2007)4, Ziehe and Müller (1998)5 and Cardoso and Souloumiac (1996)6. The joint diagonalization

in TDSEP is carried out using fast Frobenius-norm joint diagonalization (FFDIAG, Ziehe et al.,

2004)7. The number of time lags in TDSEP is chosen to be τ = 100, while it is selected from

{1, . . . , 9} for MVARICA and CICAAR using the Bayesian information criterion. We use the

default parameters for JADE.

The result of applying BSS techniques is a decomposition of the data into five components

consisting of a field pattern and a time series. The time series are normalized and analyzed using

GC, PDC and PSI. Since only the outer product of a field pattern and a one-dimensional source

time series defines a BSS component, there is a degree of freedom regarding the sign and scale

of both factors (although normalization of the time series can be used to overcome the scale

invariance). Moreover, the order of the BSS components is arbitrary. These indeterminacies

make it difficult to match similar components obtained from differing decompositions, which is

a requirement for subsequent statistical assessment. We here use the Kuhn-Munkres algorithm

(Kuhn, 1955; Munkres, 1957) to match BSS components obtained in the various repetitions of the

experiment. This algorithm computes a pairing of two sets of vectors, which is optimal regarding

a given measure of similarity between vectors. We use the implementation provided by Tichavský

and Koldovský (2004)8 to match the estimated field patterns. As a similarity measure for field

patterns, we use the goodness-of-fit (GOF) achieved by linear OLS regression of one onto the other

pattern. For two patterns a1 and a2, the optimal regression coefficient is c(a1, a2) = a⊺2a1/∥a2∥
2 and

the goodness-of-fit is GOF(a1, a2) = ∥c(a1, a2)a2 − a1∥/∥a1∥.
We obtain a global alignment of BSS components using the field patterns estimated in the

first repetition of the experiment as a template, to which patterns obtained in later repetitions

are transformed. That is, starting from the second repetition, the optimal pairing between the

newly-obtained and the template field patterns is computed. Having found the pairing, the new

field patterns are permuted and scaled to approximate the templates as well as possible using the

optimal regression coefficients. The source connectivity graphs estimated by GC, PDC and PSI are

4http://www.machlea.com/mads/cicaar/index.html
5http://user.cs.tu-berlin.de/~ziehe/code/tdsep.zip
6http://perso.telecom-paristech.fr/~cardoso/Algo/Jade/jadeR.m
7http://user.cs.tu-berlin.de/~ziehe/code/ffdiag_pack.zip
8http://si.utia.cas.cz/downloadPT.htm
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also permuted accordingly. We furthermore compute the goodness-of-fit related to all pairs of true

and estimated field patterns. We identify the estimated components that achieve the best average

GOF for each true component. These components are reported along with the respective GOF

scores. Finally, one-sample testing is employed to assess whether there is significant information

flow between the estimated source time series. Since there are ten possible pairwise interactions

between five time series, the z-score corresponding to a Bonferroni-corrected p-value of p = 0.05

is given by z = 2.8.

To investigate the importance of non-Gaussianity for blind source separation, we perform the

analysis on the original data introduced in Section 3.2, as well as on new instances, in which the

source MVAR innovations are drawn from the super-Gaussian hyperbolic secant distribution

(Dyrholm et al., 2007) instead of the standard normal distribution.

Results

Figures 3.6 and 3.7 depict the source field patterns (averaged across repetitions) estimated by

MVARICA, CICAAR, TDSEP and JADE, as well as the connectivity estimates calculated from the

associated source time series for Gaussian (Figure 3.6) and non-Gaussian (Figure 3.7) innovations.

The estimated connectivity graphs are presented as matrices, in which red and yellow colors (z > 0)

in the intersection of the i-th row and the j-th column denote that there is net information flow

from the i-th to the j-th source, while blue and cyan colors (z < 0) denote the opposite case.

In the case of Gaussian innovations, only TDSEP is able to reasonably recover the underlying

interacting source components. Here, the pattern of component C4 corresponds to the pattern of

source in the right hemisphere, while that of component C5 correspond to the pattern of source

in the left hemisphere. The respective GOF scores are 0.71 ± 0.02 for C4 and 0.73 ± 0.02 for

C5. The remaining components C1, C2 and C3 reflect different sources, which reflect simulated

biological noise. A significant (z > 2.8) flow from C5 to C4 is correctly estimated by all three

measures of effective connectivity. Moreover, no additional significant connections are found by

any measure. The remaining BSS methods MVARICA, CICAAR and JADE do not isolate the true

two sources in single components but rather mix them to a varying degree into all sources. The best

approximation of the source in the left hemisphere is achieved by component C3 for MVARICA

Figure 3.6 (following page): Comparison of effective connectivity of simulated EEG as estimated by Granger

causality (GC), partial directed coherence (PDC) and the phase-slope index (PSI) after application of blind

source separation (BSS) preprocessing according to combined multivariate autoregressive estimation and

independent component analysis (MVARICA), convolutive independent analysis via inverse autoregression

(CICAAR), temporal decorrelation source separation (TDSEP) and joint approximate diagonalization

(JADE). Two source dipoles with tangential orientations are modeled 3 cm below the C3/4 electrodes.

Information flow from the left (C3) to the right (C4) source is modeled by means of a bivariate AR process

with Gaussian innovations. The simulated EEG is superimposed by non-interacting biological and sensor

noise (SNR = 1). BSS techniques are applied to the five strongest PCA components. The significance

of estimated interactions between demixed signals is measured in terms of z-scores and visualized as

matrices, where entries with red and yellow colors (z > 0) stand for information outflow and entries with

blue and cyan colors (z < 0) stand for information inflow of the source marked in the respective row. The

Bonferroni-corrected significance level is indicated by a thin black line in the colorbar, while the uncorrected

significance level is indicated by a thick black line.
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(GOF = 0.50 ± 0.02), by component C5 for CICAAR (GOF = 0.51 ± 0.02), and by component C2

for JADE (GOF = 0.46 ± 0.02), while the source in the right hemisphere is best approximated

by component C1 for MVARICA (GOF = 0.48 ± 0.02), by component C5 for CICAAR (GOF =

0.36± 0.02), and by component C1 for JADE (GOF = 0.41± 0.02). Given the insufficient demixing

of MVARICA, CICAAR and JADE, we do not report the presence of significant interactions

obtained using these preprocessings.

For hyperbolic-secant-distributed source MVAR innovation terms, the picture is quite different.

Here, all four BSS methods deliver source components, the patterns of which resemble the patterns

of the two true interacting dipoles well. For MVARICA, the true sources are reflected in the

components C5 (left hemisphere) and C4 (right hemisphere), while the respective components

are C4 (left hemisphere) and C2 (right hemisphere) for CICAAR, C4 (left hemisphere) and C5

(right hemisphere) for TDSEP and C3 (left hemisphere) and C2 (right hemisphere) for JADE.

The corresponding GOF scores achieved are 0.90 ± 0.01 (C5) and 0.90 ± 0.01 (C4) for MVARICA,

0.93±0.01 (C4) and 0.92±0.01 (C2) for CICAAR, 0.74±0.01 (C4) and 0.80±0.01 (C3) for TDSEP

and 0.57 ± 0.01 (C2) and 0.55 ± 0.01 (C4) for JADE. The flow from the right-hemisphere source

to the left-hemisphere source is significant (z > 2.8) for all effective connectivity measures and

BSS preprocessings. For PSI, this remains the only significant connection regardless of the BSS

method employed. Partial directed coherence estimates one additional significant connection

when used withMVARICA, four when used with CICAAR, and two when used with TDSEP, while

Granger causality estimates three additional significant connections when used in conjunctionwith

MVARICA and two when used with JADE. This indicates that certain asymmetries influencing the

results of Granger-causal measures as revealed in previous sections are also prevalent in the source

estimates provided by the tested blind source separation methods. Note that the picture does not

change substantially when two-sample statistical testing is emplyed instead of one-sample testing.

Figure 3.7 (following page): Comparison of effective connectivity of simulated EEG as estimated by Granger

causality (GC), partial directed coherence (PDC) and the phase-slope index (PSI) after application of blind

source separation (BSS) preprocessing according to combined multivariate autoregressive estimation and

independent component analysis (MVARICA), convolutive independent analysis via inverse autoregression

(CICAAR), temporal decorrelation source separation (TDSEP) and joint approximate diagonalization

(JADE). Two source dipoles with tangential orientations are modeled 3 cm below the C3/4 electrodes.

Information flow from the left (C3) to the right (C4) source is modeled by means of a bivariate AR process

with non-Gaussian (sech-distributed) innovations. The simulated EEG is superimposed by non-interacting

biological and sensor noise (SNR = 1). BSS techniques are applied to the five strongest PCA components.

The significance of estimated interactions between demixed signals is measured in terms of z-scores and

visualized as matrices, where entries with red and yellow colors (z > 0) stand for information outflow and

entries with blue and cyan colors (z < 0) stand for information inflow of the source marked in the respective

row. The Bonferroni-corrected significance level is indicated by a thin black line in the colorbar, while the

uncorrected significance level is indicated by a thick black line.
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3.10 Experiment 10: blind source separation preprocessing
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3 Reconstruction of simulated source connectivity using existing approaches

3.11 Discussion (the importance of accurate source demixing for
connectivity analysis)

The current simulation study demonstrates that the estimation of brain interaction from EEG

measurements is challenging. We tested three widely-used measures of effective connectivity

(while a fourth one, DTF, behaves similarly to PDC). While all of them estimate the correct

direction of information flow when being applied directly to source time series, only one of them,

PSI, is able to indicate the flow from the corresponding pseudo-EEG. Connectivity measures

based on the concept of Granger causality do not succeed in recovering the simulated flow in

any of our experiments in sensor space. Rather, when applied on realistic EEG time series, these

measures are dominated by properties of the data that have nothing to do with source interaction.

In particular, Granger causality and partial directed coherence tend to estimate information flow

from electrodes with high SNR to electrodes with low SNR. Since the definition of partial directed

coherence is directly based on the estimatedMVAR coefficients, this measure additionally depends

on the scaling of the data and the choice (of the regularizer) of the MVAR estimator. As a side

effect of these dependencies, PDC is biased, and may yield spurious results even when the data

have no time structure. Notably, conventional Granger causality does not yield any effect that

is stable enough to survive Bonferroni correction, except in the BSS setting, where only a few

simultaneous test are conducted.

Sensor-space connectivity estimates provided by PSI correctly indicate the flow from sensors

in which the driving source is stronger expressed to sensors in which the receiving source is

stronger expressed. However, the distribution of the source signals on the scalp depends on the

location of the reference electrode. Changing the reference can hence drastically change PSI (as

well as any other connectivity estimate). Moreover, when the underlying interacting sources have

complex spread patterns such as bipolar maps, if their field patterns heavily overlap and/or if there

are more than two interacting sources, the sensor-space connectivity maps may become almost

incomprehensible. A further difficulty occuring in sensor space analyses is that the signal-to-noise

ratio affects the extent of the scalp regions between which interactions are estimated. Notably, this

extent is not necessarily related to the extent of the underlying interacting brain regions. In order

to estimate location and extent of the underlying interacting brain sources, a genuine solution to

the EEG inverse problem is required.

We devise two tests which can be used to assess whether estimated information flow is dominated

by factors not related to time-lagged interaction. The first test is based on temporal reshuffling of

the data. This yields a pseudo time series lacking any effective connectivity, which is to be detected

by a meaningful measure of time-lagged effective connectivity. The second test is a special case of

reshuffling, in which the temporal order of the time series is exactly reversed. Here, a meaningful

measure must diagnose either the complete absence of effective connectivity or the presence of

a flow in the opposite direction. In our simulations, the time-reversal test neither confirms nor

rejects the results of GC. Partial directed coherence fails the time-reversal test, as it yields significant

flow with constant direction regardless of the time-reversal. Hence, in a practical scenario, the

spurious results provided by PDC could be rejected on the basis of this test. Notably, PDC also fails

the reshuffling test, i. e., behaves similar on reshuffled and original data. The outcome of a statistical

test for differences of PDC results obtained on reshuffled and original samples is, however, similar
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3.11 Discussion (the importance of accurate source demixing for connectivity analysis)

to that of a one-sample test of GC, which means that PDC here lacks statistically significant results.

PSI passes both tests in our empirical study. Moreover, its ability to reverse the flow direction for

reversed time series can be derived analytically.

We assessed various source demixing procedures, which have been used previously in EEG-

based synchronization and connectivity studies, as preprocessing steps for subsequent connectivity

estimation. All of these preprocessings transform the data into a reference-free representation,

which is an improvement over standard sensor-space analysis. Apart from that, source demixing

using the Laplace transformation does not substantially faciliate the connectivity estimation. This

may be due to the Laplacian’s assumption that all sources are superficial and radially oriented,

which is not the case in our simulated example.

Linear inverse source reconstruction by means of the weighted minimum norm estimate turns

out to be suitable in principle for subsequent source connectivity analysis using PSI. However,

the diffuse spatial distribution of the current density estimated by WMN prevents a sufficient

spatial separation of the interacting sources. In our simulation setting, the sensor-space result that

“there is information flow from the left to the right hemisphere” could be made only slightly more

precise by taking into account the locations of the estimated underlying sources, i. e., the estimated

dipole strength per voxel. Doing so, however, also leads to the discovery of a spurious occipital

source, which, according to PSI, incorrectly appears to exchange information with more central

sources. The application of GC and PDC in WMN source space yields no significant interaction at

all. Since linear inverse solutions are generally associated with blurred source distributions and the

inability to distinguish multiple sources (Grave de Peralta-Menendez and Gonzalez-Andino, 1998;

Haufe et al., 2008), we conclude that they are not well suited as a preprocessing step for source

connectivity analysis. Nonlinear inverses such as the minimum-current estimate, may achieve

a better spatial separation of the sources but are currently computationally too expensive to be

applied to longer time series. For that reason, they have not been proposed for source connectivity

analysis so far.

The performance of blind source separation techniques depends crucially on the Gaussianity of

the source MVAR innovations. We note that non-Gaussianity is fundamental for identifying the

parameters of the correlated source model given by (5.7)/(5.8) in general. In our simulated example,

TDSEP is, however, found to separate sources that are generated with Gaussian innovations fairly

well. We suggest that this is the case, because any splitting of the two interacting sources (which

are the strongest signal components) into multiple components introduces instantaneous cross-

correlations, which increase the overall cost function TDSEP seeks to minimize. In a broader

simulation presented in Section 5.2, we consider multiple connected sources which are all similarly

strong. Here, the performance of TDSEP systematically breaks down.

Only two of the tested BSS methods (MVARICA and CICAAR) make an explicit assumption

regarding the non-Gaussianity of the source MVAR innovations. Consequently, these are the

methods that achieve the best source separation on respective data in terms of GOF scores.

The performance is worst for JADE, which is understandable given that this method assumes

non-Gaussian sources rather than source innovations. The performance of TDSEP falls into the

intermediate range, as for Gaussian innovations, which is reasonable considering that TDSEP only

uses second-order statistics. Interestingly, all BSS methods separate the sources well enough in the

non-Gaussian case to yield a significant flow from the component best approximating the true

driver to the component best approximating the true receiver.
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3 Reconstruction of simulated source connectivity using existing approaches

To sum up, in this chapter we have studied the most simple computational model of brain

interaction conceivable: a two-dipole source model in which there is a linear time-lagged influence

of one source onto the other. Only the phase-slope index turned out to be capable of detecting this

interaction from simulated EEG measurements. However, even the interpretability of the phase-

slope index is limited in practice by overlapping field patterns of the underlying sources, and by

the data-dependent bias induced by the choice of the reference electrode. Notably, Granger-causal

approaches are not able to recover the true interaction in our simulated example regardless of

the preprocessing step or source demixing employed, except for certain blind source separation

techniques. As a result of the simulations performed here, we conclude that most of the currently

available source demixing approaches are not well suited for subsequent source connectivity

analysis. To improve over existing methods, we require that inverse source reconstructionmethods

should be able to spatially separate multiple (at least two) distinct sources, while being applicable

to long EEG time series at the same time. Blind source separation techniques, on the other hand,

should be able to model interactions between the demixed time series. The core of this thesis is

development of methods fulfilling these criteria. These are presented in the next two chapters.
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4 Source connectivity analysis via inverse source
reconstruction preprocessing

Inverse source reconstruction for EEG (and MEG) is concerned with the mathematical inversion

of the approximately known forward mapping from brain sources to EEG sensors. It is important

to virtually any neuroscientific application, in whichmeasurements are not only processed by black

box algorithms in order to extract discriminative information (as, for example, for controlling

neuroprostheses), but subjected to neurophysiological interpretation in order to understand the

underlying cognitive processes. Unfortunately, the interpretability of sensor-space data is limited

by the presence of volume conduction, which causes the cerebral activity to mix into sensors. A

single brain source can therefore contribute substantially to quite remote locations on the scalp,

depending on its depth. Moreover, these contributions can have either equal or opposite signs,

depending on the orientation of the source’s equivalent dipole current moment vector. Researchers

not familiar with the physical process of EEG generation might easily disregard these issues and

come to wrong conclusions regarding number, spatial extent and location of the underlying sources.

As an example consider the sources used throughout our simulations in Chapter 3, which are both

located under central electrodes but contribute mostly to frontal and parietal scalp electrodes.

Interpretability is more degraded, the more brain sources there are, which are simultaneously

active and the more the field patterns of these sources spatially overlap. On the other hand, the

presence of multiple sources is exactly what should be assumed in EEG connectivity analyses.

Our previously conducted simulations show that sensor-space connectivity estimates are hard to

interpret even in the most simple case of two interacting sources due to ambiguities caused by the

choice of the reference electrode, for example. Moreover, if inappropriate measures are applied

to sensor-space data, source and noise mixing due to volume conduction leads to estimation

biases, which render the results completely misleading. For these reasons, reconstruction of the

underlying sources in the first place is even more crucial for EEG-based connectivity analysis

than it is for other neuroscientific investigations. Inverse source reconstruction, compared to

blind source separation, has the advantage that the estimated sources can be mapped directly to

the brain anatomy. Available approaches can be roughly divided into scanning (Schmidt, 1986;

Van Veen and Buckley, 1988; Van Veen et al., 1997; Mosher and Leahy, 1999; Sekihara et al., 2005;

Zwoliński et al., 2010), dipole fitting (Scherg and von Cramon, 1986; Scherg and Ebersole, 1993)

and distributed source imaging (Jeffs et al., 1987; Ioannides et al., 1990; Pascual-Marqui et al., 1994;

Matsuura and Okabe, 1995; Wipf et al., 2010) techniques. We here exclusively consider distributed

inverse solvers, which are especially suitable for EEG source connectivity analysis since i) they

provide a genuine solution to the inverse problem (that is, their source estimates may fully explain

the data) and ii) they are not constrained to a predefined number of sources.

As has been pointed out previously, the EEG inverse problem is ill-defined, since any EEG

measurement can be equally well explained by infinitely many different source distributions.

Therefore, in order to resolve this ambiguity, it is necessary to impose constraints on the inverse
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4 Source connectivity analysis via inverse source reconstruction preprocessing

solution. In distributed source imaging, this is done by adding a penalty term to the negative

log likelihood that reflects prior assumptions on the sources. The two perhaps most common

assumptions are spatial smoothness and focality, respectively, both of which can be motivated

by neurophysiological arguments. Representative estimators implementing either one or the

other of these assumptions were introduced in Section 2.7. As pointed out there, smoothness

constraints are often implemented by means of Tikhonov regularization. Such approaches lead

to solutions that are linear in the observations, which means that they can be applied even to

large time series via a multiplication with a data-independent inversion matrix. However, the

resulting sources tend to be spread over a considerable part of the source space (cortex or brain),

which is not always physiologically meaningful. Related to this, linear estimators have limitations

in distinguishing multiple sources, which is especially obstructive if one is interested in source

connectivity (Schoffelen and Gross, 2009).

