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Information flow between brain areas is difficult to estimate from EEG measurements due to the presence of
noise as well as due to volume conduction. We here test the ability of popular measures of effective connec-
tivity to detect an underlying neuronal interaction from simulated EEG data, as well as the ability of commonly
used inverse source reconstruction techniques to improve the connectivity estimation. We find that volume
conduction severely limits the neurophysiological interpretability of sensor-space connectivity analyses.
Moreover, it may generally lead to conflicting results depending on the connectivity measure and statistical
testing approach used. In particular, we note that the application of Granger-causal (GC) measures combined
with standard significance testing leads to the detection of spurious connectivity regardless of whether the
analysis is performed on sensor-space data or on sources estimated using three different established inverse
methods. This empirical result follows from the definition of GC. The phase-slope index (PSI) does not suffer
from this theoretical limitation and therefore performs well on our simulated data.
We develop a theoretical framework to characterize artifacts of volume conduction, whichmay still be present
even in reconstructed source time series as zero-lag correlations, and to distinguish their time-delayed brain
interaction. Based on this theory we derive a procedure which suppresses the influence of volume conduction,
but preserves effects related to time-lagged brain interaction in connectivity estimates. This is achieved by
using time-reversed data as surrogates for statistical testing. We demonstrate that this robustification
makes Granger-causal connectivity measures applicable to EEG data, achieving similar results as PSI. Integrat-
ing the insights of our study, we provide a guidance for measuring brain interaction from EEG data. Software
for generating benchmark data is made available.

© 2012 Elsevier Inc. All rights reserved.
Introduction

Due to its temporal resolution in the millisecond range as well as
its noninvasiveness, portability and relatively low costs, electroen-
cephalography (EEG) is a popular and widely used measurement
technique for studying brain dynamics and interaction in humans.
However, any neurophysiological interpretation of EEG data is hin-
dered by the fact that the signals related to electrical activity in source
brain regions are spread across the EEG sensors due to volume con-
duction in the head. The inversion of volume conduction is an
ill-posed inverse problem. In the EEG-based analysis of information
flow between brain regions (Friston, 1994; Horwitz, 2003; Jirsa and
McIntosh, 2007), volume conduction poses a serious challenge, since
partment of Computer Science,
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multiple active sources are usually present, the contributions of which
mix into all EEG sensors. Nevertheless, EEG recordings have beenwidely
used in neuroscience to estimate brain connectivity (e.g., Astolfi et al.,
2004; Babiloni et al., 2004; Babiloni et al., 2005; Blinowska et al., 2010;
Kamiński et al., 1997; Silberstein, 2006; Srinivasan et al., 2007; Supp
et al., 2007). Only recently, the fact that volume conduction has to
be accounted for in EEG (as well as magnetoencephalography, MEG)
based brain connectivity studies has been seriously acknowledged
(Gómez-Herrero et al., 2008; Haufe, 2011; Haufe et al., 2010b; Nolte
and Müller, 2010; Nolte et al., 2004, 2006, 2008; Schlögl and Supp,
2006; Schoffelen and Gross, 2009).

In this paper, we present results of a series of simulation experi-
ments in whichwe systematically assessed commonmeasures of effec-
tive (i.e. directed as opposed to undirected/functional) connectivity in
terms of their ability to infer source interactions from pseudo-EEG
recordings. Previous efforts in that direction have been carried out in
Astolfi et al. (2007) and Silfverhuth et al. (2012). However, none of
these studies considers biological noise (temporally and spatially corre-
lated noise), which is present in any EEG recording as a result of the
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brain's background activity, and has been reported to limit the detection
accuracy of Granger-causal measures (Nolte et al., 2008, 2010) even
if the signals-of-interest are directly observable. Even more severely,
neither Astolfi et al. nor Silfverhuth et al. simulate spatial sourcemixing,
which is another indisputable property of real EEG data caused by
volume conduction in the head. Source mixing may affect both the cor-
rectness and the interpretability of the results, for which reason it is
commonpractice to perform source demixing, e.g., using inverse source
reconstruction approaches, prior to the connectivity estimation. Here,
we also evaluate such various approaches.

We deliberately restrict ourselves to the analysis of simulated data,
since we believe that any connectivity estimation should achieve
reliable performance on appropriately designed artificial data before
it can be applied to real data at all. Although our opinion does not
seem to predominate in the field, there are authors who even empha-
size “the importance of avoiding (that's right - avoiding) ‘real’ data”.
Those authors feel that “too many studies […] have been corrupted
by the dogma that a methodology is not tested unless it is tested
on real data”, and they argue that a methodology “should not be per-
mitted anywhere near real data, until it has been extensively tested
in artificial data” (Theiler and Prichard, 1997). Many problems in
neuroimaging (such as brain connectivity analysis) are inherently
unsupervised, which means that the “ground truth” cannot be re-
trieved. In these cases, simulations are the only way to benchmark a
method's ability to solve the task if theoretical results are not avail-
able, while a neuroscientific finding on real data that matches prior
expectations should not be mistaken for a proof-of-concept of the
method.

To our knowledge, our study is the first assessment of methods
on standardized simulated EEG data that have been generated using
a realistic model of volume conduction. The purpose of the paper,
however, is not to provide an exhaustive numerical comparison of
all these methods, but rather to highlight potential pitfalls of such
analyses. In particular, we demonstrate that source mixing may easily
mislead connectivity estimation depending on the type of measure
used, while the success of inverse source reconstruction algorithms
crucially depends on their ability to deal with the presence of multi-
ple interdependent sources. Thus, even methodologies combining
rather standard source reconstruction and connectivity estimation
algorithms may not permit a correct neurophysiological interpreta-
tion. With this paper we want to bring such issues to the attention
of the practitioners by visually demonstrating how certain properties
of the data in combination with the characteristics of the various
methods can potentially spoil connectivity analyses. We focus on a
single minimalistic scenario, which however does ensure that the
simulated data comprise some of the defining characteristics of real
EEG data. Starting from this scenario, we subsequently apply certain
modifications in order to demonstrate their effect on causal estimation.

As a methodological contribution we introduce the concepts of
weak and strong asymmetries in multivariate time series in the con-
text of causal modeling. Strong asymmetries arise only due to time-
lagged interactions, while weak asymmetries may reflect general
causal or non-causal interactions in the data. Weak asymmetries not
related to time-lagged interaction frequently mislead certain types of
connectivity analyses. As a remedy, we propose to use time-reversed
data as surrogates in order to suppress the influence of weak data
asymmetries when testing for causal influences.

We introduce relevant measures of effective connectivity as well as
methods for inverse source reconstruction in Methods review section.
Data asymmetries section introduces a novel methodology for improv-
ing connectivity estimates by distinguishing between weak and strong
data asymmetries. Experiments section presents a series of four exper-
iments, in which connectivity measures and pre-/postprocessing steps
are evaluated within a common framework. The results are discussed
in Discussion section, before we reach conclusions in Conclusions
section.
Methods review

Measures of time-lagged effective connectivity

While there are multiple ways to define effective connectivity,
the most widely accepted definition is based on a temporal argument:
the cause must precede the effect. Algorithms implementing this
definition are often subsumed under the term Granger-causal model-
ing (Valdes-Sosa et al., 2011), although the technique that is known
as Granger causality is only one way to measure time-lagged
influence.

Granger causality based on model errors
The linear multivariate autoregressive (MVAR) process (Brockwell

and Davis, 1998) assumes that the present state of a time series can
be approximated by a linear combination of its past P samples, i.e.,

x tð Þ ¼
XP
p¼1

B pð Þx t−pð Þ þ ε tð Þ; ð1Þ

where the innovations ε(t) are usually assumed to be independent
and Gaussian distributed, and where B(p) are matrices describing
the time-delayed influences of x(t−τ) on x(t). The off-diagonal parts
Bi,j(p), i≠ j describe time-lagged influences between different time
series xi and xj.

Granger causality (Granger, 1969) involves fitting an MVARmodel
for the full set x{1,…,M}=x, as well as for the reduced set x{1,…,M}\{i} of
available time series. Denoting the prediction errors of the full model
by εfull and those of the reduced model by ε\ i, the Granger score GC
describing the influence of xi on xj is defined as the log-ratio of the
mean-squared errors (MSE) of the two models with respect to xj.
That is,

GCi; j ¼ log
∑T

t¼Pþ1 εfullj tð Þ
h i2

∑T
t¼Pþ1 ε5ij tð Þ

h i2
0
B@

1
CA: ð2Þ

By considering only two variables at a time (i.e. comparing a uni-
variate and a bivariate AR model), a bivariate variant of Granger
causality is obtained. There exists also nonlinear variants of Granger
causality (Marinazzo et al., 2008; Vicente et al., 2011), which are
not considered here.

Granger causality based on AR coefficients
A causal dependence of time series xj on time series xi in Granger's

sense is sufficiently evidenced if any of the P coefficients Bi,j(p) of the
MVAR model fitted on the full set of available time series is signifi-
cantly different from zero. This is assessed per frequency by partial
directed coherence (PDC, Baccalá and Sameshima, 2001). Let B̃ fð Þ
be the Fourier transform of the coefficients of a multivariate AR
model fitted on all available time series, and �̃B fð Þ ¼ IM− B̃ fð Þ, PDC
is defined as