Focal source images are usually obtained by imposing the sparsity-enforcing ℓ1-norm penalty

on the sources. However, the resulting estimates tend to be unstable and spatially scattered. Also,

spatially extended sources are not modeled adequately by current sparse methods. Rather, they

are approximated by a number of disconnected active dipoles, which may convey the misleading

impression that multiple sources are active. A specific problem of the ℓ1-norm concerns the fact

that it leads to sparsity in the single components of the dipole moment vectors rather than sparsity

in the dipoles themselves. This biases the estimated currents towards the coordinate axes, which is

a highly nonphysiological behaviour given that the choice of the coordinate system is arbitrary.

There are two further obstacles regarding the use of sparse source estimates for source connectivity

analysis. One is their high computational cost. Unlike for the ℓ2-norm, ℓ1-norm optimal solutions

have to be computed iteratively using nonlinear optimization for each sample, which is time-

consuming for large numbers of samples. Even more severe for a potential connectivity analysis of

the sources is the lack of temporal continuity, which is caused by the fact that a different spatial

sparsity pattern may be chosen for each time sample.

In this chapter, we develope methods that combine the strengths of smooth and sparse dis-

tributed source imaging approaches while avoiding their weaknesses, keeping in mind the ultimate

goal of improving source connectivity analyses. In Section 4.1, we introduce focal vectorfield

reconstruction (FVR), which achieves a compromise between smoothness and sparsity by means

of a hybrid penalty. In addtion, FVR employs a new type of depth weighting and achieves rotational

invariance by inducing sparsity of entire current vectors by means of ℓ1,2-norm penalization. In

Section 4.2, sparse basis field expansion inverse source reconstruction (S-FLEX) is introduced,

which has similar properties as FVR. In addition, the S-FLEX solution can be calculated for a large

number of samples. The assumption S-FLEX makes for joint localization is that the set of active

sources is shared among the samples, which exactly matches the requirements of source connec-

tivity analysis. In Section 4.3, we introduce the earth mover’s distance (EMD) as a meaningful

measure for comparing arbitrary source distributions under a common framework. We use the

EMD in Section 4.4 to assess the ability of FVR and S-FLEX to separate multiple brain sources

compared to purely smooth and purely sparse approaches. The applicability of our methods in a

real-world setting is demonstrated in Section 4.5, where the task is to distinguish sources in the left

and right sensorimotor cortices, which are activated by means of electrical stimulation of the left

and right median nerves. Finally, Section 4.6 describes the application of S-FLEX to the simulated

dataset introduced in Chapter 3.
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4.1 Focal vectorfield reconstruction (FVR)

4.1 Focal vectorfield reconstruction (FVR)

We are now concerned with the derivation of an inverse methodology fulfilling certain require-

ments on the spatial distribution of the sources, which are important for subsequent source

connectivity analysis. The method, focal vectorfield reconstruction (FVR), was introduced in Haufe

et al. (2008), fromwhich large parts of this section are taken. Focal vectorfield reconstruction deals

with the situation in which only one EEG sample is available. Hence, it is not directly applicable to

the source analysis of time series but may be considered a first step towards that.

As has been mentioned in Section 2.7, the regularizing criterion of a distributed inverse method

should encode prior knowledge on what a “good” solution looks like. Conventional minimum

ℓp-norm solutions, weighted or not, are either rotationally invariant but highly non-focal (p = 2)

or sparse but violating rotational invariance (p = 1). The problem with many sparse approaches

is that they do not take into account the vectorial nature of currents, as a result of which the

orientations of most of the estimated dipoles are axes-parallel, which is a highly non-physiological

behaviour.

One possibility to alleviate this problem is to fix the orientations a-priori in a meaningful way.

In Uutela et al. (1999), the dipole orientations are adopted from the minimum ℓ2-norm estimate,

while dipole amplitudes are estimated using the ℓ1-norm penalty. A more sophisticated approach

is suggested in Huang et al. (2006), where activity in a voxel is discouraged, if the orientation

of the minimum-norm estimate in the respective voxel is close to one of the coordinate axes.

In cortically-constrained approaches (Dale and Sereno, 1993; Kincses et al., 2003), dipoles are

assumed to be perpendicular to the cortical surface based on the consideration that the apical

dendrites of pyramidal neurons are oriented in this way. This approach, however, requires very

precise knowledge of the individual cortical geometry, as small changes in the normal vector can

quickly lead to considerably different forward equations.

We here consider the estimation of full vectorial currents, which we request to be invariant

with respect to rotations of the coordinate system. Moreover, we assume that brain sources are

focal. Both goals can be achieved simultaneously by penalizing a global ℓ1-norm of local ℓ2-norms,

which leads exactly to the ℓ1,2-norm regularizer introduced in Section 2.3. The use of the ℓ1,2-norm

in inverse source imaging has been proposed in three simultaneous papers by Ding and He (2008);

Haufe et al. (2008) and Ou et al. (2009).

In order to obtain source estimates which aremore plausible than purely sparse or purely smooth

solutions, we additionally request that meaningful source estimates should be sparse with only a

minimal number of continuous nonzero patches. This can be achieved by imposing sparsity of

the spatial Laplacian in addition to conventional sparsity, and thereby relaxing the strict focality

constraint in favor of a more robust “simplicity” requirement. Imposing sparse second derivatives

leads to smoothness in the same way as minimizing their ℓ2-norm (as in LORETA). To understand

the difference it is helpful to consider that in one dimension, sparse second-order derivatives

characterize exactly the piecewise linear functions.

The idea of using multiple penalties has also been proposed in the statistics literature. For

example, the fused lasso algorithm (Tibshirani et al., 2005) considers joint regularization of variables

and their derivatives, while the elastic net considers mixed penalties containing ℓ1- and ℓ2-norm

terms (Zou and Hastie, 2005). The elastic net has also been applied in distributed source imaging

(Vega-Hernández et al., 2008).
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4 Source connectivity analysis via inverse source reconstruction preprocessing

4.1.1 Discrete Laplace operator

Since, in contrast to LORETA, our approach does not rely on invertibility of the Laplacian, we

use the following definition, which does not penalize nonzero currents at the boundaries of the

source space. This is important, because cerebral activity of interest often originates from cortical

structures, which are located superficially. The N × N Laplacian DFVR is given by

dFVR

i , j =
1

h2

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

− ∣{k ∣ ∥ui − uk∥2 = h}∣ i = j

1 ∥ui − u j∥2 = h

0 else ,

(4.1)

where ∣S ∣ denotes the number of elements in the set S and h is the inter-voxel distance.

4.1.2 Depth compensation

Due to attenuation in the tissue, the signals captured by the sensors aremuch stronger for superficial

sources compared to deep sources. This causes an estimation bias when using ℓp-norm penalties.

We counteract this bias by means of a depth compensation matrix, which penalizes activity at

superficial locations. While the conventional approach is based on weighting activity at each

voxel with the inverse of the norm of the respective column of the lead field matrix (Jeffs et al.,

1987; Ioannides et al., 1990), the weighting proposed here is inspired by the post-hoc current

standardization of sLORETA (see Section 2.7). That is, we penalize activity at locations with

high variance according to the variance estimate V̂ derived in Pascual-Marqui (2002). Defining

Wn = V
1⁄2
n ∈ R3×3 to be the matrix square root of the n-th 3 × 3 blockdiagonal part of V̂ , we define

the depth-compensation matrix as

W =

⎛
⎜
⎜
⎝

W1 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ WN

⎞
⎟
⎟
⎠

∈ R3N×3N
. (4.2)

UsingW instead of conventional column norm weighting has been proven to drastically increase

localization accuracy of various sparse and non-sparse methods including the weighted minimum-

norm estimate and the minimum-current estimate (Haufe et al., 2008).

4.1.3 Model specification and parameter estimation

Let si ∈ R3 denote the dipole moment at the i-th voxel such that s = (s⊺1 ,⋯, s
⊺
N)
⊺. Similarly, let

t = (DFVR ⊗ I3)s, such that ti ∈ R3 is the moment of the Laplacian of the source field at the i-th

voxel. The FVR source estimate is then given by

ŝ FVR
= argmin

s
∥x − As∥22 + λ (

N

∑
i=1
∥Wisi∥2 + α

N

∑
i=1
∥Witi∥2) , (4.3)

where x is the EEG measurement, A is the lead field matrix, λ is the regularization parameter

guiding the tradeoff between model likelihood and regularization and α is an additional param-

eter weighting the relative importance of smoothness and sparsity in the regularizer. Note that,
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4.1 Focal vectorfield reconstruction (FVR)

compared to LORETA, the order in which the Laplacian and the depth-weighting operators are

applied is interchanged here.

The formulation using a weighted sum of likelihood and regularization terms is a re-parametri-

zation of our original formulation (Haufe et al., 2008), in which the data fidelity is encoded using

the hard constraint ∥As − x∥2 ≤ є. Both formulations are equivalent in the sense that for any λ

there exists an є (and vice-versa), such that the solutions of (4.3) and the cost function defined in

Haufe et al. (2008) coincide. Moreover, both formulations are convex, such that the existence of a

unique minimum is guaranteed. The solution can be obtained by means of second-order cone

programming (SOCP) optimization (see Haufe et al., 2008).

4.1.4 Rotational invariance

A central technical aspect of our method is the way sparsity of the current density is enforced.

We propose penalizing the length of the current amplitudes rather than the absolute values of

individual moments of the current vectors using ℓ1,2-norm penalties. With this choice not only

sparsity but also rotational invariance of the FVR solution is guaranteed, as is shown in the

following. If the coordinate system is rotated by an orthogonal matrix U , the lead field matrix A

and the sources s are transformed as

A Ð→ AÛ⊺ ≡ AU (4.4)

s Ð→ Ûs ≡ sU , (4.5)

where Û ≡ IN ⊗U is the rotation operator for all voxels. Then, the sLORETA variance estimate

transforms as

V̂ = A⊺ (AA⊺)
−1
AÐ→ A⊺U (AUA

⊺
U)
−1
AU = ÛV̂Û⊺ (4.6)

and the block diagonal entries of the square root of V̂ transform as

Wi Ð→ (UViU
⊺)

1⁄2
= U
√
V iU

⊺
= UWiU

⊺
. (4.7)

Now, (4.3) is rotationally invariant since a)

∥Wisi∥2 Ð→ ∥UWiU
⊺Usi∥2 = ∥Wisi∥2 (4.8)

and b) the same holds for ∥Witi∥2 because the Laplacian is a scalar differential operator and the

rotation is independent of space (i. e. the moment of each voxel is rotated identically). A similar

invariance can be shown for transformations with general unitary matricesU , which also cover the

case of complex phase shifts U = exp(iϕ)I3. That is, the phase-shifted source estimate obtained

from a complex-valued field pattern is identical to the souce estimate obtained from the phase-

shifted version of the field pattern. This property is important when localizing complex-valued

spatial patterns as, for example, resulting from a Fourier decomposition.

Note that a rotation of the coordinate system must be distinguished from a rotation of the grid.

Invariance with respect to the former is exactly fulfilled implying that the method itself does not

prefer specific source orientations. Rotational invariance of the latter is an approximation limited

by the discrete nature of the Laplacian, however with negligible impact for small voxel distances.
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4 Source connectivity analysis via inverse source reconstruction preprocessing

4.1.5 Illustration

Figure 4.1 (a) illustrates the main properties of LORETA and the minimum-current (MC) estimate

compared to that of FVR. The current density domain is defined to be a straight line of 300 scalar

sources. Three source configurations, consisting of either three Hanning windows, two boxcar

windows or a single sine wave, are simulated. Source reconstruction is performed on noise-free

pseudo-measurements, which are obtained by smoothing and subsampling the sources. Apparently,

only FVR is able to recover the exact number of sources in all three cases. LORETA is not able

to distinguish all three sources in the Hanning example. Instead, one estimated source is placed

exactly in between two true sources. Minimum-current estimates consist of spikes, the number

and locations of which do not match the true source configuration.

In Figure 4.1 (b), the effect of enforcing sparse current amplitudes is illustrated on the basis

of two simulations. The sources are modeled as a straight line of 100 two-dimensional vectors.

In one case, we simulate two sources with Hanning window envelopes. In the other example,

two boxcar windows are used. All vectors related to the same source have equal orientation. Ten

pseudo-measurements are constructed from the source vectors by means of lowpass-filtering. In

the examples shown, MC estimates according to Matsuura and Okabe (1995) are all parallel to one

of the two axes. In contrast, the modified version minimizing the ℓ1-norm of vector amplitudes

recovers the original orientations well, while being even sparser. Finally, additional sparsity in the

amplitudes of the Laplacian removes the problem of source scattering.

TRUE

PAT

LOR

FVR

MCEMCE

HANN BOX SINE

(a)

TRUE   

PAT

MCE   

MCE_AMP   

FVR   
HANN BOX

(b)

Figure 4.1: (a) One-dimensional simulation illustrating the characteristics of conventional inverse solutions,

as well as focal vectorfield reconstruction (FVR). Simulated source configurations (TRUE) include three

hanning windows (HANN), two boxcar windows (BOX) and a sine wave (SINE). Hypothetical measure-

ments (PAT) are obtained by smoothing and subsampling the sources. Source reconstructions according to

one-dimensional versions of low-resolution tomography (LOR), FVR and the minimum-current estimate

(MCE) are shown in the three lower panels. (b) Simulation, illustrating the approaches of MCE and FVR to

achieve sparsity of a vector field. A straight line of two-dimensional vectors models the current density. The

vector envelopes are combinations of either two Hanning (HANN) or two boxcar (BOX) windows. Vector

orientations are fixed within sources. True sources (TRUE) and pseudo EEG patterns are shown in the

upper panels of the plot. The inverse solutions of MCE, a modified version of MCE working on amplitudes

(MCE_AMP) and FVR are shown below.
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4.2 Sparse basis field expansions (S-FLEX)

While the focal vectorfield reconstruction solution enjoys favorable properties, it can only be

computed in practice for a single or few spatial patterns. This is due to the use of a mixed

penalty enforcing sparsity in two different spatial bases, which prevents us from using large-scale

numerical solvers for theminimization. Another downside of FVR is that the compromise between

smoothness and focality of the sources has to be pre-specified via the hyper-parameter α, which

practically encodes the preference for a certain spatial extent of the sources. Although α can be

optimized using cross-validation, a fixed choicemay still be suboptimal if multiple differently-sized

brain areas are simultaneously active.

In this section, we propose EEG source reconstruction through sparse basis field expansions

(S-FLEX) as an alternative method that achieves a compromise between smoothness and focality

similar to FVR. In contrast to FVR, S-FLEX is able to model the simultaneous occurence of

extended sources of different sizes and shapes. Moreover, the S-FLEX solution has a simpler

mathematical form. Its cost function enables the deployment of a very efficient optimization

scheme, by which it becomes possible to solve inverse source reconstruction problems involving

orders of magnitude more variables than previously. These additional variables can be used to

increase the spatial resolution in source space, or to localize larger datasets, as it is required, for

example, in source connectivity analysis. Sparse basis field expansions were introduced in Haufe

et al. (2009) for single EEG measurements. In Haufe et al. (2011a), the extension to multiple

measurements was suggested, along with an efficient implementation scheme.

Model specification and parameter estimation

Instead of estimating the current moments s directly, S-FLEX models the current density as a

linear combination of (potentially many) spatial basis fields, the coefficients of which are to be

estimated. A basis field is defined as a vector field, in which all output vectors point in the same

direction, while the magnitudes are proportional to a scalar (basis) function д ∶ B → R. Given a

set of basis functions дl , l = 1, . . . , L (called a dictionary), the basis field expansion reads

s̃ (u) =
L

∑
l=1

cl дl(u) , (4.9)

with coefficient vectors cl ∈ R3, l = 1, . . . , L. Note that we employ the basis field expansion not

on the genuine current density but on depth-weighted sources. As will become clear later, this

prevents us from introducing weight matrices in the regularizer, which is the key to efficient

optimization (see below). The relation between s̃ and the true sources s is given by

s(un) =W−1n s̃ (un), n = 1, . . . ,N , (4.10)

whereW−1n are the inverses of the 3 × 3 depth compensation matricesWn defined in the previous

section. By including one coefficient for each spatial dimension, we learn orientations as well

as amplitudes of the current moment vectors in our model. Moreover, if the cl are modeled

to be complex-valued, phase angles are learned, too. Let C = (c1, . . . , cL)⊺ ∈ RL×3 contain the
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4 Source connectivity analysis via inverse source reconstruction preprocessing

coefficients, and let the corresponding basis function values evaluated at all locations un for which
the lead field matrix has been computed be collected in the design matrix

G =

⎛
⎜
⎜
⎝

д1(u1) ⋯ дL(u1)
⋮ ⋱ ⋮

д1(uN) ⋯ дL(uN)

⎞
⎟
⎟
⎠

∈ RN×L
. (4.11)

The forward model then reads

x = Γ vec (C) , (4.12)

where Γ = AW−1(G ⊗ I3) ∈ RM×3L, and where W−1 is the inverse of the depth-compensation

matrix introduced in the context of focal vectorfield reconstruction.

Solving (4.12) for C does not yield a unique solution if the number of coefficients 3L is larger

than the number of electrodes M, which is the common situation. As usual, the ambiguity can be

overcome by regularization, i. e., by imposing additional constraints on the variables. Here, we

assume that, for an appropriately chosen dictionary, the current density can be well approximated

by a small number of basis fields. This can be achieved by estimating a sparse coefficient matrix C.

Besides the regularizing effect, sparse decompositions offer the additional advantage of providing

a way of interpreting estimated current densities in terms of the selected basis functions (those

having corresponding nonzero coefficients in C). The premise for such interpretability is that

the basis functions themselves are simple enough, which should be ensured when designing the

dictionary.

As was pointed out in the previous section, important issues arising in sparse EEG source

reconstruction are rotational invariance and invariance with respect to phase shifts. As in previous

approaches (Ding and He, 2008; Haufe et al., 2008; Ou et al., 2009; Bolstad et al., 2009), we utilize

the ℓ1,2-norm penalty to achieve this. Our approach amounts to estimating

Ĉ = argmin
C
L(C) + λR(C) (4.13)

L(C) = ∥z − Γ vec (C) ∥22

R(C) =
L

∑
l=1
∥cl∥2 = ∥C∥1,2 ,

whereR(C) is the ℓ1,2-norm regularizer, L(C) is the negative log likelihood and λ is a positive

constant controlling the tradeoff between likelihood and regularization term.

Equation 4.13 is a convex optimization problem composed of a quadratic loss function and a

convex nondifferentiable regularizer. It thus shares similarities with the optimization problems

discussed in Polonsky and Zibulevsky (2004); Malioutov et al. (2005); Ding and He (2008); Haufe

et al. (2008); Ou et al. (2009); Wipf and Nagarajan (2009) and Bolstad et al. (2009). In the majority

of these papers, the cost function is reformulated as an instance of second-order cone programming

(SOCP, Lobo et al., 1998). The proposed interior-point SOCP solvers are, however, only applicable

to small- to medium-sized problems not exceeding several ten thousands of variables. For this

reason, some authors perform a dimensionality reduction step prior to the estimation in order to

reduce the number of variables and/or the number of observations (Malioutov et al., 2005; Ou et al.,

2009). Here, we make use of a more recent advance in numerical optimization that enables us to

60



4.2 Sparse basis field expansions (S-FLEX)

solve S-FLEX instances involving millions of model parameters. The proposed algorithm is based

on deriving the Fenchel dual of the optimization problem and applying the augmented Lagrangian

technique (Tomioka and Sugiyama, 2009). It has thus been termed dual augmented Lagrangian

(DAL). We use the reference implementation of DAL, which is provided as open source software1.

Unfortunately, sparsity of linearly transformed variables is not handled by DAL, for which reason

our previously-described approach FVR cannot benefit from it.