PDCi;j fð Þ ¼
�̃B i; j fð Þffiffiffiffi

�̃B
p H

j fð Þ�̃B j fð Þ

������
������
2

; ð3Þ

which is the squared absolute value of the complex-valued quantity
introduced in Baccalá and Sameshima (2001) measuring the strength
of the information flow from xi to xj at frequency f. Partial directed
coherence has similarities to so-called directed transfer function
(DTF, Kamiński and Blinowska, 1991), with which it coincides in
the bivariate case. Unlike GC, PDC and DTF are not independent of
the scale of the data, and are usually applied on data that has been
transformed to have zero mean and unit variance.
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The phase-slope index
Anothermeasure of interaction at a specific frequency is coherency

(denoted by CHY) (Nunez et al., 1997, 1999), defined as

CHYi;j fð Þ ¼ Si; j fð Þ
Si;i fð ÞSj; j fð Þ
� �1

2
; ð4Þ

where

Si;j fð Þ ¼ 1
K

XK
k¼1

x̃i;k fð Þ� x̃j;k fð Þ ð5Þ

denotes the empirical cross-spectrum. The absolute value of coheren-
cy is often used to quantify the strength of functional connections.
However, this measure makes no distinction between instantaneous
and truly time-delayed correlation and is hence dominated by effects
of volume conduction when applied to EEG data. As a remedy, one can
look at the imaginary part of coherency only (Nolte et al., 2004), which
is systematically different from zero only for nonzero phase lags.

In general, a positive imaginary part of CHYi,j(f) suggests that zi is
earlier than xj. However, for oscillations with period lengths of the
order of the delay, “earlier” and “later” are ambiguous due to the period-
icity of the processes. In order to resolve this ambiguity, the information
contained in nonzero phase lags can be aggregated within a frequency
band-of-interest, which is the idea of the phase-slope index (PSI,
Nolte et al., 2008). Denoting by F a contiguous set of frequencies and
by δf the frequency resolution, PSI is defined (disregarding the stan-
dardization proposed in Nolte et al. (2008) as

Ψi; j ¼ I ∑
f∈F

CHY�
i; jCHYi; j f þ δfð Þ

 !
: ð6Þ

From the Hermitianity of the cross-spectral matrices it follows
that PSI is antisymmetric, i.e., Ψi,j=−Ψj,i. Moreover, due to the nor-
malization of the cross-spectrum, PSI is invariant with respect to
rescaling of the data.

Statistical testing
In order to infer the presence of causal interactions according to

GC, PDC or PSI, the connectivity scores obtained from these measures
have to be tested against a suitable null hypothesis related to the
absence of any interaction. Since PSI is a signed quantity, the null
hypothesis is simply that the scores are drawn from a zero mean dis-
tribution. Both GC and PDC are strictly positive quantities, for which
the formulation of a null hypothesis is more involved. A simple alter-
native is to consider tnet interactions, which amounts to testing the
predominant direction of information flow for each pair of time se-
ries. For a connectivity measure M the net scores Mi,j

net=Mi,j−Mj,i

are obtained by antisymmetrizing the connectivity matrix M. As for
PSI scores, the null hypothesis for net connectivity scores is simply the
presence of a zero mean distribution. Antisymmetrization of Granger-
causal measures is occasionally used in the literature (e.g. Roebroeck
et al., 2005).

If antisymmetrization is to be avoided, an analytic procedure using
F-tests can be used for Granger causality to assess whether the full
MVAR model adds significant explanatory power compared to the re-
ducedmodel (e.g. Seth, 2010). However, there is no similar procedure
for PDC. Therefore, one has to resort to using so-called surrogate data
in order to establish a null distribution. A common choice for surro-
gates is the original data, in which the temporal order has been ran-
domly permuted separately for each time series (e.g., Babiloni et al.,
2005; Kamiński et al., 2001). This procedure is often considered an
application of the “method of surrogate data” introduced by Theiler
et al. (1992), although the original method proposed by Theiler et
al. differs from that approach in certain aspects.
Methods for inverse source reconstruction

The most general generative model of EEG data is given by

x tð Þ ¼ As tð Þ þ η tð Þ; ð7Þ

where x tð Þ∈RM is the signal measured at M EEG electrodes at time t,
s tð Þ∈RK is the activity of K brain sources at time t and A∈RM�K is a
matrix representing instantaneous source mixing due to volume con-
duction. The noise term η(t) comprises uncorrelated measurement
(sensor) noise as well as correlated noise, which could be due to
non-task-related background activity or artifacts. Notably, EEG activ-
ity of cerebral origin is always instantaneously correlated due to vol-
ume conduction, which is modeled here explicitly using the matrix A.
In reality, xtitA describes a physical process, namely the propagation
of the brain electric currents from the source regions to the EEG elec-
trodes. Given the geometry and electrical conductivities of the various
tissues in the head, the columns of A (corresponding to the mixing
patterns of idealized brain sources) can be computed. This step is
called forward modeling. Inverse source reconstruction is concerned
with the estimation of s given x and A, which amounts to solving
the so-called electromagnetic inverse problem (Baillet et al., 2001;
Nunez and Srinivasan, 2006). In distributed inverse imaging, dipolar
sources are modeled at many locations within the brain, and the
activity at all those locations is estimated jointly. To overcome the
ambiguity of the solution, it is crucial to constrain the solution to be
consistent with prior domain knowledge. Depending on the type of
constraint, the solution can be linear or nonlinear in the observations.
A second class of inverse methods are beamformers. Here, the activity
at each voxel is estimated using a linear spatial filter that is optimized
for that voxel.

The weighted minimum-norm estimate
Theweightedminimum-norm(WMN) source estimate (Hämäläinen

and Ilmoniemi, 1994; Ioannides et al., 1990; Jeffs et al., 1987) is the
source distribution with minimal power that explains the EEGmeasure-
ment. As it is typical for linear methods (Grave de Peralta-Menendez
and Gonzalez-Andino, 1998; Haufe et al., 2008; Matsuura and Okabe,
1995), the WMN solution tends to be very blurred, and may not resolve
multiple sources. To counteract a location bias in the estimation, we
consider a depth-compensation as proposed in Haufe et al. (2008).

Sparse basis field expansions (S-FLEX)
Inverse source reconstruction via sparse basis field expansions

(S-FLEX, Haufe et al., 2009, 2011) achieves a compromise between
smoothness and focality of the source current distribution and is
thereby able to model the simultaneous occurrence of multiple
extended sources of different sizes and shapes. The idea of S-FLEX is
to expand the current density at time t as a linear combination of
(potentially many) spatial basis fields, which are defined as the
outer products of scalar Gaussian basis functions and 3-dimensional
coefficient vectors. The assumption made by S-FLEX is that the cur-
rent density can be well approximated by a small number of basis
fields, which is encoded by means of an ‘1;2-norm penalty on the
coefficients. The 3T coefficients related to a single basis function are
tied under a common ‘2-norm and can only be pruned to zero at
the same time. Thus, the selection of basis functions which contribute
coherently to the entire EEG time series is facilitated.

Linearly constrained minimum-variance (LCMV) beamforming
The idea of beamforming is to find a spatial projection of the

observed signal, such that signals from a specific location in the
brain are preserved, while contributions from all other locations as
well as noise contributions are maximally suppressed. The linearly
constrained minimum-variance (LCMV) spatial filter (Van Veen et al.,
1997) does that byminimizing the variance of the filtered signal subject



1 http://ml.cs.tu-berlin.de/causality.

123S. Haufe et al. / NeuroImage 64 (2013) 120–133
to a unit-gain constraint (that is, the product of filter and forward
matrix at the desired location is enforced to be unity).

Data asymmetries

Many measures of effective connectivity are based on the princi-
ple that the cause precedes the effect. However, it would be mislead-
ing to assume that temporal ordering is necessarily the dominant
factor which affects the estimation of causal relationships. Rather,
most methods are based on general asymmetries between two (or
more) signals out of which the temporal order is just one specific
feature. Other asymmetries, like different signal-to-noise ratios, dif-
ferent overall power or spectral details may in general also affect
causal estimates depending on which method is used.

We here propose to distinguish two kinds of asymmetries. We call
the first type “strong asymmetries” defined as asymmetries in the
relation between two (or more) signals like the temporal ordering.
The second type is called “weak asymmetry” and denotes different
univariate properties as given, e.g., by the spectral densities. Weak
asymmetries can hence be detected from two signals without esti-
mating any functional relationship between them whereas a strong
asymmetry is a property of that functional relationship.

We restrict ourselves in the following to the discussion of station-
ary and Gaussian distributed data. Let xj(t) be the signal in channel j at
time t. Then the statistical properties are completely defined by the
cross-covariance matrices

C pð Þ ¼ x tð Þ−μ̂ xð Þ x t−pð Þ−μ̂ xð Þ⊤
D E

; ð8Þ

where 〈⋅〉 denotes expectation. The process is now said to contain a
strong asymmetry if for some i, j and some p it is found that Ci,j(p)≠
Cj,i(p), i.e. C(p) is asymmetric for at least one p. The process is said to
contain a weak asymmetry if for some i, j and some p it is found that
Ci,i(p)≠Cj,j(p), i.e. the diagonals are not all equal.

Weak asymmetries can be detected more robustly than strong
asymmetries, but can also be considered weaker evidence for causal
relations. In particular, they arise inevitably in real EEG data due to
volume conduction, even if the underlying sources are statistically
independent. In this case all cross-covariances are weighted sums of
the auto-covariances of the sources. Since auto-covariances are always
symmetric functions of the delay p and since generally C(−p)=C⊤(p)
it follows that C(p)=C⊤(p) for mixtures of independent sources
(Nolte et al., 2006). Hence, such mixtures can only contain weak
asymmetries but not strong ones. On theother hand, two sources having
a time-delayed influence on another, e.g., through a bivariate ARmodel,
always do exhibit a strong asymmetry, which can still be observed after
linearly mapping the source activity to EEG sensor space. However, this
mixing additionally introduces weak asymmetries, which may mask
the detection of the strong asymmetry depending on the method used.