The dictionary

The idea behind enforcing smoothness and focality at the same time is to avoid the scattering of

activity found for many purely focal inverse approaches, while at the same time to maintain high

spatial resolution and the associated ability to distinguish multiple sources. In FVR, a combination

of two penalties is used to achieve this effect. Here, the task is addressed by designing an appropriate

basis function dictionary. We consider an expansion into spherical Gaussian basis functions, which

are smooth but also well localized due to their unimodal structure and exponentially decaying

tails. Due to the latter, sparse combinations of Gaussians give rise to good spatial separation of

sources that are simulataneously active. Using a redundant dictionary containing Gaussians of

different length scales, we further achieve reconstruction of sources with arbitrary shape using

only few basis elements. Formally, the elements of the basis function dictionary are defined as

дun ,ς(u) = (
√
2πς)

−3
exp (− 1

2
∥u − un∥22 ς

−2) , (4.14)

where un , n = 1, . . . ,N are the center locations and ςs , s = 1, . . . , S are the widths of the Gaussian

functions (see Figure 4.2 (a) for examples).

The proposed regularization aims at selecting the smallest possible number of basis fields

necessary to explain the measurement. This can, however, only be achieved approximately, since

not the number of nonzero coefficient vectors but the sum of their magnitudes is effectively

penalized by the ℓ1,2-norm. It is therefore important to normalize the basis functions in order not

to prefer some of them a-priori due to low magnitudes. Let Gςs be the N × N matrix containing

the evaluations of all basis function with standard deviation ςs. The large matrix

G = (
Gς1

∥ vec (Gς1) ∥1
, . . . ,

GςS

∥ vec (GςS) ∥1
) ∈ RN×SN

(4.15)

is constructed using normalized Gςs . By this means, no length scale is preferred a-priori.

Extension tomultiple measurements

While (4.13) deals only with single field patterns, we extend S-FLEX here to the localization

of multiple measurements, where the goal is to estimate T current densities sn(t) based on the

corresponding EEG patterns x(t). Let X = (x(1), . . . , x(T)) ∈ RM×T and let cl(t) ∈ R3 be the coef-

ficient vector describing the contribution of the l-th basis field to the t-th pattern. Defining C̃(t) =

1http://mloss.org/software/view/183/
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4 Source connectivity analysis via inverse source reconstruction preprocessing

Fig. 1. Examples of Gaussian basis functions bn,s(x) with spatial standard deviations
σ1 = 0.5 cm, σ3 = 1 cm and σ5 = 1.5 cm.
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Fig. 2. Comparison of individual (SINGLE) and joint localization of ten simulated
noisy measurements. The location of the simulated source is indicated by a red
cross-hair.
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(b)

Figure 4.2: (a) Examples of Gaussian basis functions with spatial standard deviations ς1 = 0.5 cm, ς2 = 1 cm

and ς3 = 1.5 cm. (b) Comparison of individual (SINGLE) and joint localization of ten simulated noisy

measurements using sparse basis field expansions. The location of the true simulated source is indicated by

a red cross-hair.

(c1(t), . . . , cL(t))⊺ ∈ RL×3, C̃ = (vec(C̃(1)), . . . , vec(C̃(T))) and c̃l = (cl(1)⊺, . . . , cl(T)⊺)⊺ ∈
R3T , the multiple-measurement S-FLEX estimate reads

̂̃
C = argmin

C̃
R̃(C̃) + λL̃(C̃) (4.16)

R̃(C̃) =
L

∑
l=1
∥ c̃l∥2

L̃(C̃) = ∥ vec (X − ΓC̃) ∥22 .

Note that the solution is equivalent to (4.13) for T = 1. However, for T > 1 it is not equivalent to

solving T problems of type (4.13) separately as, in our case, the 3T coefficients related to a single

basis function are tied under a common ℓ2-norm and can only be pruned to zero at the same

time. Thus, the selection of basis functions which contribute coherently to several patterns is

facilitated, while at the same time orientations and amplitudes of the estimated source fields may

differ per pattern. Such joint (or co-) localization has also been suggested in previous work. The

idea originates from Polonsky and Zibulevsky (2004) and appears also in Malioutov et al. (2005),

Wipf and Rao (2007), Ou et al. (2009) and Bolstad et al. (2009). Malioutov et al., Ou et al. and

Bolstad et al. use the technique for spatio-temporal source localization, where the ℓ2-norm in

temporal domain ensures that there are no artificial jumps in the estimated source time courses.

Similar approaches using sparsity in spatio-temporal time-frequency dictionaries are proposed

in Trujillo-Barreto et al. (2008) and Gramfort et al. (2011b), while Gramfort et al. (2011a) suggest

a graph-theoretic approach to imposing spatio-temporal regularity constraints. Malioutov et al.

and Ou et al. suggest that joint localization leads to a better noise suppression compared to the

single-timepoint estimator. A similar effect has been reported to improve BCI classification (van

Gerven et al., 2009).
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4.3 The earthmover’s distance

4.3 The earthmover’s distance

For assessing the quality of source reconstructions we propose a measure of the disagreement

of the simulated and the estimated dipole amplitudes, which is called the earth mover’s distance

(EMD). This quantity is suitable for comparing functions with possibly nonoverlapping support,

for which a metric between points in the domain is available. In the case of EEG inverse solutions,

the Euclidean distance between dipole locations provides such a metric. The EMD has been

introduced in computer vision for comparing images (Rubner et al., 2000).

To understand what the EMD does, consider that for a given source distribution the amplitude

at each voxel is divided into a huge number of “units” with tiny and fixed amplitude. Two source

distributions have the same total number of units. One can now transform the first source into

the second source by moving the units of the first source to match those of the second source.

The average distance the units should be transported depends on the specific transformation we

choose. The minimum average distance (averaged over all units and minimized over all possible

transformations) defines the EMD.

The idea of using this metric in this context is that it provides a meaningful measure for arbitrary

types of source distributions. We can, e. g., compare a few-dipoles solution with highly distributed

sources without having to worry which local maximum corresponds to which dipole, or we can

compare a 3-dipole solution with a 2-dipole solution in a meaningful way.

4.4 Reconstruction of simulated sources

4.4.1 Assessing single-measurement localization performance

Validation of methods for inverse source reconstruction is generally difficult due to the lack of a

“ground truth”. The measurements x do not provide such a truth, since the main goal in inverse

imaging is not to find an accurate representation for the EEG, but to approximate the underlying

current density s, which is unknown, as good as possible. Therefore, a standard way of evaluating

inverse methods is to assess their ability to reconstruct known functions. This is performed

here by reconstructing simulated current sources, which are generated as follows. We use the

realistic “Montreal” head model (Holmes et al., 1998) with N = 2 142 dipoles arranged at positions

un , n = 1, . . . ,N in a cubic grid with 1 cm side length. The lead field matrix A is constructed for

118 electrode positions defined in the extended 10-20 positioning system according to Nolte and

Dassios (2005). Current vectors sn , n = 1, . . . ,N are sampled from a multivariate standard normal

distribution. These vectors are smoothed componentwise using a Gaussian spatial lowpass filter

with standard deviation 2.5 cm. Denoting by pk the k-th percentile of the current moment vector

lengths ∥sn∥2, each sn is re-scaled to a length of max(∥sn∥2 − p90, 0). That is, only the largest 10%

of the currents are retained. Source distributions obtained by this procedure typically exhibit a

small number of active patches with small to medium extents and smoothly varying magnitudes

and orientations (see Figure 4.3 (SIM) for an example).

Localization is carried out using LORETA, the minimum-current (MC) estimate and our pro-

posed focal vectorfield reconstruction (FVR) and sparse basis field expansion (S-FLEX) techniques.

These methods cover the full spectrum from smooth, spread-out, solutions (LORETA) to sparse

solutions (MC). Note that other linear methods such as the weighted minimum-norm estimate
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4 Source connectivity analysis via inverse source reconstruction preprocessing

perform very similar to LORETA (Haufe et al., 2008). We use a variant of MC, in which the

original depth compensation matrix is replaced by the matrix proposed in Section 4.1. As the data

is simulated without noise, perfect reconstruction is required for all methods. Basis functions

with standard deviations ς1 = 0.5 cm, ς2 = 1 cm, ς3 = 1.5 cm are used for S-FLEX. The tradeoff

parameter α of FVR is set to 0.01.

We simulate five current densities and compute the respective pseudo EEG measurements.

For each measurement and method, a 5 × 5-fold cross-validation is conducted. That is, the EEG

electrodes are randomly partitioned into five groups of approximately equal size. Each union of

four electrode groups gives rise to a “training set”, while the remaining channel group is the “test

set”. The procedure is carried out five times with different randomizations, yielding 25 training

sets with corresponding test sets. Inverse reconstructions are conducted based on the “training

sets”. In each of the 25 cross-validation runs, three criteria are evaluated. Most importantly the

reconstruction error, defined as

REC = ∥
s
∥s∥2
−

ŝ tr

∥ ŝ tr∥2
∥
2

, (4.17)

is considered, where ŝ tr are the vector field outputs estimated only from the training electrodes.

Apart from this pointwise reconstruction criterion, we also consider the earth mover’s distance

between true and estimated current densities, which measures the effort needed to tranform one

density into the other. A third quantity of interest is the generalization error, i. e., the error in

predicting the activity at test electrodes from the sources that are estimated from the training

electrodes. This is defined as

GEN = ∥xte − Ate ŝ tr∥
2

2
, (4.18)

where xte and Ate are the parts of x and A belonging to the test set electrodes, respectively.

Statistical significance of performance differences between methods are assessed by means of

t-tests based on the estimated means and standard errors across experimental repetitions and

cross-validation folds. These quantities are reported in Table 4.1.

4.4.2 Effect of joint localization

To illustrate the effect of co-localization, we perform the following experiment. A single dipolar

source is placed in a cortical region of the brain and the resulting field pattern is computed. Ten dif-

ferent phase-shifted versions of the pattern are constructed bymultiplying the original pattern with

a random unit-length complex number exp(iϕ). Each of the resulting patterns is superimposed

by equal amounts of measurement and biological noise. Note that in this scenario, the SNR cannot

be increased by averaging, since both signal and noise are zero-mean complex-valued quantities.

Source localization is carried out using both the single- and multiple-measurement variants of

S-FLEX, where the regularization constant is set to match the exact SNR. The source estimates of

all patterns are averaged to yield the estimated dipole amplitude per voxel. The obtained source

amplitude map is compared to the true map, in which only one dipolar source is active, using the

earth mover’s distance. The experiment is repeated 100 times.
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4.5 Localization of N20 event-related potentials

4.4.3 Results

Figure 4.3 shows a simulated current density alongwith reconstructions according to LORETA,MC,

FVR and S-FLEX. Apparently, LORETA and MC do not approximate the true current density well.

While the LORETA solution is too blurry to reflect the shape of the true sources, the MC estimate

exhibits a large number of spikes, which could be misinterpreted as different sources. The FVR

and S-FLEX estimates approximately recover the shape of the sources. The improvement of FVR

and S-FLEX over LORETA and MC in terms of the current density reconstruction (REC) and the

earth mover’s distance (EMD) is statistically significant, as quantified in Table 4.1. Moreover, both

FVR and S-FLEX generalize better than LORETA and the MC estimate, although insignificantly.

Joint- as compared to single-measurement localization leads to significantly better reconstruc-

tion of a single dipole, as indicated by a lower EMD (3.9±0.1 as compared to 4.6±0.1). An example

is shown in Figure 4.2 (b). While both estimated source distributions peak similarly close to the

true source location (indicated by a red cross-hair), the multiple-measurement approach has the

advantage of being less spread-out. This demonstrates that joint localization effectively removes

the noise-induced spatial instability seen in single-trial estimates.

REC EMD GEN

LORETA 1.00 ± 0.01 2.43 ± 0.03 2.87 ± 0.78

MC 1.21 ± 0.01 1.91 ± 0.04 1.86 ± 0.57

FVR 0.95 ± 0.02 0.86 ± 0.02 1.21 ± 1.00

S-FLEX 0.71 ± 0.04 0.75 ± 0.02 0.92 ± 0.28

Table 4.1: Ability of low-resolution tomography (LORETA), the minimum-current (MC) estimate, focal

vectorfield reconstruction (FVR) and sparse basis field expansions (S-FLEX) to recover simulated currents

according to the pointwise reconstruction criterion (REC) and the earth mover’s distance (EMD). Also

shown is the generalization performance (GEN) with respect to the EEG measurements. Entries with

significant superior score are highlighted.

4.5 Localization of N20 event-related potentials

4.5.1 Setting

In order to provide a real world example with known ground-truth, we recorded 113-channel

EEG of one healthy subject (male, 26 years) during electrical median nerve stimulation. The EEG

electrodes were placed according to the extended international 10-20 positioning system. The

exact positions were obtained using a 3D digitizer and mapped onto the surface of the modeled

skin shell. Electroencephalographic data were recorded with sampling frequency of 2 500Hz

and digitally bandpass-filtered between 15Hz and 450Hz. Left and right median nerves were

stimulated in separate blocks by applying constant square 0.2ms current pulses to the respective

thenars. Current pulses had intensities above the motor threshold (approx. 9mA), inducing

twitches of the thumbs. The interstimulus interval varied randomly between 500ms and 700ms.

About 1 100 trials were recorded for each hand.
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Figure 4.3: Simulated current density (SIM) and reconstructions according to low-resolution tomography

(LORETA), the minimum-current estimate (MC), focal vectorfield reconstruction (FVR) and sparse basis

field expansions (S-FLEX). Brighter colors encode larger dipole magnitudes.

Data analysis is conducted as follows. Trials and electrodes showing artifactual activity are

excluded. For the remaining 1 946 trials (973 left hand, 973 right hand), baseline correction

is performed by subtracting the mean amplitude in the pre-stimulus interval from −100ms to

−10ms. Finally, a single measurement vector is constructed by averaging the EEG amplitudes

of all trials recorded in the same condition at 21ms post-stimulus. By means of this, the N20

response to somatosensory stimulation at the hands is aggregated with high signal-to-noise ratio

(SNR). Figure 4.4 (a) shows the average EEG time courses in both conditions as well as the spatial

distribution of average EEG potentials at this point in time. The combined pattern is created by

arithmetic summation of the patterns related to left and right hand stimulation.

We conduct inverse source reconstruction of the EEG field patterns related to single left and

single right stimulation, as well as the summed pattern with the aim of revealing the distinct

generators of the left and right N20 event-related components. The methods tested are LORETA,

MC, FVR and S-FLEX. The regularization parameters of all four methods are adjusted to achieve
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4.5 Localization of N20 event-related potentials

equal goodness-of-fit (GOF) scores. We use the estimated noise level to adjust the GOF. Its desired

value is defined as ∥
√
(973)σx∥2/∥µx∥2, where µx and σx are the electrode-wise empirical means

and standard deviations of the N20 pattern as estimated from the 973 experimental repetitions.

When the presence of more than one source is assumed (as it is the case in the summed pat-

tern, which containts responses to both left and right median nerve stimulation), an automatic

decomposition of the estimated current density into individual source components is desirable.

For the sparse solution case, such a decomposition is easily obtained by computing the connected

components (with respect to the grid neighborhood relation) of the set of dipoles having nonzero

estimated amplitude. Such analysis is exemplarily conducted for FVR here. Note that the specific

properties of purely smooth inverse solutions (as, for example, provided by LORETA) prohibits

connected component analysis of the sources, since there are no voxels with zero estimated activity.

While a partitioning based on watersheds (Roerdink and Meijster, 2001) is generally conceivable,

it is not applicable to the current experiment, in which the current amplitude distribution accord-

ing to LORETA exhibits only one local maximum. The MC estimate consists of more than 20

components in this experiment.
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Figure 4.4: (a) Somatosensory evoked N20 potentials after left and right median nerve stimulation. Upper

panel: average time series between 10ms and 70ms post-stimulus. Lower panel: Average scalp patterns

at 21ms post-stimulus and sum of left and right pattern. (b) Connected component analysis of the focal

vectorfield reconstruction (FVR) inverse solution for the summed N20 pattern. Components are sorted

from top to bottom according to the ℓ2-norm (NORM) of their corresponding scalp patterns (PAT). For

each source component, the average dipole amplitudes in sagittal (SAG), coronal (COR) and axial (AX)

slices of 1 cm thickness around the source gravity center is shown (red and yellow colors, different scale for

each component). Additionally, a single dipole (black) representing the mean orientation of the source is

drawn at the gravity center.
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4.5.2 Results

The estimated left and right N20 generators as deduced from inverse source reconstruction of

the summed N20 field patterns are shown in Figure 4.5. The inverse solutions according to FVR

and S-FLEX are almost indistinguishable. Both show activity concentrated in two major patches

in contralateral central areas. This is in good agreement with the locations in which the hands

are known to be represented within the brain, which are two distinct contralateral regions in the

sensorimotor cortex (e. g., Komssi et al., 2004; Huttunen et al., 2006). Low-resolution tomography

estimates only one active region, which is spread over the whole central area. The maximum of

the current density lies exactly in between the hand areas. The MC estimate consists of several

spikes scattered across the whole somatosensory area. Note that it is hardly possible to estimate

the correct number of active sources from the MC solution.

The results of the connected components analysis of the FVR inverse solution for the summed

N20 pattern is depicted in Figure 4.4 (b). The source distribution reveales five distinct sources,

which are shown along with their individual scalp patterns as obtained from forward calculations.

For each component a dipole representing the mean moment vector is drawn at the gravity center.

The components are named C1 to C5 according to their decreasing impact on the EEG as measured

by the ℓ2-norm of their field patterns. The two strongest sources are the assumed N20 generators,

the respective field patterns of which closely resemble the single-hand stimulation patterns shown

in Figure 4.4 (a). The third component is likely to aggregate further signal parts belonging to C1 and

C2, between which it is located. Judging from its frontal pattern, component C4may correspond to

eyeblink artifacts, which is in line with its estimated location close to the eyes. Component C5 has

a negligible influence on the EEGmeasurement and may just represent non-stimulus-related brain

activity. In summary, this analysis shows that estimated source distributions, which are smooth

and sparse at the same time, can be easily decomposed into individual underlying sources based

on purely spatial criteria. This may facilitate source connectivity analysis using such methods.

Our analysis also demonstrates that FVR and S-FLEX are capable of recovering multiple brain

sources under real-world conditions. A further demonstration of the applicability of S-FLEXon real

data is given in Haufe et al. (2011a), where S-FLEX is used to identify brain sites that differ in band-

power between two motor imagery conditions of a brain-computer interface experiment. Here,

the co-localization approach is used to map Fourier coefficients related to different frequencies

within a band-of-interest to a common set of sources.

4.6 Reconstruction of simulated source connectivity using S-FLEX

4.6.1 Setting

While FVR is only applicable to individual EEG measurements, S-FLEX source estimates can

be obtained for entire time series using the co-localization approach. Due to the fact that S-

FLEX assumes a set of common sources, which are active throughout the whole recording, it

is additionally well suited for the subsequent analysis of interactions between the sources time

seris. To demonstrate this, we apply S-FLEX to the simulated dataset introduced in Section 3.9 to

evaluate the weighted minimum-norm estimate. The experimental setup considered there involves

two dipolar sources below C3 and C4 and information flow from the left to the right source.
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Figure 4.5: Localization of somatosensory evoked N20 generators according to low-resolution tomography

(LORETA), the minimum-current (MC) estimate, focal vectorfield reconstruction (FVR) and sparse basis

field expansions (S-FLEX). Brighter colors encode larger current magnitudes.

Using a linear inverse such asWMN, the source distribution is easily acquired even for time series

data by means of a matrix multiplication. This is different for S-FLEX, which requires estimating

all source variables (the coefficients of the basis field expansion related to all measurements) jointly

using nonlinear optimization. In our simulation scenario, this amounts to estimating 192 780 000

source variables (coefficients related to N = 2 142 voxels, S = 3 choices of ς, T = 10 000 samples and

3 spatial dimensions) jointly based on 590 000 observations (related toM = 59 EEG electrodes and

T = 10 000 samples). This is prohibitive even for S-FLEX due to excessive memory requirements.