For methods which are sensitive to both weak and strong asym-
metries it is in general difficult to tell on what property of the data
an estimated causal relation is based. The ambiguity can be resolved
by testing against appropriately designed surrogate data. Recall that
in permutation testing, the aim of using surrogate data is to obtain a
null distribution related to the lack of any structure in the data. The
underlying assumption here is that any significant deviation of a con-
nectivity score from the null distribution is indeed related to causal
interaction between the corresponding time series. However, this
assumption does not hold in the presence of weak data asymmetries.

In a broader sense the idea of surrogate data is to create data
which differ from the data under study in exactly the property that
is being analyzed, but agree with them in as many as possible other
aspects. In the context of the discovery of time-delayed interactions
it is therefore desirable to design surrogate data such that they
share weak asymmetries with the original data but lack the strong
asymmetries. To this end, we here suggest to use time-reversed signals.
This corresponds to the general intuitive idea that, if temporal order is
crucial to tell a driver from recipient, the result can be expected to be
reversed if the temporal order is reversed. The mathematical basis for
this is the simple observation that the cross-covariance for the time
inverted signals, say ˜C pð Þ, is given as

C̃ pð Þ ¼ C −pð Þ ¼ C⊤ pð Þ; ð9Þ

implying that our approach improves upon permutation testing in two
aspects. First, all weak asymmetries are exactly preserved. Moreover,
strong asymmetries are not only eliminated, but exactly inverted. This
leads to greater statistical power of time inversion testing compared
to permutation testing in the presence of weak asymmetries, which
has been evidenced in a simulation setting comprising mixed noise
(Haufe et al., 2012). Haufe et al. (2012) further outline a strategy for
rejecting false positives based on the evaluation of ameasure that quan-
tifies the ratio of weak and strong asymmetries.

Note that as a result of the Hermitianity of the cross-spectrum it
not only follows that PSI is antisymmetric, but also that this measure
exactly flips its sign when being applied to time-reversed data. Hence,
time inversion testing is formally equivalent to the standard approach
of testing PSI for nonzero mean without using surrogate data.

Experiments

In the following we present a series of four experiments designed
to assess state-of-the-art approaches to EEG-based brain effective
connectivity analysis. We focus on the most-simple model that in-
cludes source interaction, namely a two-dipole model with linear
dynamics and a time-delayed linear influence of one source on the
other. In the first experiment, measures of effective connectivity are
applied to simulated unmixed source time series. The second experi-
ment deals with simulated pseudo-EEG comprising realistic effects of
volume conduction and noise. The third experiment demonstrates
the influence of the signal-to-noise ratio and the choice of the refer-
ence electrode. The last experiment assesses inverse source recon-
struction techniques regarding their aptitude as a preprocessing for
source connectivity analysis.

Experiment 1: two interacting sources

We simulate a system of two simulated brain sources s1/2(t) fol-
lowing a stable bivariate AR process of order P=5, from which we
generate T=10000 samples. The AR coefficients are drawn indepen-
dently from N∼ 0;0:01ð Þ. By setting the off-diagonal coefficients
B1,2(p),1≤p≤P to zero while all other coefficients remain nonzero,
unidirectional flow from s1 to s2 is modeled. The innovations ε(t) of
the source AR process are drawn from the univariate standard Normal
distribution. We perform 100 repetitions of the experiment. For each
repetition, a dataset comprising distinct innovation terms and source
AR coefficients is generated. Note that we consider the noiseless case
here, while the influence of noise has been studied in detail in the
literature (Haufe et al., 2012; Nolte et al., 2008, 2010). Moreover,
there is no source or noise mixing due to volume conduction in this
first simulation. Thus, it mainly serves as a proof-of-concept for effec-
tive connectivity measures under ideal (but unrealistic) conditions,
and a baseline for source demixing algorithms.

We apply Granger causality, partial directed coherence and the
phase-slope index to normalized source time series, in which the
activity in each channel is transformed to have zero mean and unit
variance. The phase-slope index is computed using an implementa-
tion provided by Nolte et al. (2008),1 while the “Granger Causal

http://ml.cs.tu-berlin.de/causality
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Connectivity Analysis” toolbox (Seth, 2010)2 is used to compute GC,
and the MVARICA toolbox (Gómez-Herrero et al., 2008) is used to
compute PDC. The ARmodel underlying the computation of PDC is es-
timated using the ARFIT package (Neumaier and Schneider, 2001).3

For PDC, we average the connectivity scores across all frequency
bins to obtain a global measure of interaction.

We consider three statistical testing strategies, which are applica-
ble to all connectivity measures. In antisymmetrization testing, two-
sided t-tests are used to assess whether net connectivity scores are
significantly different from zero across repetitions. In permutation
testing, the same t-test is performed on the differences of scores
obtained on original and permuted data. Finally, time‐reversed data
are used as surrogates in time inversion testing instead of temporally
permuted data. Note that for PSI time inversion and antisymmetrization
testing are formally equivalent to testing the original connectivity
scores for nonzero mean.

As a postprocessing to each statistical test, the resulting t-scores
are converted into z-scores. This makes it easier to compare the re-
sults of different experiments, in which the degrees of freedom of
the t-distribution may be different. The transformation is performed
per z=cdfz−1(cdft(t,ν)), where cdft is the cumulative distribution
function (cdf) of Students t-distribution with ν degrees of freedom
Gosset (1908) and cdfz−1 is the inverse of the cdf of the univariate
standard normal distribution. Throughout the paper, connections
are reported as significant if the p-value associated with a z-score
(corrected for the testing of multiple entries of a connectivity matrix
using the Bonferroni method) falls below 0.05. In this experiment,
this is the case for z-scores with absolute values greater than 1.96.

Experiment 2: simulated EEG

We next consider simulated EEG data comprising effects of vol-
ume conduction and noise. The artificial EEG signal is generated
according to

x tð Þ ¼
1−γð Þ 1

2
∑2

i¼1
aisi tð Þ
∥ S⊤ð Þi∥2

� �
∥vec Sð Þ∥2

þ γ
η tð Þ

∥vec Eð Þ∥2
; ð10Þ

where x is the EEG signal, s1/2 are the source time series, a1/2 are the
spread patterns of the dipolar sources evaluated at 59 EEG electrode at
standardpositions as defined in the extended international 10–20 system
(Chatrian et al., 1988), η is noise and γ,0≤γ≤1 is a parameter that ad-
justs the signal-to-noise ratio (SNR). Moreover, E=(η(1),…,η(T)) and
S=(s(1),…,s(T)). The normalizing terms ∥ S⊤

� 	
i∥2 are used to equalize

the power of driver and receiver time series, while the normalization
by ∥vec(S)∥2 and ∥vec(E)∥2, respectively, allows precise adjustment of
the SNR bymeans of γ. Here, we set γ=0.5, corresponding to a balanced
SNR.

We use a headmodel with realistically shaped brain, skull and skin
shells (Holmes et al., 1998), and assume a nose reference. The source
dipoles are placed in the left and right hemispheres of the brain,
3 cm below C3 (s1) and C4 (s2), respectively. The positions of these
dipoles are marked by circles in Fig. 1. The current moment vectors
of both dipoles are tangentially oriented, leading to bipolar field pat-
terns. The sources are designed to reproduce field patterns of N20
event-related potentials observed after median nerve stimulation at
the hands in real EEG (Haufe et al., 2008). Similar patterns are also
frequently extracted by common spatial patterns (CSP) analysis of
mu-rhythm oscillations related to idling of the hand motor system
Blankertz et al. (2008). Thus, our scenario resembles sources in the
left and right sensorimotor cortices, where information flows from
2 http://www.informatics.sussex.ac.uk/users/anils/aks_code.htm.
3 http://www.gps.caltech.edu/~tapio/arfit.
the left to the right sensorimotor cortex. The field patterns a1/2 de-
scribing the spread of the source dipoles to the EEG sensors are com-
puted according to Nolte and Dassios (2005). Both dipolar sources
and the corresponding field patterns are depicted in Fig. 1.

The noise terms η(t)=ηsensor+Abiol.ηbiol. are composed of sensor
noise ηsensor, which is drawn independently for each sensor and
time point from a Gaussian distribution. Additionally, we include
ten sources of biological noise, the time courses η1biol.(t),…,η10biol.(t) of
which are generated using random stable univariate AR models of
order Pbiol.=10, and are mixed by a spread matrix Abiol. representing
the spread of ten randomly placed dipoles with random current
moment vectors. Sensor and biological noises are scaled to contribute
equally to the overall noise η.

We generate artificial EEG datasets using the source time series
introduced in Experiment 1. The underlying source dipole locations
and orientations are left constant across experiments, while distinct
innovations of the noise AR processes, as well as distinct noise AR
coefficients and noise dipole locations are drawn. Connectivity is
assessed between normalized sensor-space time series, which is com-
mon practice in parts of the literature. While PSI is by definition a
bivariate measure, GC and PDC are usually estimated using all avail-
able time series in order to reduce the deceptive influence of causal
confounders common to more than one time series. Here we test
the effect of the number of variables included in the MVAR estima-
tions underlying the calculation of GC and PDC. That is, apart from
the bivariate measures, we also assess their multivariate counterparts
which use either all 59 EEG channels or just the subset of 19 channels
defined in the international 10–20 system within the MVAR estima-
tion. The result of each connectivity analysis is either a 19×19 or a
59×59 matrix of connectivity scores related to pairs of sensors. Sta-
tistical significance of each entry of these matrices is assessed using
antisymmetrization, permutation, and time inversion testing.