Therefore, we adopt a two-step procedure, which restricts the number of variables involved in

each step. In the first step, S-FLEX is applied to 100 randomly-selected samples. Using only the

“active” basis functions characterized by nonzero estimated coefficients in this step, the second

estimation is performed for all time samples. Typically, between 10 and 50 basis functions are

selected as a result of the first step, which means that the number of variables in the second step

is reduced to less than 1 million in most cases. We apply S-FLEX using Gaussian basis functions

with spatial standard deviations ς1 = 0.75, ς2 = 1 and ς3 = 1.25. The regularization parameter in

both steps is adjusted such that the S-FLEX solution achieves the same goodness-of-fit as the

corresponding cross-validated WMN estimate. As in Section 3.9, 100 datasets are localized and

subjected to subsequent connectivity analysis using Granger causality, partial directed coherence

and the phase-slope index.
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4.6.2 Results

The results of source connectivity analysis based on S-FLEX source estimates are presented in

Figure 4.6, which is to be compared to Figure 3.5 depicting results of an equivalent analysis based

onWMN inverse source estimates. The average estimated source activity shown in the upper panel

of both figures clearly confirms the previously-noted superiority of S-FLEX in terms of localization

accuracy and the ability to distinguish multiple sources. Unlike WMN, S-FLEX estimates two

distinct prominent patches of strong activity. As can be seen in the source-amplitudemap provided

in the upper left panel of Figure 4.6, each of these patches is close to one of the true simulated

interacting sources, although both are estimated slightly deeper than the true simulated ones. This

problem, however, disappears if the SNR is increased by setting γ = 0.75 (results not shown here).

The upper right panel of Figure 4.6 depicts the average activity in source-space regions-of-interest

associated with the overlying EEG electrodes. As can be seen in this plot, the largest amount of

activity falls into the ROIs associated with C3 and C4, which are exactly the electrodes under which

the simulated sources are placed. All three measures of effective connectivity considered indicate

significant information flow (z > 4.0) from the source under C3 to the source under C4, and no

additional significant connections. This is the correct result, which could not have been obtained

by WMN inverse source reconstruction preprocessing. Taken together, the results obtained here

demonstrate that connectivity analysis of S-FLEX source estimates has numerous advantages over

sensor-space analysis, as well as the analysis of source estimates provided by linear inverse methods.

Using S-FLEX one way of avoiding neurophysiological misinterpretation, which is possible in

sensor space due to the fact that the mixing patterns of the underlying sources are unknown, as is

the contribution of the driving/receiving sources to the reference electrode. Furthermore, S-FLEX

is the only preprocessing besides various BSS approaches that recovers sufficiently unmixed time

courses of the underlying sources in our simulated example, and the only one besides TDSEP

that succeeds in the case of Gaussian MVAR innovation terms. Note, however, that, while TDSEP

achieves the correct demixing despite its inappropriate assumption of zero mutual time-lagged

correlation of the sources, S-FLEX merely utilizes prior knowledge on the spatial separability of

the sources. As the majority of inverse methods, S-FLEX is not affected by the distribution of the

innovations of the source MVAR process. Rather, it assumes a Gaussian distribution of the sources’

time courses, which is approximately true even for non-Gaussian innovations due to the temporal

filtering induced by MVAR modeling. As a result of the successful demixing provided by S-FLEX,

not only PSI but also GC and PDC yield correct results on the estimated sources.

4.7 Discussion (priors for the inverse reconstruction of multiple
connected sources)

Computation of distributed EEG inverses heavily relies on regularization, since the physical model

alone does not uniquely determine the sources. Within the last years the field has seen tremendous

progress, in that the proposed regularization penalties increasingly represent neurophysiologically

meaningful prior knowledge. In this chapter, we have subsequently derived an inversemethodology

that properly addresses a number of remaining challenges, which are crucial with regard to the

neurophysiological plausibility of the estimated sources as well as the feasibility to perform source
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Figure 4.6: Comparison of effective connectivity of simulated EEG as estimated by Granger causality (GC),

partial directed coherence (PDC) and the phase-slope index (PSI) after application of sparse basis field

expansion (S-FLEX) inverse source reconstruction. Two source dipoles with tangential orientations are

modeled 3 cm below the C3/4 electrodes. Information flow from the left (C3) to the right (C4) source

is modeled by means of a bivariate AR process. The simulated EEG is superimposed by non-interacting

biological and sensor noise (SNR = 1). Upper left panel: average source strength (dipole amplitude) per voxel.

Upper right panel: average source strength in regions-of-interest associated with the closest EEG electrode.

Lower panel: Connectivity between regions-of-interest in source space, which are defined based on the

nearest EEG electrode. The significance of estimated interactions between regions is measured in terms of

z-scores and visualized as head-in-head plots, where red and yellow colors (z > 0) stand for information

outflow and blue and cyan colors (z < 0) stand for information inflow. The Bonferroni-corrected significance

level is indicated by a thin black line in the colorbar, while the uncorrected significance level is indicated by

a thick black line.

connectivity estimation on the inverse solutions. An important step towards plausible source

estimates has been the insight that the spatial spread of the sources should be controlled and

ideally be tuned automatically. We propose two alternative ways here to achieve this. While focal

vectorfield reconstruction uses a combination of smoothness- and sparsity-enforcing penalties,

the relative influence of each of which may be optimized using cross-validation, inverse source

reconstruction via sparse basis field expansions provides a built-in automatic scale selection using

a large dictionary of suitable spatial basis functions. A general challenge when dealing with

minimum-norm penalties is to balance the influence of a source’s location on the regularized cost

function. While this has been done previously using column-norm depth weighting, we propose

a novel weighting matrix inspired by sLORETA, which has been found to improve localization

results (Haufe et al., 2008). A further important factor influencing the plausibility of the estimated

sources when using sparsity penalties is the proper handling of the vectorial nature of the dipole

moments to be estimated. This is achieved here by means of grouped variable selection using the
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4 Source connectivity analysis via inverse source reconstruction preprocessing

ℓ1,2-norm penalty, which enjoys favorable invariance properties. Finally, if several interrelated

field maps are to be localized by sparse estimators, their mutual information should be exploited.

Here we suggest suitably enlarging the groups of source variables that are tied under a common

ℓ2-norm penalty, which amounts to modeling that the sets of active brain sites have substantial

overlap across EEG patterns. This assumption is certainly fulfilled for repeated measurements

recorded under the same experimental condition. The same holds true for time series data that

are to be localized for the purpose of source connectivity analysis. Here, spatial consistency is

important for achieving stationary behaviour of the source time series, which is a precondition for

connectivity analysis.

In addition to the development of inverse methods, we propose the earth mover’s distance as a

metric for comparing arbitrary source estimates that drastically facilitates the evaluation of inverse

solutions. Using the EMD between simulated and estimated sources as a performance measure,

the superior source localization accuracy of our approaches in comparison to the state-of-the-art

was shown in a simulated setting (Section 4.4), as well as on real-world event-related potential (Sec-

tion 4.5) and event-related desynchronization Haufe et al. (2010b, 2011a) data. We also investigated

the benefit of our improved source modeling for EEG source connectivity estimation. Interest-

ingly, it turns out that the application of S-FLEX preprocessing yields a substantial qualitative

improvement over standard approaches.
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5 Blind recovery of sources and their connectivity

While inverse source reconstruction is a powerful approach to the estimation of underlying brain

sources from EEG measurements, it relies on the availability of a physical model of the head.

Once this head model is provided, inverse source reconstruction is concerned about inverting

the model equations. In the case of distributed inverse imaging, this boils down to solving

the underdetermined linear system X = AS for the sources S under physiologically-motivated

constraints.

Blind source separation (BSS) techniques are not restricted to a specific application domain,

for which the forward equations must be known. Rather, their idea is to simultaneously estimate

the mixing matrix A and the source time series S of the decomposition. Estimating the lead

field matrix in the EEG context is necessary when no forward model is known, but it can also

be beneficial when the available model is inaccurate (e. g., not matching the individual head).

The increased freedom that comes with estimating A, however, makes parameter estimation

mathematically more demanding. In general, A and S are not identifiable without contraints,

which have to be chosen carefully in order to reflect the assumed properties of the unknown true

factors in the targeted application domain. Inappropriate constraints may easily lead to inexact

factorizations. For example, orthogonality constraints imposed by PCA on the columns of A

prevent physiologically meaningful EEG sources (except for, perhaps, the strongest source) from

being found, because orthogonal mixing patterns are incompatible with the physical process

of EEG generation. A further example is independent component analysis, which makes the

assumption of independence of the source times series, which is inappropriate when investigating

source connectivity.

In this chapter, we develop blind source separation techniques that are, unlike PCA and ICA,

tailored to the discovery of mutually interacting sources and thereby compete with methods

like MVARICA and CICAAR. In accordance with the rest of this thesis, we here assume that

interactions are characterized by time-lagged influences of the driving on the receiving sources.

Our key to indentifying these sources and their spatial mixing patterns is the assumption that the

source time series follow a multivariate AR process. As has been pointed out previously, MVAR

models are the foundation of Granger-causal measures of effective connectivity. Our previous

simulations have shown that such analyses are seriously hampered by insufficiently demixed EEG

signals, while they can be sucessful if the sources are well separated. The idea pursued in this

chapter is to integrate the assumption of potential interactions between sources directly into a BSS

methodology, which amounts to taking the opposite approach as in ICA.

The chapter starts with a section on sparse Granger-causal modeling (see Section 5.1). Here we

outline two approaches to obtaining sparse Granger-causal graphs, which are shown to outperform

existing approaches in terms of detecting significant interactions. In Section 5.2, we extend these

approaches by an additional mixing matrix, which gives rise to a methodology for the blind source

separation of EEG signals that decomposes the data into correlated sources following amultivariate

autoregressive model. Two variants are discussed. Connected components analysis (CSA) imposes
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5 Blind recovery of sources and their connectivity

no restriction on the MVAR coefficients. This leads to a model that is equivalent to a convolutive

ICAmodel of the sourceMVAR innovation terms. Motivated by the effectiveness of sparse Granger-

causal modeling that is demonstrated in the first section, sparsely-connected sources analysis

(SCSA) employs additional ℓ1,2-norm regularization of the source MVAR coefficients in order to

effectively prune connections between sources. Since the regularization parameter can be adapted

to the data, SCSA is able to model any degree of source interaction comprising global interaction

(as assumed in CSA) as well as completely independent sources (in the ICA sense) as special cases.

While CSA and SCSA do not constrain the mixing matrix A in any way, this is done in a more

general approach, which is outlined in Section 5.3. Here, we utilize a physical model to obtain a

factorization of A into the known lead field matrix and a matrix of source current distributions.

Physiological plausability of the mixing patterns is ensured by enforcing that the associated source

current distributions have simple spatial signatures in terms of the sparsity of a decomposition into

spatial basis fields. Thus, the outlined approach, SCSA+FLEX, fuses SCSA blind source separation

with S-FLEX inverse source reconstruction and thereby combines the advantages of all methods

developed in the course of this thesis. While the evaluation of SCSA+FLEX is still ongoing, an

application of SCSA to the simulated interacting sources example introduced in Chapter 3 is

presented in Section 5.4.

5.1 Methods for sparse Granger-causal discovery

In this section, we are not yet concerned with blind source separation. Rather, we aim to improve

existing Granger-causal methods, which would be applicable on the source level. As mentioned

previously, the fundamental idea underlying Granger causality is that a time series z j “causally”

influences another time series zi , if knowledge of the past of z j improves the prediction of the

presence of zi , compared to knowing only the past of zi . This is assessed by the conventional

Granger score, which compares the residual errors of two multivariate ARmodels (see Section 2.6).

However, a causal dependence of z j on zi in the Granger sense is already evidenced, if any of

the P coefficients bi , j(p) of a single full MVAR model is significantly different from zero. This

observation is exploited, for example, by the directed transfer function (DTF) and by partial

directed coherence (PDC).

Testing whether MVAR coefficients or (net) PDC/DTF scores are significantly different from

zero can be conducted by fitting MVAR models to multiple i.i.d. data chunks and using standard

statistical tests. This is the general approach pursued in this thesis. However, when only few data

points are available, it is desirable to estimate the presence of effective connections from a single

MVAR model. In this section, we describe two approaches for doing so, which are adopted from

Haufe et al. (2010a). The first approach uses ridge regression for MVAR estimation. To assess the

statistical significance of the estimated coefficients, we here apply the post-hoc multiple statistical

testing procedure of Hothorn et al. (2008), which saves us from having to acquire multiple repeated

measurements. The second approach is based on using sparse regularization for direct estimation

of sparse connectivity graphs. Our approach here accounts for the fact that the absence of a causal

relation between zi and z j requires all AR coefficients belonging to that pair of time series to be

jointly zero, which can be accomplished using an ℓ1,2-norm penalty. In the following, we provide

the details regarding the groupwise sparsity and the alternative testing strategy, respectively.
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5.1 Methods for sparse Granger-causal discovery

5.1.1 Ridge regression with post-hoc statistical testing

Under the assumption of Gaussian innovations and additional noise, it is natural to estimate AR

coefficients using a regularized least squares approach. Probably the most straightforward way

to do so is to use ridge regression, which adds an ℓ2-norm penalty to the negative log-likelihood.

Adopting the notation of Section 2.5, the multivariate ARmodel reads x(t) = ∑P
p=1 B(p)x(t − p)+

ε(t). Setting B̃ = (B(1), . . . , B(P)), X = (x(P + 1), . . . , x(T)), X̃ = (X1, . . . , XP)
⊺ and Xp =

(x(P + 1 − p), . . . , x(T − p))⊺, the ridge regression estimate is given by

̂̃
Bridge

= argmin
B̃

∥vec (X − B̃X̃)∥
2

2
+ λ ∥vec (B̃)∥

2

2

= (B̃B̃⊺ + λIMP)
−1B̃X⊺ , (5.1)

where λ ≥ 0. Due to the ℓ2-norm penalty, (5.1) delivers solutions with small coefficients, which are,

however, in general never exactly zero. In the strict sense of Granger, this corresponds to a fully-

connected effective connectivity graph, rendering a single ridge regression incapable of selecting a

subset of interacting source pairs. However, sparsification can be performed by means of statistical

testing, which returns only the significant connections. While conventional testing procedures

require multiple independently-acquired measurements, our hereby proposed approach is capable

of deriving p-values directly from a single MVAR estimate. This is possible using the linearity

property of the ridge regression estimator. From (5.1), it is apparent that the MVAR estimation

can be carried out independently for each row of B̃, and so can the testing. Let therefore βk

denote the k-th row of B̃ and let xk = (xk(P + 1), . . . , xk(T))⊺. As the ridge regression coefficients

depend linearly on X, we can conclude that under the null-hypothesis H0 ∶ βk = 0 the estimated

coefficients are distributed according to

β̂k ∼ N (0, ς
2
kΣ) with Σ = (X̃ X̃⊺ + λIMP)

−1X̃ X̃⊺(X̃ X̃⊺ + λIMP)
−1

. (5.2)

Furthermore, setting H = X̃⊺(X̃ X̃⊺ + λIMP)
−1X̃, an estimate of the model variance ς2k is given by

ς̂ 2k =
∥yk −Hyk∥

2

Tr{(IT−P −H) (IT−P −H⊺)}
. (5.3)

Using (5.3), we can construct normalized test statistics β̃i ,k = β̂i ,k/
√
(ς2kσi ,i), which are jointly

normally distributed with β̃ ∼ N (0, R) and ri , j ∶= σi , j/
√
(σi ,iσ j, j). Suppose we want to test all

individual hypotheses H0;i ,k ∶ βi ,k = 0 simultaneously, then, according to Hothorn et al. (2008),

the adjusted p-values are pi ,k = 1 − д(R, ∣β̃i ,k ∣). Here,

д(R, t) = P (max
i
∣β̃i ,k ∣ ≤ t) = ∫ t

−t
. . . ∫ t

−t
ϕ(βi ,1, . . . , βi ,MP) dβi ,1⋯dβi ,MP (5.4)

and ϕ(β) is the probability density function of the multivariate normal distributionN (0, R). We

reject a hypothesis, if the p-value is below the predefined significance level γ.
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5 Blind recovery of sources and their connectivity

5.1.2 Groupwise sparsity approach

Sparse approaches to MVAR estimation provide a direct way of assessing the presence of time-

lagged effective connectivity without having to conduct additional statistical testing. At the same

time, sparsity acts as a regularizer when it is already enforced within the estimation. By this means

the model may be prevented from overfitting the data. In contrast to this, the ridge-regression-

based approach presented above is a two-step procedure, which may possibly suffer from the

aggregation of assumptions made in each step. Along these lines, Valdés-Sosa et al. (2005) propose

estimating sparse MVARmodels of order P = 1 using ℓ1-norm regularization of the AR coefficients.

The resulting model characterizes time series with sparse Granger-causal structure. However, for

AR models of order P > 1, the structure of the connectivity graph estimated this way may be

different for each time lag p ∈ {1, . . . , P}.

Here we propose a novel sparse approach which accounts for the fact that the absence of a causal

relation between xi and x j requires all AR coefficients bi , j(1), . . . , bi , j(P) related to that certain

pair of time series to be jointly zero. This corresponds to introducing the prior belief that causal

influences between time series is not restricted to only one particular time lag. Technically, the

proposed sparsity scheme is implemented using the ℓ1,2-norm regularizer, i. e., by introducing the

penalty λ∑i≠ j ∥(bi , j(1), . . . , bi , j(P))
⊺∥2, which groups all coefficients related to the pair (i , j) of

time series together, such that they may only be jointly pruned. It is also possible to add an extra

term ∥ (b1,1(1), . . . , bM ,M(P)) ∥2 for regularizing the diagonal (auto-regressive) coefficients. The

latter variant leads to the estimate

̂̃
BGL

= argmin
B̃

∥vec (X − B̃X̃)∥
2

2

+λ
⎛

⎝
∥(b1,1(1), . . . , bM ,M(P))∥2 +∑

i≠ j
∥(bi , j(1), . . . , bi , j(P))∥2

⎞

⎠
. (5.5)

This defines a standard group lasso problem, which can be solved using a variety of algorithms

(Sturm, 1999; Roth and Fischer, 2008; Tomioka and Sugiyama, 2009). It ismoreover possible to split

the estimation of B intoM subproblems (as performed in the combined ridge regression/statistical

testing approach), which is beneficial in large-scale scenarios.

Based on the group-lasso-regularized estimate, we define the effective connectivity graph ac-

cording to group lasso Granger causality (GLGC) as

glgci , j = ∥(bi , j(1), . . . , bi , j(P))
⊺
∥
2
. (5.6)

While this is the easiest way to define the presence of interactions based on the ℓ1,2-norm regularized

MVAR coefficients, it is also possible to calculate partial directed coherence, the directed transfer

function and/or statistics on top of the sparse MVAR coefficients. In this regard, it is of interest

to note that the sparsity pattern of the GLGC connectivity graph is inherited by PDC, but not by

DTF, which is generally non-sparse.
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5.1.3 Application to simulated data

Setting

We conduct a series of experiments, in which the effective connectivity of simulated data rep-

resenting unmixed brain source activity is to be recovered. For each experiment, we simulate a

multivariate time series with parameters M = 7 and T = 1 000, which is generated by a random

MVAR process of order P = 5. The innovations terms ε(t) are drawn from the standard normal

distribution. We simulate ten interactions by setting the coefficients for all but ten randomly

chosen pairs of time series to zero. The non-zero coefficients are drawn independently from

N (0, 0.04). Each set of MVAR coefficients is tested for the stability of its induced dynamical

system by looking at the eigenvalues of the corresponding transition matrix. Only coefficients

leading to stable systems are accepted. We consider the following three types of problems, for

each of which we create ten instances: i) no noise is added to the data generated by the VAR

model, ii) the data is superimposed by Gaussian noise of approximately the same strength, which

is uncorrelated (white) both across time points and sensors and iii) the data is superimposed by

mixed noise of approximately the same strength, which is generated as a random instantaneous

mixture of M stable univariate AR processes of order 20 with random coefficients. Note that in

none of these cases the noise time series contains time-lagged interaction that would superimpose

the true interaction structure.

For measuring the performance of the Granger-causal discovery, we consider receiver operating

characteristics (ROC) curves, which objectively assess the performance according to different

regimes. More precisely, the ROC curve plots the sensitivity (true positive rate) of a predictor as a

function of the specifity (true negative rate). As an additional measure of absolute performance we

also calculate the area under the ROC curve (AUC). We compute average ROC curves and AUC

scores across the ten problem instances, and standard errors for the AUC score. We compare the

proposed groupwise sparse (group lasso) and ridge regression with multiple testing approaches

with ℓ1-norm regularization (lasso) and conventional Granger causality. All four approaches are

applied both with and without knowledge of the true model order. In the latter case, P = 10 is

chosen for the reconstruction. For all methods considered, it would also be possible to estimate

the model order, e. g., via cross-validation.

We use the solver provided by Roth and Fischer (2008) for computing the lasso and group lasso

estimates and our own implementation for computing Granger causality as well as performing

ridge regression and multiple testing. The MVARmodels used in Granger causality are fitted using

the BIOSIG toolbox (Vidaurre et al., 2011)1. The regularization parameter λ in ridge regression

is chosen via ten-fold cross-validation. For this value of λ, we derive the test statistics βi ,k . The

multidimensional integrals in (5.4) are computed using Monte Carlo sampling according to Genz

(1992)2. Receiver operating characteristics curves are constructed by varying the significance level

γ. Similarly, for Granger causality, ROC curves are obtained by thresholding the Granger score at

different values. For lasso and group lasso, solutions ranging from completely sparse to completely

dense are obtained through variation of the regularizing constant λ.

1http://biosig.sourceforge.net/
2http://www.math.wsu.edu/faculty/genz/software/matlab/qsimvnv.m
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5 Blind recovery of sources and their connectivity

Results

Table 5.1 summarizes the AUC scores obtained in the experiments described above. The com-

plementing ROC curves are shown in Figure 5.1. In short, the group lasso and ridge regression

approaches outperform their competitors in all scenarios, although not always significantly. While

ridge regression with additional testing performs slightly better than the group lasso in the noise-

less condition, group lasso has a clearly visible yet insignificant advantage over all methods in

the white noise setting. Under the influence of mixed noise, ridge regression and group lasso

are on par. Note that the ROC curve for lasso is strictly below the ROC curve of group lasso,

which demonstrates that connectivity graphs estimated by lasso tend to be too dense. Interestingly,

knowledge of the true model order hardly provides any significant advantage in our simulations.
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Figure 5.1: Average receiver operating characteristics (ROC) curves of Granger causality (red), ridge regres-

sion in combination with multiple statistical testing (green), lasso (blue) and group lasso (black) in three

different noise conditions and for two different model orders.

GC RIDGE LASSO GLASSO

NO NOISE 0.991 ± 0.004 1.000 ± 0.000 0.996 ± 0.002 0.997 ± 0.002

P=5 WHITE NOISE 0.910 ± 0.023 0.948 ± 0.020 0.941 ± 0.021 0.971 ± 0.016

MIXED NOISE 0.896 ± 0.012 0.928 ± 0.010 0.889 ± 0.011 0.926 ± 0.012

NO NOISE 0.980 ± 0.005 0.998 ± 0.002 0.996 ± 0.002 0.999 ± 0.001
P=10 WHITE NOISE 0.885 ± 0.019 0.958 ± 0.012 0.948 ± 0.013 0.979 ± 0.005

MIXED NOISE 0.893 ± 0.013 0.931 ± 0.015 0.861 ± 0.014 0.931 ± 0.007

Table 5.1: Average area under the receiver operating characteristics curve (AUC) scores and standard errors

of Granger causality, ridge regression with multiple statistical testing, lasso and group lasso in three different

noise conditions and for two different model orders. Entries with significant superior AUC score are

highlighted.
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5.2 Sparsely-connected sources analysis (SCSA)

In Chapter 3, we presented simulations demonstrating that the estimation of source connectivity

from EEG data using partial directed coherence and conventional Granger causality is severely

hampered if performed on insufficiently demixed EEG time series or even directly on sensor

data. The same must be expected for the novel sparse connectivity approaches introduced in the

previous section, which are similarly grounded onMVAR estimation. While these new approaches

have been found to outperform conventional Granger causality and ℓ1-norm regularized MVAR

estimation in terms of detecting the Granger-causal structure of a multivariate time series, this

result has only been achieved on the “source level”, where no mixing of the interacting signals

is present. Such a mixing must, however, be expected in any real EEG dataset due to volume

conduction in the head.

In this section, we aim at utilizing sparse Granger-causal approaches for EEG source connectivity

analysis without having to worry about a suitable preprocessing. To this end, we present a blind

source separation technique called sparsely-connected sources analysis (SCSA), by which the

source time series and their respective field patterns are jointly estimated under the assumption of

sparsity of the source connectivity graph. To do so, we extend the previously described ℓ1,2-norm

regularized approach toMVAR estimation by an additional instantaneousmixing, which represents

volume conduction. Note that this is substantially different tomerely applying a sparse connectivity

estimator to demixed time series, because the information that (some of) the demixed sources

are interacting is accounted for in the estimation of the mixing parameters. Sparsely-connected

sources analysis was introduced in Haufe et al. (2010c), along with an unregularized variant called

connected sources analysis (CSA). In the following, we review the details of CSA and SCSA from

Haufe et al. (2010c). Starting from the formulation of the correlated sources model underlying

our methods, we go on to discuss theoretical and practical issues of parameter identification,

as well as optimization strategies and the relation to other BSS approaches. The section ends

with an exhaustive empirical evaluation of BSS methods in terms of source effective connectivity

estimation.

5.2.1 Correlated sources model

We consider a noiseless version of the general EEG model (2.2), which assumes that the EEG

sensor measurement is generated as a linear instantaneous mixture of source activity. The source

dynamics is assumed to be generated by an MVAR process. This leads to the following model of

interconnected sources

x(t) = As(t) (5.7)

s(t) =
P

∑
p=1

B(p)s(t − p) + ε(t) . (5.8)

Here, x(t) is the M-dimensional EEG signal at time t, A is a M ×M mixing matrix representing

the volume conduction effect and s(t) is the demixed (source) signal. The sources at time t are

modeled as a linear combination of their P past values plus an innovation term ε(t), according
to an MVAR model with coefficient matrices B(p). For simplicity, we deal with the case that the
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5 Blind recovery of sources and their connectivity

numbers of sensors and sources are equal and the mixing matrix A is invertible. When there

exist less sources than sensors, the problem falls into the current setting after being preprocessed

using principal component analysis. The innovation sequence can be obtained by finite impulse

response (FIR) filtering of the observation, i. e.,

ε(t) = A−1x(t) −
P

∑
p=1

B(p)A−1x(t − p)

=
P

∑
p=0

W(p)x(t − p) , (5.9)

where the filter coefficients are determined by the mixing matrix A and the MVAR parameters

{B(p)} according to

W(p) =

⎧⎪⎪
⎨
⎪⎪⎩

A−1 p = 0

−B(p)A−1 p > 0
. (5.10)

Note that (5.9) corresponds to a noiseless version of the convolutive ICA model. However, com-

pared to the standard formulation (see Section 2.8), measurements and underlying convolutive

sources (innovations) are interchanged here.

5.2.2 Identification by convolutive ICA

In conventionalMVARanalysis, the innovation term ε(t) is a temporally- and spatially-uncorrelated

sequence of standard normally distributed vectors. In contrast, we assume here that the compo-

nents are i.i.d. and subject to non-Gaussian distributions. Under these weak assumptions, the

model parameters A and {B(p)} can be identified using standard approaches to temporal-domain

convolutive ICA. For EEG data, a super-Gaussian is more suitable than a sub-Gaussian distribution,

if we assume that ongoing activity of brain networks is triggered by spontaneous local bursts. We

here adopt the super-Gaussian hyperbolic secant (sech) distribution that is proposed in Dyrholm

et al. (2007). The likelihood of the data under this model is

p({x(t)}Tt=P+1∣{W(p)}) = ∣W(0)∣
T−P

T

∏
t=P+1

M

∏
m=1

1

π
sech (εm(t)) , (5.11)

where T is the number of available time samples. The cost function to be minimized is the negative

log-likelihood, which is given by

L
CSA
({W(p)}) = (P − T) log ∣W(0)∣ = −

T

∑
t=P+1

M

∑
m=1

log ( 1
π
sech (εm(t))) . (5.12)

The minimization of (5.12) leads to estimators Â and {B̂(p)} of the mixing matrix and the MVAR

coefficients, respectively, via (5.10). We call this procedure connected sources analysis (CSA).
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5.2 Sparsely-connected sources analysis (SCSA)

5.2.3 Sparse connectivity as regularization

In practice, the number of parameters in CSA may become very large, because the number of

AR coefficients grows quadratically with the number of EEG sensors (or PCA components).

Maximum-likelihood estimation may lead to overfitting, especially if the number of observations

T is small. For this reason, it is advisable to adopt a regularization scheme. In the previous section,

we have pointed out that, by using an ℓ1,2-norm penalty, entire effective connections between time

series can be pruned at once. From the practical standpoint this is very appealing, since fewer

connections are far easier to interpret. But assuming sparse connectivity is also justified by studies

of the numerical characteristics of network connectivity in fMRI data (see Valdés-Sosa et al., 2005,

and the references therein). This reasoning also applies to EEG data. Besides the penalty-based

approach, post-hoc sparsification of dense esimates by means of statistical testing is another viable

option (see our ridge regression based approach presented in Section 5.1). However, due to the

compelling built-in regularization, we here adopt ℓ1,2-norm sparsification analogous to the group

lasso approach to Granger-causal discovery described in Section 5.1.

Sparsity can only reasonably be assumed for theMVAR coefficients {B(p)} but not for theW(p)

matrices which factorize into MVAR coefficients and the (necessarily non-sparse) instantaneous

demixing. Hence, in order to apply ℓ1,2-norm regularization, we have to split the parameters

into demixing and MVAR parts, as per the original model given by (5.7) and (5.8). Defining

s(t) = A−1x(t) and s̃(t) = ∑P
p=1 B(p)s(t − p), the regularized cost function reads

L
SCSA
(A, {B(p)}) = (P − T) log ∣A∣ −

T

∑
t=P+1

M

∑
m=1

log ( 1
π
sech (sm(t) − s̃m(t)))

+ λ ( ∥(b1,1(1), . . . , . . . , bM ,M(P))
⊺
∥
2

+ ∑
m≠ f
∥(bm, f (1), . . . , bm, f (P))

⊺
∥
2
) , (5.13)

λ being a positive constant. Theminimizer of (5.13) for a choice of λ is called the sparsely-connected

sources analysis (SCSA) estimate.

5.2.4 Relation to other BSSmethods

Sparsely-connected sources analysis extends our previously suggested group lasso approach to

sparse Granger-causal discovery (see Section 5.1) by a linear demixing. By doing so, we obtain a

method that is – unlike all previous Granger-causal approaches discussed in this thesis – suited

for EEG-based connectivity analysis. Our method compares with MVARICA (i. e., MVAR+ICA,

Gómez-Herrero et al., 2008), which assumes the samemodel but estimates its parameters differently.

Precisely, the authors of MVARICA suggest initially fitting an MVAR model in sensor space. The

demixing is then obtained by performing instantaneous ICA on the MVAR innovations, i. e., a

dedicated contrast function is used to model independence of the innovations. The obtained

sources follow an MVAR model with time-lagged effects (interactions), as in CSA/SCSA.

As mentioned, our model is very similar to the convolutive ICA model, the only difference

being that (5.9) employs a finite impulse response (FIR) filter to extract the innovations, while
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5 Blind recovery of sources and their connectivity

an infinite response filter (IIR) is usually used in the CICA literature (see, e. g., Dyrholm et al.,

2007). This discrepancy is explained by the different philosophies that are associated with both

methods. While in our approach, the innovations ε(t) arise as residuals of a finite-length source-

MVAR model, CICA understands them as sources of a finite-length convolutional (forward)

mixture. Nevertheless, our unregularized cost function can be regarded as a maximum-likelihood

approach to an IIR version of convolutive ICA. This leads to a new view of convolutive ICA as

performing an instantaneous demixing into correlated sources. Hence, it is possible to conduct

source connectivity analysis using CICA.

Compared to MVARICA and time-domain implementations of convolutive ICA such as CI-

CAAR, our formulation has the advantage that sparse connectivity can easily be modeled by an

additional penalty. This is not possible for CICAAR, because CICAAR only indirectly estimates

the MVAR coefficients through their inverse filters. However, these are generally nonsparse, even

if the true connectivity structure is sparse. Inverting the inverse coefficients is also generally not

possible (recall that convolutive ICA is equivalent to an infinite-length source-MVAR model). It is

furthermore not possible to introduce a sparse regularization for MVARICA, since this method

carries out the MVAR-estimation step in sensor space, where no sparsity can be assumed.

By variation of the regularization parameter, our method is able to cover all possibilities between

the extremes of a fully-correlated source model (similar to convolutive ICA) and a model which

allows no cross-talk between sources. Interestingly, the latter extreme can be seen as a variant of

traditional instantaneous ICA, inwhich independence ismeasured in terms ofmutual predictability

with a Granger-type criterion.

5.2.5 Optimization

The minimizations of (5.12) and (5.13) cannot be cast in the framework of convex optimization

for instance using the group lasso or ridge regression, for which reason we here give detailed

descriptions of our optimization procedures.

CSA

The gradient of the unregularized (CSA) cost function (5.12) is obtained as

∂LCSA

∂Wm(p)
= δ(p) ((P − T)W(p)

−⊺em)

+
T

∑
t=P+1

tanh
⎛

⎝

P

∑
p=0

Wm(p)
⊺x(t − p)

⎞

⎠
x(t − p) , (5.14)

where Wm(p) ∶= W(p)
⊺em, i. e., the m-th column vector of W(p)

⊺
. Using (5.14), CSA can be

readily solved using limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) optimization.

Note that the CSA objective has obvious indeterminacies due to permutations and sign flips.

However, once we fix a rule to chose one from all candidates, the cost function can be considered

convex.
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5.2 Sparsely-connected sources analysis (SCSA)

SCSA via amodified L-BFGS algorithm

Using sparse regularization, two difficulties emerge in contrast to when using the unregularized

cost function. First, the factorization of {W(p)} into A and {B(p)} is likely to introduce local

minima of the cost function, which might be found instead of the true global minimum. Fur-

thermore, (5.13) is not differentiable, when one of the terms ∥(bm, f (1), . . . , bm, f (P))
⊺∥2,m ≠ f

or ∥(b1,1(1), . . . , . . . , bM ,M(P))
⊺∥2 is zero, which is expected to be the case at the optimum. For

approaching these difficulties, we here propose using a modified version of the L-BFGS algorithm,

which allows joint nonlinear optimization of A and {B(p)}, while taking special care of the

nondifferentiability of the regularizer. The gradient of (5.13) for the case m ≠ f is obtained as

∂LSCSA

∂bm, f (p)
= −

T

∑
t=P+1
(tanh (sm(t) − s̃m(t)) s f (t − p))

+λ
bm, f (p)

∥(bm, f (1), . . . , bm, f (P))
⊺
∥
2

(5.15)

(analogously for m ≡ f ) and

∂LSCSA

∂Am

= (P − T)A−⊺em

+
T

∑
t=P+1

M

∑
m=1

⎧⎪⎪
⎨
⎪⎪⎩

tanh (sm(t) − s̃m(t)) ×
⎛

⎝
x(t) −

P

∑
p=1

xm(t − p)bm(p)
⎞

⎠

⎫⎪⎪
⎬
⎪⎪⎭

. (5.16)

Our modified L-BFGS algorithm checks before each gradient evaluation, which of the terms

∥(b1,1(1), . . . , . . . , bM ,M(P))
⊺∥2 and ∥(bm, f (1), . . . , bm, f (P))

⊺∥2,m ≠ f are (close to) zero. If any

of these terms equals zero, the gradient is not defined uniquely but is a set-valued quantity called

the subdifferential. Nevertheless, it is straightforward to compute the element of the subdifferential

with the minimum norm, whose sign inversion is always a descent direction. Care must be taken,

because in practice we would not find any of the above terms exactly equal to zero. Thus, we

truncate the elements of B corresponding to the terms with small norms below some threshold to

zero before computing the minimum norm subgradient. If the minimum is indeed attained at the

truncated point, the minimum norm subgradient will be zero. Otherwise the subgradient will

drive the solution away from zero. Further care must be taken in practice to prevent the solution

from oscillating towards and away from zero.

We find that, using the outlined optimization procedure, sparse solutions can be found in shorter

time, if the solution of the unregularized cost function is used as the initializer. The starting point

may be obtained using the inverse transformation of (5.10).

SCSA via expectationmaximization

Using joint optimization of A and {B(p)}, the heuristic pruning of connections might in some

cases lead to suboptimal solutions regarding the composite loss function. For this reason, we

present an alternative optimization scheme, which does not require any heuristic step. The idea here

is to alternate between the estimation of both unknowns. Doing so can be justified as an application
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5 Blind recovery of sources and their connectivity

of the expectation maximization (EM) algorithm (Neal and Hinton, 1998). Estimation of A given

{B(p)} (here called E-step) amounts to solving an unconstrained nonlinear optimization problem.

This problem is convex, in contrast to the joint approach to SCSA parameter fitting. The convexity

follows from the concavity of log ∣X∣ and log(sech(ax)) for constant a (and from the fact that

the sum of convex functions is convex). The advantage of convex problems is that they feature a

unique (global) minimum. In our case, the objective is smooth, which means that the minimum

is guaranteed to be found, e. g., by the L-BFGS algorithm, making use of the gradient (5.16).

Optimization with respect to {B(p)} for fixed A (M-step) is more involved due to the nondif-

ferentiability of the ℓ1,2-norm regularizer. Gradient-based solvers such as L-BFGS are incapable

of finding the exact solution. However, this problem is not as difficult as the joint optimization

problem, since the cost function for constant A is convex. This can be seen from the fact that

the objective is composed of a sum of − log(sech(ax)) terms (loss function) and the ℓ1,2-norm

term (regularizer), which is a sum of ℓ2-norms and thus convex. Hence we can solve this problem

using the dual augmented Lagrangian (DAL) procedure (Tomioka and Sugiyama, 2009), which is

a method for minimizing arbitrary convex loss functions with additional sparsity penalties. The

DAL technique has been introduced in the context of minimizing the S-FLEX cost function in

Section 4.2. In S-FLEX, a Gaussian noise model is assumed, leading to the quadratic loss function

which is implemented as part of the freely available DAL software package. Here, we describe how

to integrate support for the sech noise distribution into DAL, which requires explicit formulas for

the loss function and its gradient, the convex conjugate (Legendre transform) of the loss function,

as well as the gradient and the Hessian of the conjugate loss. Let s(t) = A−1x(t) be the demixed

sources and s̃ (t) = ∑P
p=1 B(p)s(t − p) be their autoregressive approximations. The loss function

in terms of s̃ is defined as

L
A
( s̃ ) = −

T

∑
t=P+1

M

∑
m=1

log ( 1
π
sech ( s̃m(t) − sm(t))) , (5.17)

while the gradient is

∂LA

∂ s̃m(t)
= tanh( s̃m(t) − sm(t)) . (5.18)

Let hm(t),m = 1, . . . ,M , t = P + 1, . . . , T denote the dual variables associated with the Legendre

transform. The conjugate loss function is defined on the interval [−1, 1] and evaluates to

D
A
(h) =

T

∑
t=P+1

M

∑
m=1

sup
s̃m(t)
(−hm(t) s̃m(t) + log

sech ( s̃m(t) − sm(t))

π
)

=
T

∑
t=P+1

M

∑
m=1

⎛

⎝

1 − hm(t)

2
log

1 − hm(t)

2

+
1 + hm(t)

2
log

1 + hm(t)

2
− hm(t)sm(t) + log

2

π

⎞

⎠
. (5.19)

The gradient of the conjugate loss is given by

∂DA(h)
∂hm(t)

= 1

2
log

1 + hm(t)

1 − hm(t)
− sm(t) . (5.20)
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5.2 Sparsely-connected sources analysis (SCSA)

The Hessian is diagonal with elements

∂2DA(h)
∂hm(t)2

=
1

2(1 − h2m(t))
. (5.21)

Having defined the E- and M-steps, we have turned a nonconvex estimation problem into a

sequence of two convex problems, which can both be solved exactly. A final estimate of the model

parameters is obtained by alternating between E- and M-steps until convergence.