Experiment 3: influence of reference electrode and SNR

Sensor-space connectivity patterns necessarily depend on the
spatial spread patterns of the underlying interacting electrical brain
sources, which are functions of their location and spatial orientation
as described by the forward model. Since these parameters are un-
known in practice, the interpretability of sensor-space connectivity
maps is naturally limited. An even more indirect factor influencing
sensor-space results is the dependence of field spread patterns on
the choice of the reference electrode. The purpose of this experiment
is to demonstrate that a change of reference can have an impact on
sensor-space connectivity estimation. To this end, we re-reference
the data used in Experiment 2 by subtracting the activity of either
the TP9 or the TP10 electrode. Since these are the electrodes closest
to the ears, doing so amounts to simulating the reference electrode
to be located either at the left or the right mastoid. Both are standard
choices in practice. To restore the full rank of the resulting data matri-
ces (the post-hoc re-referenciation decreases the rank by one), a
small amount of spatially and temporally independent Gaussian dis-
tributed noise is added. In addition to re-referenciation, we here
also study the influence of the signal-to-noise ratio adjusted by γ.
We present results for two additional SNRs of γ=0.25 and γ=0.75
using the original nose-referenced dataset. We restrict ourselves here
to the application of PSI.

Experiment 4: inverse source reconstruction

A number of studies have investigated the (effective or functional)
connectivity of source estimates obtained from linear inverse imaging
(Astolfi et al., 2006; Babiloni et al., 2005; Gow et al., 2008) or
beamforming (Brookes et al., 2011; Martino et al., 2011; Wibral et al.,
2011). Here, we compare distributed inverse imaging according to
WMN and S-FLEX as preprocessings for EEG-based source connectivity

http://www.informatics.sussex.ac.uk/users/anils/aks_code.htm
http://www.gps.caltech.edu/~tapio/arfit
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Fig. 1. Two simulated dipolar sources (SOURCE 1/2) and their corresponding EEG field patterns (PAT 1/2). Sources are placed 3 cm below the C3 (left) and C4 (right) electrodes and
are oriented tangentially to the scalp.
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analysis with beamforming via LCMV. Sources are reconstructed in the
same headmodel in which the data are simulated. To this end the inte-
rior of the whole brain shell is partitioned into N=2142 voxels of
10 mm side length. In the center of each voxel a dipolar source is
modeled, the current moment vector of which is estimated for each
time point. Note that this source space might be considered too rich,
since the EEG signal is believed to mainly originate from cortical gray
matter. However, in our simulated scenario, this detail plays a minor
role regarding the evaluation of inversemethods and source connectiv-
ity estimation in general.

We use our own implementations of WMN, S-FLEX and LCMV for
transforming the pseudo-EEG measurements into source time series.
The regularization parameter of WMN is selected using 5-fold cross-
validation, which is implemented by splitting the set of electrodes
randomly into five parts. The same regularization parameter is select-
ed for all time indices t. Since the WMN solution is linear in the data,
the source distribution is easily acquired even for long time series
data by means of a matrix multiplication. This is different for S-FLEX,
which requires estimating all source variables (the coefficients of
the basis field expansion related to all measurements) jointly using
nonlinear optimization. Doing so for 10 000 samples is prohibitive
due to excessive memory requirements, for which reason a two-step
procedure is adopted, which restricts the number of variables in-
volved in each step. In the first step, S-FLEX is applied to 100 randomly
selected samples. Using only the basis functions with nonzero corre-
sponding coefficients, the second estimation is performed for all
time samples. We apply S-FLEX using Gaussian basis functions with
spatial standard deviations ς1=0.75, ς2=1 and ς3=1.25. The regu-
larization parameter in both steps is adjusted such that the S-FLEX
solution achieves the same goodness-of-fit as the corresponding
cross-validated WMN estimate. In contrast to both distributed in-
verses, the LCMV beamformer estimates much less parameters than
samples, and regularization is less of an issue. To ensure numerical sta-
bility of the inversion of the data covariance matrix C, we here use a
slightly regularized estimate C̃ ¼ C=jjCjj þ 0:01I=jjIjj, where I is the
identity matrix. Moreover, to counteract potential locations biases,
we normalize the source power map with an estimate of the noise
source power using the identity matrix as an approximation for the
sensor-space noise covariance matrix (Van Veen et al., 1997). The
quality of the source reconstructions is measured using the earth
mover's distance (EMD) metric (Rubner et al., 2000), by which it is
possible to objectively compare the simulated two-dipole source con-
figuration with the estimated current densities (Haufe et al., 2008).
Additionally, the largest two local maxima of the current amplitude
distribution are sought for each method, and the average distance to
the corresponding source dipoles is calculated.