5.2.6 Performance under realistic conditions

Setting

We conduct a number of simulations in order to assess the efficacy of (sparsely-) connected sources

analysis in terms of decomposing EEG data arising from interacting brain sources compared to

existing BSS approaches. Here, we perform a quantitative evaluation, while a qualitative assessment

of CSA and SCSA using the simulated example introduced in Chapter 3 is provided in Section 5.4.

We simulate seven time series (pseudo-sources) of length T = 2 000 according to a stable MVAR

model of order P = 4 with random parameters. Seven out of the 42 possible interactions are

modeled by setting the corresponding off-diagonal MVAR coefficients bm, f (p),m ≠ f , 1 ≤ p ≤ P

to nonzero values. The innovations are drawn from the sech distribution. The pseudo-sources

are mapped to 118 EEG channels defined in the extended 10-20 positioning system using the

theoretical spread of seven randomly placed dipoles. The spread is computed using the realistic

forward model (Nolte and Dassios, 2005), which is built based on anatomical MR images of the

“Montreal head” (Holmes et al., 1998).

In reality, measurements are never noise-free and the familiar model x(t) = As(t) + ε(t) is
more appropriate than (5.7). Since none of the methods compared here (see below) explicitly

models a noise term, it is important to evaluate their robustness to model violation. To this end, we

construct additional variants of the pseudo-EEG dataset by adding six different types of noise ε(t).
These six variants (N1–N6), which are summarized in Table 5.2, differ in their degree of spatial

and temporal correlation as follows. In variants N1 and N4, noise terms εm(t),m = 1, . . . ,M are

drawn independently for each sensor, i. e., have no spatial correlation. For variants N2 and N5,

noise terms ε∗m(t),m = 1, . . . ,M are drawn independently for each source. In this case, sources

and noise contributions to the EEG share the same covariance given by the mixing matrix A,

i. e., x(t) = A(s(t) + ε∗(t)). For the remaining variants N3 and N6, spatially independent noise

sources are simulated at all positions of a grid covering the whole brain. This yields the model

x(t) = As(t) + A∗ε∗(t), in which, in contrast to the previous model, noise contributions are

not collinear to the sources. We further distinguish between noise sources with and without

temporal structure. In variants (N1–N3), noise terms are drawn i.i.d. from a standard normal

distribution at each time instant t. In variants N4–N6, the temporal structure of each noise

source is determined by a stable univariate AR model of order 20 with random parameters,

i. e., εm(t) = ∑
20
p=1 b

∗(p)εm(t − p) + ξ(t) for noise type N4. Note that, since no time-delayed

dependencies between noise sources are modeled, no additional time-lagged effective connections

are introduced by the noise. We use a signal-to-noise ratio of SNR = 2 in all experiments, where

the SNR is defined as SNR = ∥ vec (AS) ∥2/∥ vec (E) ∥2. One-hundred datasets with different

realisations of MVAR coefficients, innovations and noise are constructed for each category.
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5 Blind recovery of sources and their connectivity

We perform two additional experiments (100 repetitions each) in order to investigate the

performance of the variousmethods under variation of the connectivity structure of the underlying

sources, as well as the SNR. Seven degrees of connectedness (linearly interpolated from 0% to

100%) and seven choices of the SNR (linearly interpolated from 1 to 4) are considered. These ranges

include the parameters used in the previous experiments (17% = 7⁄42 of all possible interactions

present, SNR = 2). The effect of SNR variation is investigated using white sensor noise without

temporal structure (N1), while the effect of the degree of connectivity is studied for the noiseless

case (N0).

In all experiments, PCA dimensionality reduction is applied to the pseudo-EEG by retaining the

strongest signal components. Since our evaluation scheme relies on a one-to-onemapping between

estimated and true components (see Section 3.10), we use here exactly as many dimensions as

original sources, i. e., M = 7. In practice, this information is, of course, not avalaible and the

number of dimensions can be chosen such that, for instance, 99% of the variation in the EEG

is explained. Alternative ways to choose the number of components are discussed in (Hansen

et al., 1999). Our experience shows that taking too many dimensions is generally less harmful than

taking too few, since spare dimensions can always be used to just dump noise.

independent in time correlated in time

independent in sensors N1 N4

correlated in sensorsa N2 N5

correlated in sensorsb N3 N6

Table 5.2: The six types of noise used in the simulations. Noise with temporal correlation structure is created

using univariate AR models of order P = 20. Spatial correlation is introduced using a realistic forward

model. We distinguish between the case, where noise sources coincide with the true dipoles (a), and the

case in which noise from all brain sites contributes to the measurements (b).

We test the ability of ICA, MVARICA, CICAAR and the two proposed methods CSA and SCSA

to reconstruct the seven sources and their effective connectivity graph. The ICA variant used here

is TDSEP, which is implemented using fast Frobenius-norm joint diagonalization (Ziehe et al.,

2004). The number of temporal lags used in TDSEP is set to 100. Note that, although the goal of

instantaneous ICA in general is fundamentally different from source connectivity analysis, it is

included here because it is occasionally used in the literature (Beckmann et al., 2005; Meinecke

et al., 2005; Astolfi et al., 2007). Moreover, TDSEP has been shown to perform reasonably well

in the simulated example investigated in Section 3.10. We apply MVARICA, CICAAR, CSA and

SCSA with P ∈ {1, 2, . . . , 7} temporal lags, where four is the true MVAR model order for CSA,

SCSA and MVARICA. CICAAR has the disadvantage here that it may generally require extended

temporal filters for reconstructing sources following (5.8). However, due to computational time

constraints, P = 7 is also taken as the maximum lag for this method. For MVARICA and CICAAR,

we use implementations provided by the respective authors. These implementations adopt the

Bayesian information criterion (BIC) for selecting the appropriate number of time lags. The same

criterion is used to select the model order in CSA. For SCSA, the same model order as in CSA is

used. The regularization constant λ of SCSA is determined by means of 5-fold cross-validation,
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5.2 Sparsely-connected sources analysis (SCSA)

i. e., by evaluating the likelihood on test data. Estimates of {B(p)} and A according to SCSA are

obtained either jointly using the modified L-BFGS algorithm or alternatingly using 20 additional

EM steps. These variants are named SCSA and SCSA_EM here, respectively. We use an L-BFGS

implementation by Naoaki Okazaki3 and DAL for computing the SCSA estimates.

The most important evaluation criterion is the reconstruction of the mixing matrix, since all

other relevant quantities can be derived therefrom. All considered methods provide an estimate of

the 7×7 demixing matrix in PCA space, which can be inverted and multiplied by the precomputed

PCA eigenvectors related to the seven strongest eigenvalues to yield a 118 × 7 mixing matrix

estimate Â. The columns of Â correspond to spatial field patterns of the estimated sources, but

unfortunately these patterns can generally only be determined up to sign, scale and order. For this

reason, optimal pairing of true and estimated patterns as described in Section 3.10 is performed.

Having found the optimal pairing, the columns of Â are permuted and scaled to approximate A as

well as possible using the optimal regression coefficients. The goodness-of-fit with respect to the

whole matrix A is used to evaluate the quality of the various decompositions. Additionally, using

the optimally-matched mixing patterns, dipole scans are conducted. That is, for each discrete

location in the brain (5mm grid size), a dipolar current source is fitted and the location of the

dipole that best explains the EEG pattern is determined. The deviation of these locations from

the true locations is measured in terms of the Euclidean distance. A typical example of a mixing

pattern estimated by SCSA and the corresponding reconstructed dipole is shown in Figure 5.2.

Eventually, causal discovery is carried out on the demixed sources. We use MVAR estimation

by ridge regression and subsequent multiple testing (see Section 5.1) for this task (an application

of PSI would be also suitable). A significant influence from si to s j is assumed, if the p-value of

one of the coefficients bi , j(p), p = 1, . . . , P falls below the critical value. We compute the area

under the curve (AUC) score measuring the correctness of the effective connectivity estimation

as a third As a third performance criterion besides the mixing matrix approximation error and

the dipole localization error. The AUC is calculated by varying the significance threshold and

comparing estimated and true binary connectivity matrices for each threshold. Note that this

way of assessing connectivity is pursued here, because only some BSS methods provide built-in

connectivity estimates. For SCSA, however, interaction could as well be read off directly from the

sparsity pattern of the estimated MVAR coefficients as it has been performed in the evaluation of

sparse Granger-causal measures in Section 5.1.

SI
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SA
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D
IP

Figure 5.2: Example of simulated data (noise type N1) and corresponding reconstruction by SCSA. SIM

DIP: simulated dipole. SIM PAT: field pattern describing the simulated dipole’s influence on the EEG (one

column of A). SCSA PAT: field pattern as estimated by SCSA from a noisy EEG time series. SCSA DIP:

reconstructed dipole, obtained from the estimated pattern via inverse source reconstruction.

3http://www.chokkan.org/software/liblbfgs/
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5 Blind recovery of sources and their connectivity

Results

Figure 5.3 (a) depicts the extent to which the mixing matrix is approximated by the various BSS

approaches. One boxplot is drawn for the noiseless case (N0) and each of the six noisy variants

(N1–N6, see Table 5.2). The plots display the median performance achieved in 100 repetitions, as

well as the lower and upper quartiles and the extremal values. Non-overlapping notches of two

boxes indicate that the two medians differ at the 5% significance level. Outliers (red crosses) do

not enter the statistics.

As a result of the simulations, SCSA typically achieves the smallest reconstruction error, followed

by CSA, CICAAR, MVARICA and TDSEP independent component analysis. In many cases, the

differences are also significant. Correct mixing matrix estimation affects both the localization error

achievable by applying inverse source reconstruction to the estimated patterns and the detection

error of effective connectivity analyses of the demixed sources. As a result of approximating the

mixing matrix well, SCSA achieves smaller dipole localization errors than all the other methods,

except in scenario N4 (see Figure 5.3 (b)). The same situation occurs when it comes to estimating

the connectivity between sources (Figure 5.3 (c)). Notably, there is a consistent performance gap

between CSA, SCSA and CICAAR on one hand, and MVARICA and TDSEP on the other hand

according to all three metrics. In this light, the successful separation of two interacting sources

reported in Section 3.10 for MVARICA in the case of non-Gaussian innovations and for TDSEP

regardless of the distribution of the innovations seems to be a result that cannot be reproduced for

larger numbers of sources and respective interconnections.

In the presence of noise, the relative degradation of performance is the same for all methods.

Generally, noise that is collinear to the sources (N2/N5) leads to higher performance than noise

that is uncorrelated across sensors (N1/N4) and noise with arbitrary spatial correlation structure

(N3/N6). These differences are partially explained by the effectiveness of the PCA step performed

for dimensionality reduction. The data in the PCA subspace on average accounts for 96% of the

total variation in the data for the noise types N1/N4 and 81 % for the noise types N3/N6, while it is

100% for the collinear noise N2/N5. That is, in the presence of strong noise sources that are not

collinear to the interacting sources, the PCA step is likely to remove decrease the signal-to-noise

ratio. As shown in the right panel of Figure 5.3 (d), the performance of all methods decays with

decreasing SNR, while the differences between the methods remains rather stable across differing

SNR levels. The left panel of the figure demonstrates that the improvement of CSA and SCSA over

CICAAR, MVARICA and ICA is stable even under variation of the degree of connectedness. Only,

the SCSA variants seem to lose their advantage over CSA in the case of very dense connectivity

structures.

The average time consumed by eachmethod for processing one dataset is shown in Figure 5.3 (e).

Most methods finish within a rather short time, while the EM implementation of SCSA falls into

the intermediate range and the application of CICAAR requires the most time. However, for SCSA

there is still room for improvement, since the regularization parameter of this method is currently

selected by the cross-validation procedure, which could be changed.

In sum, the success of SCSA, CSA and CICAAR noted here demonstrates that the correlated

source model is an appropriate choice for the blind decomposition of interacting sources. If,

moreover, the connectivity graph has a sparse structure, this can be effectively exploited by SCSA.
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Figure 5.3: Results of the evaluation study for the proposed (sparsely-) connected sources analysis variants

(SCSA_EM, SCSA, CSA) as well as convolutive ICA with an auto-regressive inverse model (CICAAR), mul-

tivariate autoregression + independent component analysis (MVARICA) and temporal decorrelation source

separation independent component analysis (ICA). Different subfigures depict the methods’ performance

in the noiseless case (N0), as well as in the presence of different types of noise (N1-N6, see Table 5.2). (a)

Estimation errors of the mixing matrix according to the goodness-of-fit (GOF) criterion. (b) Localization

errors of dipole fits conducted on the estimated mixing field patterns. (c) Estimation errors regarding

the source effective connectivity structure as measured by fitting an MVAR model subsequently to the

demixed sources using ridge regression and testing the obtained coefficients for significant interaction. The

performance measure reported is the area under the curve (AUC) score obtained by varying the significance

level. (d) Mixing matrix approximation performance under variation of the degree of connectedness (left

side) and SNR (right side). The performance at different noise levels is investigated for white sensor noise

without temporal structure (N1), while the influence of connectedness is studied in the noiseless case (N0).

(e) Average runtime taken over all experiments conducted for this study.
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5 Blind recovery of sources and their connectivity

5.3 Integrating S-FLEX inverse source reconstruction into SCSA

The mixing matrix estimate A that is provided by SCSA and CSA contains the EEG field patterns

of brain sources obeying the specific dynamics assumed by these methods. These patterns can be

subjected to post hoc inverse source reconstruction. In our empirical evaluation in Section 5.2,

we fit single dipoles, but in general any inverse method may be applied, including the distributed

inverse imaging approaches proposed in this thesis. Performing source localization amounts to

solving the underdetermined system A = ÃF, where Ã is the known lead field matrix and F are the

unknown primary current source distributions of the estimated source components. Estimation

of the correlated sources model in terms of F instead of A is conceptually similar to CSA/SCSA,

while optimization over source distributions bears several advantages compared to estimating

field patterns. This is the idea pursued in this section. Most importantly, estimating F amounts to

integrating source localization directly into the blind source separation procedure. This enables us

to integrate the prior knowledge that the source mixing patterns must correspond to brain activity

directly into the estimation of A and {B(p)}. Moreover, it is possible to imposemuchmore specific

assumptions on source distributions than on sensor-space field maps, which enables us to perform

regularization of the mixing patterns in a physiologically meaningful way. In particular, we can

impose sparsity penalties on the source distributions, which would be pointless in sensor space.

We here consider regularization of F by means of sparse basis field decompositions according

to S-FLEX. The resulting approach, which we tentatively call SCSA+FLEX, is in preparation for

publication (Kawanabe et al., 2011). While a numerical evaluation is not yet available, we here

outline themodel equations, discuss a suitable optimization scheme and provide a proof-of-concept

of the method’s applicability on simulated data.

5.3.1 Model specification

We consider the model

x(t) = AW−1(G ⊗ I3)C s(t) + η(t) (5.22)

s(t) =
P

∑
p=1

B(p)s(t − p) + ε(t) , (5.23)

where A is the M × 3N lead field matrix, s(t), t = 1, . . . T are the K-dimensional source time

series and F = W−1(G ⊗ I3)C is the 3N × K matrix of source current distributions, which is

factorized into the constant 3N × 3N inverse depth compensation matrix W−1, the constant
3N × 3L spatial basis function matrix G ⊗ I3 and the unknown 3L × K coefficient matrix C =

(vec(C̃(1)), . . . , vec(C̃(K))) as in S-FLEX (see Section 4.2), where C̃(k) = (c1(k), . . . , cL(k))⊺.
Note that the number of sources K can be lower than the number of electrodes M here. Another

difference from the SCSAmodel is that we introducemeasurement noise η(t), which is assumed to

be i.i.d. Gaussian according toN (0, (βΣ)−1). The noise covariance Σ is assumed to be known, e. g.,

from a baseline measurement. If no estimate of Σ exists, the identity matrix may be used, which

leads to the standard squared loss function used in FVR and S-FLEX. To ensure identifiability of the

model, the innovations ε of the source MVAR process (5.23) are assumed to be non-Gaussian. We

here employ the hyperbolic secant distribution as in (5.25). Using the shortcut Γ = AW−1(G ⊗ I3),
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5.3 Integrating S-FLEX inverse source reconstruction into SCSA

the conditional models are expressed as

p(X∣S ,C , β) =
βM/2∣Σ∣1⁄2

(2π)M/2
exp (− 1

2
β(X − ΓCS)⊺Σ(X − ΓCS)) (5.24)

p ({s(t)}Tt=1∣{B(p)}) =
T

∏
t=1

K

∏
k=1

1

π
sech (sk(t) − s̃k(t)) , (5.25)

where s̃(t) = ∑P
p=1 B(p)s(t − p) and s(t) for t ≤ 0 is assumed to be zero. If the number of

observations M is equal to the number of sources K, Γ = IM , and if there is no noise (i. e., β =∞),

our model is equivalent to SCSA.

5.3.2 Parameter estimation

We are interested inmaximizing the posterior probability of the model parameters s(t), C, {B(p)}
and β given the observations x(t) under prior expectations regarding the sparsity of C and {B(p)}

according to SCSA and S-FLEX. The MAP estimate is obtained by minimizing the penalized

negative log-likelihood

L
SCSA+FLEX

(C , {B(p)}, {s(t)}Tt=1, β)

= 1

2
β (

T

∑
t=1
(x(t) − ΓCs(t))⊺ Σ (x(t) − ΓCs(t))) − MT

2
log β

−
T

∑
t=1

K

∑
k=1

log ( 1
π
sech (sk(t) − s̃k(t))) + λC

L

∑
l=1

K

∑
k=1
∥cl(k)∥2

+λB
⎛

⎝
∥(b1,1(1), . . . , . . . , bK ,K(P))

⊺
∥
2
+∑

k≠ f
∥(bk, f (1), . . . , bk, f (P))

⊺
∥
2

⎞

⎠
, (5.26)

in which the parameters λB and λC control the sparsity of the source MVAR coefficients {B(p)}

and the source basis field expansion coefficients C, respectively.

As for SCSA, minimization of LSCSA+FLEX can be carried out using an EM type algorithm, i. e., by

optimizing one variable (group) at a time. Interestingly, optimization with respect to {B(p)} for

fixed s, C and β leads to exactly the same optimization problem that occurs in SCSA. Optimization

with respect to C amounts to minimizing a quadratic function with additional ℓ1,2-norm terms,

which can be performed in the same way as for S-FLEX using dual augmented Lagrangians.

Optimization with respect to s is a smooth nonlinear but nonconvex problem, which can be solved

using conventional L-BFGS optimization. We here use an implementation by Mark Schmidt4. The

gradient of the loss function with respect to s is given by

∂LSCSA+FLEX

∂s(t)
= − βC⊺Γ⊺Σ (x(t) − ΓC s(t)) + tanh (s(t) − s̃(t) )

−
P

∑
p=1
(B(p))⊺ tanh (s(t + p) − s̃(t + p)) . (5.27)

4http://www.cs.ubc.ca/~schmidtm/Software/minFunc.html
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5 Blind recovery of sources and their connectivity

Finally, optimization with respect to β is a quadratic programming problem. By setting the gradient

∂LSCSA+FLEX

∂β
= 1

2
(

T

∑
t=1
(x(t) − ΓCs(t))⊺ Σ (x(t) − ΓCs(t))) − MT

2β
(5.28)

to zero, we obtain the analytic update rule

β = { 1

MT

T

∑
t=1
(x(t) − ΓCs(t))⊺ Σ (x(t) − ΓCs(t))}

−1

. (5.29)

By alternating between optimization of the different variable groups, SCSA+FLEX is guaranteed to

find a local minimum of the overall cost function. Notably, the subproblems related to minimizing

{B(p)}, C and β are convex, which means that the unique minimizer given the current estimate

of s(t) is guaranteed to be found in each iteration of the EM algorithm. Upon convergence of the

procedure, the matrix of estimated source distributions can be calculated via F̂ =W−1(G ⊗ I3)Ĉ.

5.3.3 Simulated example

Setting

Since this section contains work in progress, an exhaustive numerical evaluation as presented for

CSA and SCSA in Section 5.2 is still to be conducted for SCSA+FLEX. Nevertheless, we provide a

proof-of-concept here. We generate K = 3 source time series zi , i = 1, . . . , 3 of length T = 3 000

according to a stable multivariate AR model of order P = 3. The source innovation time series

are drawn from the sech distribution. Only the interaction from z2 to z3 is modeled by allowing

the respective off-diagonal coefficients to be nonzero. Three dipolar sources are modeled by

choosing random locations within the brain shell of the “Montreal” head model and Gaussian-

distributed random current moment vectors. The spread function of these dipoles is used to

obtain a pseudo-EEG measurement x(t) at M = 59 channels of the extended international 10-20

electrode placement system. The sensor data are superimposed with Gaussian white noise of equal

strength (SNR = 1). We apply CSA (see previous section) to the strongest three PCA components

of x(t) for all P ∈ {1, . . . , 9} and use the Bayesian information criterion to determine the optimal

P. Using the selected value P = 3, we apply SCSA+FLEX with parameters M = 3, λC = 10
−2 and

λH = 10
−6 to the full-rank dataset x(t) using a source space of 2 142 dipoles that are arranged in a

cubic grid of 1 cm side length within the brain shell. We compute PSI on the estimated sources

and perform statistical testing of PSI scores according to Nolte et al. (2008).

Results

Figure 5.4 depicts the source distributions estimated by SCSA+FLEX with the true simulated

dipoles overlaid as arrows, as well as the spatial field patterns corresponding to the true and

estimated sources. The pairs of simulated and estimated source components have been assigned

manually here. Apparently, the source reconstruction using SCSA+FLEX is successful, with focal

source distributions, the maxima of which are close to the true simulated dipoles. The correctness

of the demixing is also indicated by the estimated mixing patterns, which closely resemble the
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5.3 Integrating S-FLEX inverse source reconstruction into SCSA

field patterns of the simulated dipoles. Moreover, B has a sparse structure in the optimum, where

two of the six possible effective connections are nonzero, including the correct connection from

z2 to z3. The analysis of PSI on the estimated sources yields this connection as the only significant

one (after correction for three multiple tests, i. e., z > 2.4), which is the correct result.

SIMULATED AND SCSA+FLEX SOURCES SIM PAT SCSA+FLEX PAT

C1
C2

C3

Figure 5.4: An example of simulated interacting sources and their reconstructions according to SCSA+FLEX.

Left panel: Three dipolar sources (depicted as black arrows) and corresponding SCSA+FLEX reconstructions

(underlaid red and yellow patches) estimated under assumptions on the sparsity of the sources’ effective

connectivity structure and the simplicity of the sources’ current distributions. SIM PAT: field patterns

describing the simulated dipoles’ spread into the EEG. SCSA+FLEX PAT: EEG field patterns of the current

distributions estimated by SCSA+FLEX.

5.3.4 Relation to SCSA

In principle, both CSA/SCSA on one hand and SCSA+FLEX on the other hand are capable of

delivering EEG mixing patterns as well as source distributions (see Figures 5.2 and 5.4). Both CSA

and SCSA perform unconstrained optimization over sensor-space mixing patterns. These patterns

may be subjected to post-hoc inverse source reconstruction, but there is generally no guarantee

for the success of this, since the estimated patterns may contain non-physiological noise. In

contrast, SCSA+FLEX directly estimates the underlying current distributions in a physiologically-

constrained way and thereby solves the EEG inverse problem as part of the global optimization.

Calculation of sensor-space mixing patterns from these source distributions is trivially performed

by application of the well-defined forward mapping. A further advantage of SCSA+FLEX is that a

noise model of the observations is employed, which allows one to model the case K ≤ M. In CSA

and SCSA, K = M must be ensured using PCA dimensionality reduction. The variation of the data

in the PCA subspace is to be explained perfectly, resulting in potentially noisy source time series

and mixing patterns.
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5 Blind recovery of sources and their connectivity

5.4 Reconstruction of simulated source connectivity using SCSA

5.4.1 Setting

We now return to the simulated scenario used throughout Chapter 3 for benchmarking standard

approaches to effective connectivity analysis and in Section 4.6 for assessing S-FLEX inverse

source reconstruction preprocessing with respect to subsequent effective connectivity analysis.

The simulation comprises two interacting sources that are placed below C3 and C4. Information is

modeled to flow from the source in the left hemisphere to the source in the right hemisphere. We

here analyze the data presented in Section 3.10 using a similar methodology. Sparsely-connected

sources analysis is applied to normalized time series associated with the five strongest PCA

components using the implementation based on modified L-BFGS optimization. The number

of lags P of the source MVAR model is selected from {1, . . . , 9} by evaluating the BIC criterion

for the solution of the unregularized (CSA) problem. Using the selected P, the regularization

parameter λ is determined by 5-fold cross-validation. A final SCSA fit using optimal values for

P and λ is then performed on the complete time series for each dataset. The components found

in each of the 100 repetitions of the experiment are paired according to the procedure outlined

in Section 3.10 and statistical testing is performed using a one-sample t-test with subsequent

transformation of t-scores into z-scores. Analogously to Section 3.10, we consider the case in

which the MVAR innovation terms are sampled from the standard normal distribution, as well as

the case of hyperbolic-secant-distributed innovations.

5.4.2 Results

As can be seen from Figure 5.5 (a), SCSA does not perform very well on data generated with

Gaussian distributed source MVAR innovation terms. All of the five extracted components

contain contributions from both interacting sources, while none of the sources is isolated in a

single component. The best approximation of the source in the left hemisphere is achieved by

component C3 (GOF = 0.55± 0.02), while the source in the right hemisphere is best approximated

by component C1 (GOF = 0.35 ± 0.02). Several significant interactions are indicated by Granger

causality, partial directed coherence and also the phase-slope index, which are, however, not

reported here, since they result from an insufficient demixing.

The performance on data that is generated using non-Gaussian (sech-distributed)innovations is

depicted in Figure 5.5 (b). Here, SCSA recovers the true source in the left hemisphere as the fifth

component (GOF = 0.94 ± 0.01) and the source in the right hemisphere as the fourth component

(GOF = 0.94 ± 0.004). Hence, SCSA outperforms all other BSS approaches tested in this example

in terms of the accuracy of the source separation. Consequently, significant (z > 2.8) information

flow from C5 and C4 is estimated by all three measures of effective connectivity. While this is the

only connection estimated by PSI, GC indicates additional flow from C5 to C1, and PDC yields

additional interactions from C5 to C1, C2 and C3, and from C4 to C1 and C3.

The qualitative results obtained here confirm the potential of SCSA blind source separation

to recover interacting sources, which has already been demonstrated in the quantitative evalua-

tion study described in Section 5.2. Notably, a non-Gaussian distribution of the source MVAR

innovations is a prerequisite for successful blind source separation in the correlated sources model.

94



5.4 Reconstruction of simulated source connectivity using SCSA

PAT C1 PAT C2 PAT C3 PAT C4 PAT C5

SC
SA

G
C  

 

C1 C2 C3 C4 C5

C1

C2

C3

C4

C5

z

−5

0

5

PD
C

 

 

C1 C2 C3 C4 C5

C1

C2

C3

C4

C5

z

−5

0

5

PS
I

 

 

C1 C2 C3 C4 C5

C1

C2

C3

C4

C5

z

−5

0

5

(a) Gaussian innovations

PAT C1 PAT C2 PAT C3 PAT C4 PAT C5

SC
SA

G
C  

 

C1 C2 C3 C4 C5

C1

C2

C3

C4

C5

z

−5

0

5

PD
C

 

 

C1 C2 C3 C4 C5

C1

C2

C3

C4

C5

z

−5

0

5

PS
I

 

 

C1 C2 C3 C4 C5

C1

C2

C3

C4

C5

z

−5

0

5

(b) super-Gaussian innovations

Figure 5.5: Effective connectivity of simulated EEG as estimated by Granger causality (GC), partial directed

coherence (PDC) and the phase-slope index (PSI) after application of blind source separation (BSS) pre-

processing according to sparsely-connected sources analysis (SCSA). Two source dipoles with tangential

orientations are modeled 3 cm below the C3/4 electrodes. Information flow from the left (C3) to the right

(C4) source is modeled by means of a bivariate AR process with (a) Gaussian-distributed innovations or

(b) non-Gaussian (sech-distributed) innovations. The simulated EEG is superimposed by non-interacting

biological and sensor noise (SNR = 1). BSS techniques are applied to the five strongest PCA components.

The significance of estimated interactions between demixed signals is measured in terms of z-scores and

visualized as matrices, where entries with red and yellow colors (z > 0) stand for information outflow and

entries with blue and cyan colors (z < 0) stand for information inflow of the source marked in the respective

row. The Bonferroni-corrected significance level is indicated by thin black line in the colorbar, while the

uncorrected significance level is indicated by a thick black line.
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5 Blind recovery of sources and their connectivity

5.5 Discussion (fusing physical and dynamical constraints in
blind source separation)

Analyzing brain effective connectivity based on EEG data is a challenging problem, since volume

conduction negatively affects the interpretability of sensor-space connectivity estimates and may

even give rise to spurious results. In this chapter, we have established novel methods for the blind

recovery of interacting sources, which overcome these problems in an elegant and numerically

appealing manner. Our approaches model the EEG as a mixture of correlated sources, the con-

nectivity of which is accounted for by a source MVAR model. Starting with an unregularized

model in CSA, we add assumptions in order to regularize the solution in a way that is driven by

neurophysiological considerations. In SCSA, we use an ℓ1,2-norm penalty to introduce sparsity of

the source effective connectivity graph. In this manner, we achieve a data-driven interpolation

between two extremes: a source model that has fully correlated sources and one that does not

allow for cross-talk between the extracted components.

As it is desirable to relate interacting components found by blind source separation to actual

brain anatomy, a subsequent source localization may be performed on the SCSA source mixing

patterns. This strategy is not uncommon in the BSS literature (Nolte et al., 2006; Gómez-Herrero

et al., 2008;Marzetti et al., 2008; Nolte et al., 2009). Notably, source localizationmay also be carried

out prior to connectivity analysis, which is the approach pursued inChapter 4 as well as, e. g., Astolfi

et al. (2006a) and Supp et al. (2007). Unlike all these two-step approaches, SCSA+FLEX is a single-

step fused BSS/inverse source reconstruction technique, which is capable of demixing EEG data

into source time series while jointly estimating the sources’ current distributions and connectivity

structure. Thereby, SCSA+FLEX integrates assumption on the physical properties of the sources’

current distributions (smoothness, sparsity, rotational invariance) as imposed by S-FLEX with

assumptions on the sources’ dynamics (sparsity of the connectivity graph) made by SCSA. Such a

combined procedure is compelling, because the dynamical assumptions on the sources affect the

estimation of their spatial patterns, while conversely spatial criteria drive the optimization away

from solutions that are non-physiological. Using a similar argument, Valdés-Sosa et al. (2009)

devise a method that combines inverse source reconstruction with ICA.

Let us finally focus on the dynamical assumptions we impose to estimate individual brain

sources and their interactions. While ICA results in a unique decomposition assuming statistical

independence, such an assumption is inconsistent when studying brain interactions. However, all

neural interactions require a minimum delay well within the temporal resolution of electrophysical

measurements of brain activity. Hence, it makes sense to assume independent innovation processes

and to model all interactions explicitly using AR matrices. However, that means that our methods

can exploit independence only on reduced information contained in the residuals of the model. We

emphasize, that BSSmethods employing higher order statistics without using temporal information

would fail completely if the data were Gaussian distributed. Processes tend to be super-Gaussian if

they are not always active, which is a reasonable assumption for brain sources. Here we assume

a linear dynamical model and super-Gaussian innovation processes, i. e., the only cause of non-

Gaussianity is the innovation process itself. Real brain networks are, of course, more complicated.

However, the question whether nonlinear dynamical models may improve results or are even

essential for a correct decomposition is beyond the scope of this thesis.
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6 Source connectivity analysis of the human
alpha rhythm during rest

In his pioneering work, Berger (1938) observed oscillations around 10Hz in the EEG, which

are nowadays known as the alpha-rhythm. Activity in the alpha band, which ranges from 8 to

13Hz, is the strongest signal component that can be recorded by EEG. Within this band, there

exist at least two distinct rhythms with distinct functional relevance and slightly differing peak

frequencies. The predominant posterior alpha-rhythm has been related to a number of behavioral

markers including vigilance (Papadelis et al., 2007; Schmidt et al., 2009; Schubert et al., 2009),

fatigue (Simon et al., 2011) and the inhibition of actions (Klimesch et al., 2007). Most notably,

alpha power is modulated by the amount of relaxation in the visual system and is strongest when

the eyes are closed. This is in line with the “idling hypothesis”, which states that observable brain

rhythms reflect the default mode of the brain, in which information is exchanged within functional

networks in a loop (Palva and Palva, 2007; Sabate et al., 2011). This hypothesis is also valid for

the weaker central alpha rhythm, called mu rhythm. Mu-rhythmic activity reflects the level of

engagement in the sensorimotor system. There are actually multiple mu rhythms, since every body

part is associated with a distinct generator of mu rhythmic activity in the sensorimotor cortex.

These individual rhythms have been found to desynchronize during observed, planned, executed

and even imagined movements of the respective body parts (Pfurtscheller and Lopez da Silva,

1999). Each of the mu rhythms has a distinct spatial signature in the EEG, which depends on

where on the somatosensory cortex the respective body part is represented. This is used, e. g., to

distinguish different types of motor imagery in brain-computer interfacing and related disciplines

(e. g., Blankertz et al., 2007; Müller et al., 2008; Blankertz et al., 2008, 2010).

Although much is known about the functional relevance of the alpha and mu rhythms and

the locations of their generating brain networks, the pathways of neural information transfer

within and between these networks are largely unknown. The resting state offers an excellent

opportunity for studying these interactions due to the strong intensity and almost stationary

behaviour of alpha and mu oscillations in this condition. Currently, even simple questions related

to whether information predominantly flows from frontal to occipital or from occipital to frontal

brain structures, have not found consistent answers (Ito et al., 2005; Oishi et al., 2007; Buckner

and Vincent, 2007; Nolte et al., 2008). In a recent paper by Nolte et al. (2008), this issue has been

investigated by applying the phase-slope index (PSI) to EEG sensor-space time series recorded in

the “eyes-closed” condition. The results acquired from 88 subjects indicate a clear front-to-back

information flow.

In this chapter, we analyze resting state connectivity on the source level using the inverse source

reconstruction methodology developed in Chapter 4. We start, however, by applying PSI in sensor

space analogously to Nolte et al. (2008) with the aim of establishing consistency of the results

obtained on the different datasets used in the two studies. In the second part of the chapter, we

perform connectivity analysis using PSI on source estimates obtained from S-FLEX inverse source
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6 Source connectivity analysis of the human alpha rhythm during rest

reconstruction. We introduce the datasets in Section 6.1, present the sensor- and source-space

analyses in Sections 6.2 and 6.3, respectively, and provide a discussion of the neurophysiological

implications of our study in Section 6.4. This study is in preparation for publication.

6.1 Datasets

We consider data acquired from 29 right-handed healthy volunteers (20 males, 9 females; mean

age 29.2 years; range: 23–49 years) as part of a baseline measurement embedded in an in-car

EEG-study on attentional processes (Schmidt et al., 2009). The participants were screened for a

variety of exclusion criteria (left-handedness, auditory and visual disabilities and various illnesses),

instructed to sleep normally the night before the experiment and to refrain from consuming

caffeine in the morning on the day of the experiment. They were compensated for their time

with a gift worth approximately € 25. The section of the data we analyze is a 5-minute relaxation

measurement recorded prior to the experiment. During this recording, the participants sat

relaxedly in the driver’s seat with their eyes closed. The engine and all electronic devices apart

from the EEG instrumentation were switched off. Electroencephalography was recorded from

128 electrodes (extended 10-20 system, 1 000Hz sampling rate, low cut-off: 0.016Hz; high cut-off:

250Hz, nose reference) using BrainAmp recording hardware (Brainproducts GmbH, Munich).

From these electrodes, a subset of 59 electrodes was found to be free of severe technical artifacts

in all recordings. This set was considered for grand-average data analysis. Finally, the EEG signal

was lowpass-filtered to 50Hz and down-sampled to 100Hz. We refer to this dataset as the Schmidt

et al. dataset.

Nolte et al. (2008) present similar data of 88 healthy participants, which were recruited randomly

from the Swedish population register. During the experiment, which lasted for 15 minutes, the

participants were instructed to relax and keep their eyes closed. Every minute, the participants

were asked to open their eyes for 5 s. Electroencephalography was measured with a standard 10-20

system consisting of 19 channels using a linked-mastoids reference.

6.2 Sensor-space analyses

6.2.1 Setting

Figure 6.1 (e) is a reproduction of Figure 4 of Nolte et al. (2008), where the color scheme is adjusted

to fit the style of this document and average PSI scores reported in there are transformed into

z-scores by multiplying them with the square root of the number of datasets analyzed. As in the

head-in-head plots presented previously in this thesis, each small circle of Figure 6.1 (e) depicts

estimated information transfer of the corresponding EEG electrode with all other electrodes, where

blue and cyan colors denote information inflow and red and yellow colors information outflow.

The front-to-back flow reported by Nolte et al. is clearly visible.

We analyze the data by Schmidt et al. here using the methodology of Nolte et al. as follows.

The phase-slope index is calculated for each participant in a 5Hz band centered at the individual

alpha peak frequency, where the peak is determined as the frequency with maximum average

spectral power at the electrodes O1, O2 andOz. By averaging the connectivity scores obtained from
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analyzing 2 s intervals and dividing the average by its estimated standard deviation, a standardized

PSI score is obtained for each participant, which is treated as a z-score. The z-scores obtained

from individual participants are aggregated to yield a grand-average z-score, which is depicted in

Figure 6.1 (c). An equivalent analysis is conducted for a re-referenced version of the dataset. Here,

the average activity of the temporally-located electrodes TP9 and TP10 is subtracted from each

electrode before conducting the computations. To ensure consistency with Nolte et al. (2008), we

use only the 19 electrodes defined in the standard 10-20 system to produce these plots. The number

of multiple comparisons is hence (19 ⋅ 18)/2 = 171 and the Bonferroni-corrected significance

threshold is z = 3.6.

We also compute the grand-average spectrum at occipital channels, as well as the average signal

amplitude in the alpha band for all electrodes. The results are shown in Figure 6.1 (a) and (b). The

spectrum is computed by applying the Fourier transform in 2 s intervals and by averaging the

amplitudes of the Fourier coefficients frequency-bin-wise across repetitions, participants and the

three electrodes O1, O2 and Oz. Electrode-wise alpha band amplitudes are calculated per subject

both for the original nose-referenced data and the re-referenced data by averaging the amplitudes

of the Fourier coefficients across the frequency bins corresponding to the individual alpha range. A

grand-average estimate of the alpha amplitude is obtained by averaging the participants’ individual

amplitudes.

6.2.2 Results

Figure 6.1 (a) depicts the grand-average amplitude spectrum, averaged over O1, O2 and Oz,

which clearly exhibits the peak of the alpha rhythm at 10Hz. Grand-average amplitudes in a

5Hz band around the alpha peak (shown next to the spectrum as a scalp map) are highest at the

occipital channels (O1, O2 and Oz are marked in blue). This does not change substantially, when

the data is transformed from the nose reference to an artificial reference simulating the linked-

mastoids reference, in which the mean potential at TP9 and TP10 is subtracted from the data (see

Figure 6.1 (b)). However, the impact of the re-referenciation on PSI sensor-space connectivity

estimates is huge (c. f. Figure 6.1 (c) and (d)). The simulated linked-mastoids reference using TP9

and TP10 as reference electrodes (Figure 6.1 (c)) leads to results that are similar to those obtained

by Nolte et al. based on data recorded in genuine linked-mastoids reference (Figure 6.1 (e)). There

is significant (z > 3.6) interaction in 66 of the 171 electrode pairs, where the flow predominantly

passes from frontal to occipital channels. The nose-referenced data yields a substantially different

head-in-head plot (Figure 6.1 (d)), in which a general flow from front to back is not so obvious.

Rather, the picture is more complex, suggesting that frontal and occipital electrodes are drivers,

while central and temporal electrodes are receivers. In total, the analysis of nose-referenced data

yields only 22 significant (z > 3.6) interactions. Only nine significant connections are shared

between nose- and simulated linked-mastoids-referenced data. This result demonstrates, that the

ambiguity introduced by the reference electrode, which is noted in the simulation study described

in Section 3.6, poses a problem that is of practical relevance in the sensor-space connectivity

analysis of real data.
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Figure 6.1: Grand-average analysis of resting state EEG data in the “eyes-closed” condition. (a) Analysis

of nose-referenced data. Left panel: amplitude spectrum, averaged over three occipital electodes. Right

panel: alpha band amplitude per electrode with occipital electrodes (O1, O2 and Oz) marked in blue.

(b) Alpha band amplitude per electrode for (TP9+10)/2-referenced data, simulating a linked-mastoids

reference. (c-d) Estimated sensor-space connectivity maps according to PSI visualized as head-in-head

plots, where red and yellow colors (z > 0) stand for information outflow and blue and cyan colors (z < 0)

stand for information inflow. The Bonferroni-corrected significance level is indicated by a thin black line

in the colorbar, while the uncorrected significance level is indicated by a thick black line. (c) Analysis

of nose-referenced data by Schmidt et al.. (d) Analysis of the same data after re-referencing the data by

subtracting the average activity at the TP9 and TP10 electrodes. (e) Re-analysis of data used in Nolte et al.,

which were recorded using linked-mastoids reference.

6.3 Source connectivity analyis

6.3.1 Setting

In order to obtain meaningful and reference-independent estimates of information flow, we

perform source connectivity analysis as proposed in Section 4.6. To this end we apply inverse

source reconstruction using sparse basis field expansions (S-FLEX) to the EEG time series as a

preprocessing step. Prior to source localization, we apply bandpass-filtering in the individual 5Hz

alpha range to the EEG time series in order to filter out signals of non-neural origin (artifacts), as

well as neurophysiological signals that are not of interest here. This is achieved by means of a fifth

order digital Butterworth filter.

As in Section 4.6, we consider a two-step approach to localizing the whole time series. In the

first step, 100 samples are randomly selected and jointly localized using S-FLEX. Here, we use

the familiar “Montreal” head model with a source space of 2 142 dipoles that are arranged in a

1 cm grid, and we assume standard electrode positions according to the extended 10-20 system.
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The standard deviations of the spatial basis function are set to ς1 = 0.75, ς2 = 1 and ς3 = 1.25,

while the regularization constant λ is adjusted such that the source estimate achieves the same

goodness-of-fit as a corresponding cross-validated weighted minimum-norm (WMN) estimate.

The second estimation step is performed for all time samples using only the subset of spatial basis

functions that are selected in the first step. Here, λ is again set to match the goodness-of-fit of a

corresponding cross-validated WMN estimate.

We calculate grand-average voxel-wise source strengths by averaging the amplitudes of the

source dipole moment vectors across time and participants. This yields a heat map of source

activity in the alpha band (see Figure 6.2), from which we identify twelve active hotspots as the

local maxima with strongest source amplitude.

We calculate PSI in the individual alpha band between the twelve local maxima and all other

voxels using the same procedure as in sensor space. The resulting 3 ⋅ 12×3 ⋅2 142 matrix of net inter-

and intra-voxel connectivity scores is reduced to a 12 × 2 142 matrix reflecting only inter-voxel

relations by summing over the entries of the 3×3 submatrices related to each pair of voxels. Finally,

PSI scores are transformed into z-scores and averaged across participants to yield grand-average

statistical maps of source-space connectivity, which are depicted in Figure 6.2. The number of

multiple comparisons is(12 ⋅ 11)/2 = 66 and the Bonferroni-corrected significance threshold is

hence z = 3.4.

6.3.2 Results

The local maxima of alpha band activity are more or less symmetrically distributed across the

two hemispheres. We note two non-lateralized source regions, of which one is frontally (C1)

located and one is occipitally (C12) located. The remaining active regions come in lateralized

pairs, which are located frontally (C2 and C3), deep (C4 and C5), centrally (C6 and C7), deep

occipitally (C8 and C9) and occipitally (C10 and C11). Figure 6.2 (AMP) depicts these source

regions, where even numbers always refer to sources in the left hemisphere and odd numbers

refer to sources in the right hemisphere. Although the sources’ locations are almost symmetric,

the mean alpha amplitude is stronger in the right hemisphere for the frontal, central and occipital

sources, which cover the sensorimotor and the visual areas (see Section 2.1).

The analysis of PSI between the source regions reveals significant (z > 3.4) flow from C1 to C2,

C3, C4, C5, C6, C7, C9, C10 and C12, from C2 to C7 and C9, from C3 to C6, C8 and C10, from C4

to C2, C5, C6, C7 and C10, from C5 to C3, C6, C7, C9, C10 and C12, from C6 to C9 and C12, from

C7 to C9, C11 and C12, from C8 to C2, C4, C9 and C10, and from C11 to C1, C2, C3, C4, C9 and C12.

That is, there indeed appears to be information flow from frontal to (deep) occipital sources but

this is by far not the only interaction that is present. Most notably, there is also significant flow in

the other direction, as a source in the right occipital cortex (C11) is estimated to send information

to six regions, which are all located more frontally.

Strikingly, the estimated information pathways are not exclusively symmetric, i. e., some con-

tralateral source pairs do not share the same connectivity pattern. For example, the source region

C10, which is the contralateral analogon of C11, does not send information to any other region.
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6 Source connectivity analysis of the human alpha rhythm during rest

6.4 Discussion (asymmetries in brain default networks)

The results presented in this chapter provide a number of data-analytic as well as neurophysiological

insights that are worthmentioning. First of all, our sensor-space analyses demonstrate the influence

of the choice of the reference electrode when analyzing PSI (as well as other connectivity measures)

on raw EEG time series. Note that it is not possible to estimate the amount of signal the reference

electrode picks from the various driving and receiving sources, which would be crucial in order

to compensate for its influence, without performing explicit inverse calculations. To overcome

the reference problem, the use of reference-free derivations such as, e. g., the scalp Laplacian is

conceivable but the interpretation of head-in-head plots obtained from Laplace-transformed data

is also difficult. Genuine inverse source reconstruction preprocessing, on the other hand, not only

provides reference-independent source estimates but also maps the sources activity to realistic

brain anatomy, which facilitates neurophysiological interpretation.

As was demonstrated in Chapter 4, the use of sparse basis field expansions (S-FLEX) is highly

advantageous regarding subsequent source connectivity estimation, since S-FLEX is able to spatially

distinguish between multiple possibly correlated sources. The application of S-FLEX to resting

state data here indeed indicates a multitude of source regions that are active in the alpha range.

Notably, alpha activity is found to stronger in the right hemisphere than in the left hemisphere.

With respect to the idling hypothesis, this finding indicates a potentially higher relaxation state of

the systems represented in the right hemisphere, which are exactly the left body parts (Pfurtscheller

and Lopez da Silva, 1999). Put differently, it is the left hemisphere (responsible for the right body

half) that maintains vigilance during the rest condition, which is in line with the right hand being

dominant for all subjects.

Note thatwe refrain here fromdiscussing anatomical issues inmore exact terms such as “occipital”

and “frontal”. The reason for this is the fact that our analysis is based on the “Montreal” head

model, which has been obtained from a single head that is not representative of the population

studied here. Indeed, this imprecision leads to the result that some of the estimated source regions

are localized in rather improbable brain regions. For example, the source regions C8 and C9 are

located slightly below the visual cortex – where they would have been expected – in the cerebellum.

In absence of individual head models of the participants included in our study, the present analysis

therefore has to bee seen as an intermediate step on the way towards understanding the human

alpha rhythm in terms of its interacting subsystems. Nevertheless, it is possible to investigate

connectivity of gross brain regions such as the main brain lobes using the present results, which is

a clear improvement over sensor-space analysis.

Figure 6.2 (following page): Analysis of alpha band grand-average source-space connectivity using sparse

basis field expansion (S-FLEX) inverse preprocessing and the phase-slope index (PSI). AMP: Alpha band

source amplitudes obtained by localizing bandpass-filtered EEG time series using S-FLEX. Brighter colors

encode larger amplitudes. The twelve strongest local maxima of the amplitude distribution are marked by

black circles. C1–C12: Effective connectivity between twelve active brain regions and all other regions as

estimated by applying PSI to source time series estimated by S-FLEX. Red and yellow colors (z > 0) stand

for information outflow and blue and cyan colors (z < 0) stand for information inflow according to PSI.

The Bonferroni-corrected significance level is indicated by thin black line in the colorbar, while the z-score

corresponding to an uncorrected p-value of 0.05 is indicated by a thick black line.
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6 Source connectivity analysis of the human alpha rhythm during rest

The estimated information flow between active regions reveals highly interesting patterns, the

complex structure of which by no means have been reproduced using mere sensor-space analysis,

or source estimates obtained from linear inverse source reconstruction. While we leave it to a

future publication to relate our findings to existing results on resting state neurophysiology, we do

note that there appears to exist a densely-interconnected network especially in the occipital part

of the brain, where the visual cortex resides. In this region, the roles of effective (net) drivers and

receivers occasionally change within centimeters. Importantly, there are a number of asymmetries

regarding the estimated information flow between source regions. While we investigated only the

“eyes-closed” condition here, it will be interesting to repeat our analysis for similar data recorded

in the “eyes-open” condition, and to possibly relate the connectivity patterns to the phenomenon

of ocular dominance (Porac and Coren, 1975; Chaurasia and Mathur, 1976).

The results presented here were obtained using an inverse source reconstruction preprocessing

methodology. It may be equally insightful to study the data using blind-source separation (BSS)

or integrative BSS/inverse source reconstruction approaches such as those outlined in Chapter 5,

which is the subject of our ongoing work. The challenge to meet here in order to provide a similar

grand-average assessment of source connectivity is to meaningfully combine results obtained from

multiple subjects, which is more difficult than in a simulated scenario due to the high inter-subject

variability of the BSS components.
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7 Summary and Conclusions

With this piece of work we have extended the field of EEG-based brain effective connectivity

analysis with methods which model EEG data in terms of underlying interacting brain sources.

We followed two general directions: inverse source reconstruction and blind source separation. In

both of these disciplines we presented novel source estimation algorithms, which are well-suited

for the purpose of conducting source connectivity analysis. Our methods explicitly account for the

influence of volume conduction on sensor data as well as for dependencies between the underlying

brain sources. As a result, they outperform the state-of-the-art in terms of reconstructing interact-

ing brain sources, which is a crucial requirement for successful subsequent source connectivity

analysis. In this regard, our efforts can be regarded as an important step towards EEG source

connectivity analysis.

After giving an overview of state-of-the-art approaches to the EEG-based study of brain con-

nectivity in Chapter 2, we presented an exhaustive evaluation of these approaches on simple yet

realistically simulated EEG data involving two interacting sources in Chapter 3. As a result of the

study, we identified a number of factors that are not related to actual time-delayed interaction of

the sources but influence the results of commonmeasures of effective connectivity. A fundamental

difficulty for all measures is the fact that volume conduction mixes the underlying sources linearly

into the EEG. For the particular class of Granger-causal measures, we noted that this mixing, in

combination with asymmetries in the SNR, gives rise to effects that are not related to time-delayed

interaction. In addition, Granger-causal measures derived directly from the coefficients of a multi-

variate AR model were found to suffer from asymmetries in the scaling and correlation structure

of the data.

We proposed a test based on time inversion, by means of which the presence of spurious results

related to such asymmetries can be identified. Moreover, we noted that even the phase-slope index,

which is robust to all of these asymmetries, is hard to interpret when applied in sensor space, since

not only the location and orientation of the underlying current sources but also the signal-to-noise

ratio and the choice of the reference electrode affects sensor-space connectivity estimates in a

way that is difficult to assess without performing explicit inverse calculations. On the other hand,

all connectivity measures considered are found to perform well on unmixed sources. Thus, the

problem of source connectivity estimation is closely tied to the problem of finding the correct

source demixing.

Importantly, our study suggests that there are only a few demixing methods available yet, which

are both theoretically and practically suited for source connectivity analysis. We demonstrated

that the Laplace transform is incapable of demixing deep and tangentially-oriented sources, which

limits its use in EEG connectivity studies. For inverse source reconstruction, we found that smooth

(linear) approaches are unable to sufficiently separate the underlying sources, which causes many

of the problems experienced in sensor space to remain in source space. Sparse estimators, on

the other hand, do not currently reflect certain fundamental assumptions on current source

distributions such as spatial continuity and rotational invariance and are not yet available for
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the analysis of long time series. Regarding blind source separation methods, we noted that the

most popular approaches PCA and ICA are unsuitable for source connectivity analysis owing to

their assumptions of orthogonality and independence, respectively. Methods that (implicitly or

explicitly) allow for dependencies of the underlying sources, such as MVARICA and CICAAR,

are better suited and indeed outperform PCA and ICA approaches in terms of demixing two

interacting sources if certain statistical assumptions are fulfilled. In summary, the results of our

simulation study show that EEG-based connectivity analysis poses a challenging problem even in

the presence of only two interacting sources.

The central contribution of this thesis is the development of source demixing algorithms that

both theoretically qualify for source connectivity analysis and practically feasible. Such methods

are described in Chapters 4 and 5.

In Chapter 4, we have introduced an inverse source reconstruction methodology, focal vector-

field reconstruction (FVR), which is able to recover and distinguish multiple sources, the spatial

distributions of which are characterized by smoothness and focality at the same time. Unlike

previous approaches involving sparsity constraints, FVR ensures rotational invariance of the solu-

tion. Moreover, it employs a novel depth-weighting strategy for compensating the location bias

common to previous approaches. Due to these properties, FVR outperforms existing approaches

in its ability to reconstruct two to three dipolar sources of arbitrary depth (Haufe et al., 2008).

We quantified the superior reconstruction quality by means of the earth mover’s distance (EMD),

which we suggest as a metric for comparing arbitrary current distributions.

In the course of Chapter 4, we extended our inverse source reconstruction methodology by

introducing sparse basis field expansions (S-FLEX), which employs the same depth weighting as

FVR and achieves rotational invariance in a similar way but is able to recover sources of arbitrary

shape without requiring one to explicitly adjust the relative importance of smoothness and focality,

respectively. We provide an optimization scheme, by means of which it is possible to compute

S-FLEX source estimates for multiple measurements. The S-FLEX approach hence facilitates the

reconstruction of whole source time series for subsequent connectivity analysis.

The favorable localization properties of S-FLEX and FVR compared to state-of-the-art ap-

proaches were demonstrated on simulated data involving multiple sources of various shapes and

depths using the EMD as a performance metric. In addition, both approaches were shown to be

able to identify and separate the active brain regions related to the processing of sensory stimula-

tion at the left and right hands, unlike reference methods. Applied to the analysis of simulated

EEG time series reflecting the activity of interacting brain sources, S-FLEX correctly localizes and

distinguishes the two generating source regions, which is a clear improvement over linear inverses.

As a result of the successful demixing, the direction of information flow between S-FLEX sources

is correctly estimated by all of the measures of effective connectivity considered.

Chapter 5 started with the development of Granger-causal measures of effective connectiv-

ity, which facilitate the estimation of parsimonious effective connectivity graphs either through

optimization under appropriate sparsity constraints or through subsequent multiple statistical

testing. Since sparse connectivity is an essential feature of the brain, at least if it is analyzed on a

macroscopic level, we derived a BSS method called sparsely-connected sources analysis (SCSA),

which utilizes this assumption to recover the sources, their mixing patterns and a sparse con-

nectivity graph in one step. An interesting theoretical result is that a completely dense source

connectivity graph corresponds to the convolutive ICA model, while a graph without connections
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between sources models independence of the source components in a similar way as variants

of instantaneous ICA such as TDSEP do. These two extremes are special cases of SCSA, which

correspond to specific choices of an adjustable hyperparameter of SCSA that effectively constrains

the number of connections.

As for MVARICA and CICAAR, successful demixing using SCSA depends on whether assump-

tions regarding the non-Gaussianity of the data are fulfilled. We here observed that if the data

indeed fulfills the non-Gaussianity requirement, SCSA outperforms MVARICA and CICAAR and

all other BSS methods tested in terms of demixing two interacting sources. Similar results were

obtained for more than two sources and for more than one connection regardless of the type of

noise and the signal-to-noise ratio. Importantly, our simulations also show that the accuracy of

the demixing has a crucial influence on the correctness of the source connectivity estimation as

well as the localization of the source components. In both terms, SCSA was found to outperform

competing BSS methods.

To summarize, we presented two solutions to the problem of demixing interacting EEG sources,

which differ conceptually in the type of assumptions used. Meanwhile, we are working on a novel

approach called SCSA+FLEX, which combines both types of assumptions in a hybrid BSS/inverse

source reconstruction methodology. The advantage of such a hybrid approach is that the fusion of

assumptions reduces the ambiguity inherent to BSS and inverse source reconstruction problems.

Technically, our approaches make extensive use of groupwise sparsity via ℓ1,2-norm regulariza-

tion, which is used as a versatile tool for encoding different types of prior expectations. In sparse

Granger-causal modeling, as well as in SCSA and SCSA+FLEX, MVAR coefficients related to the

same pair of times series are grouped together in order to achieve sparsity of the connectivity

graph. In FVR and S-FLEX, sparsity is used as a means to obtain current densities with simple and

therefore physiologically plausible spatial structure. The grouping of the three variables related

to a spatial basis function here naturally encodes the physiologically-motivated requirement of

rotational invariance. In multi-measurement localization, these groups are furthermore naturally

extended to encode the assumption that the set of active source regions is constant over time.

Except FVR, all of our methods apply groupwise sparsification directly to the variables which

are to be optimized. In this case, the dual augmented Lagrangian (DAL) technique can be used

to solve large-scale problem instances with arbitrary convex loss functions. While not all of our

proposed loss functions are convex, it is always possible to split the variables into groups, which

are optimized one after another in a loop, similarly to the expectation propagation algorithm. In

this way, we obtain subproblems that are either smooth or convex and can be solved efficiently.

Our methods are suited to be applied to real world problem instances, which was demonstrated

for the S-FLEX-based approach in Chapter 6. Our analysis of effective connectivity between the

sources of the human alpha rhythm yields a number of novel insights which could not have been

obtained from mere sensor-space analysis. We identified a number of alpha band sources, which

are mostly symmetrically arranged on the cortex. Importantly, the corresponding interaction

patterns are not exclusively symmetric, which supports the hypothesis of a consistent dominant

laterality in humans. While our findings still remain to be affirmed by alternative methodologies

such as SCSA and SCSA+FLEX, we are confident that they can contribute to a better understanding

of the neurodynamics underlying the human alpha rhythm. We also expect that future EEG studies

will benefit from the novel type of source connectivity analysis proposed in this work.
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