In order to reduce the complexity of the source connectivity anal-
ysis, we define regions-of-interest (ROIs) similar to Babiloni et al.
(2005) and Astolfi et al. (2006). Since we are only concerned with
simulated data here, these regions are not defined anatomically but
by partitioning the source space according to the closest (in the
Euclidean sense) of the 19 EEG electrodes defined in the 10–20 sys-
tem. This enables us to present the results in the same way as
sensor-space results. Dipoles that are further than 5 cm away from
any electrode are not assigned to any region. The source activity with-
in each ROI is summed separately for each spatial dimension to yield
a 3⋅19=57-dimensional time series. Since this time series might
be singular a small amount of spatially and temporally independent
Gaussian distributed noise is added in order to establish full rank.
The resulting time series are normalized and subjected to effective con-
nectivity analysis using PSI as well as four variants of GC employing
either bivariate or 57-dimensional MVAR modeling in combination
with either permutation or time inversion statistical testing.

The application of connectivity measures to source time series in
each ROI yields 3⋅19×3⋅19 connectivity matrices consisting of 3×3
blocks R(i,j), which describe the interactions between the i-th and
the j-th ROI in all three spatial dimensions. We calculate the total
flow from the i-th to the j-th voxel by summing over all entries of
R(i,j). This yields a 19×19 matrix, the entries of which are subjected
to statistical significance testing.

Results

Two interacting sources

In the noiseless and unmixed scenario, all three connectivity mea-
sures correctly indicate highly significant information flow from s1 to
s2 with z1,2>10 regardless of the testing procedure used. If permuta-
tion testing is used, there is no significant flow from s2 to s1 (|z2,1|b2)
for GC and PDC, while there is highly significant (z2,1b10) negative
flow from s2 to s1 for PSI owing to the intrinsic antisymmetry of this
measure. Both results are correct. A significant negative flow from s2
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to s1 is also obtained if antisymmetrization testing is used for GC and
PDC. Moreover, we observe significant (z2,1b10) negative flow from
s2 to s1 for all three measures in combination with time inversion
testing.

Simulated EEG

The sensor-space connectivity matrices estimated from noisy
pseudo-EEG data by GC, PDC and PSI in combination with three differ-
ent variants of statistical testing are visualized in Fig. 2 as head-
in-head plots (Nolte et al., 2004, 2008). Each head-in-head plot con-
sists of 19 small circles representing electrodes on the human scalp.
These are arranged within one large scalp plot according to the posi-
tions of the 19 electrodes of the 10–20 electrode placement system.
Each of the small scalp plots shows the estimated interaction of the
corresponding electrode to the other 18 electrodes defined in the
10–20 system (an exception is made for GC and PDC estimates calcu-
lated using 59-dimensionalMVARmodels, for which the connectivity to
all 58 remaining electrodes is shown). Red and yellow colors (z>0)
stand for information outflow and blue and cyan colors (z b0) stand
for information inflow. The Bonferroni factor is the number of electrode
pairs visualized, which is 19⋅(18)/2=171 (19⋅(58)/2=551 for the
59-dimensional case). The corresponding Bonferroni-corrected signifi-
cance threshold of z=3.62 (3.91 for the 59-dimensional case) is indicat-
ed by a thin black line in the colorbar, while the z-score corresponding to
an uncorrected p-value (z=1.96) is indicated by a thick black line.

The phase-slope index correctly reveals general significant infor-
mation flow from the left to the right hemisphere regardless of the
statistical testing procedure used. The observed connectivity matrices
resemble the true field patterns of the underlying sources in that in-
formation flow is estimated to pass predominantly from electrodes
in the right hemisphere to electrodes in the left hemisphere. The
most significant flow passes from those regions in which the driving
source is most strongly expressed to those in which the receiving
source is most strongly expressed.

The results according to GC and PDC greatly vary depending on
the statistical testing strategy used and the number of variables in-
cluded in the estimation of the underlying MVAR models. Using the
bivariate variants of both methods in combination with permutation
testing, almost all causal connections (in both directions) exceed
the Bonferroni-corrected significance threshold. For both measures
the number of significant connections decreases gradually the more
variables are included in the MVAR estimation. The remaining few
connections in the 59-dimensional multivariate case, however, do
not reflect the simulated interhemispheric information flow. Rather,
interactions are estimated predominantly between neighboring
channels in both hemispheres. Note that the same situation occurs,
if analytic testing by means of F-tests is performed for GC.

Using time inversion testing, the bivariate and 19-dimensional
multivariate variants of GC and PDC correctly estimate general flow
from the left to the right hemisphere similarly to PSI. The number
of significant connections is larger in the bivariate case. In the
59-dimensional multivariate case, only very few significant connec-
tions are found. These do not give rise to a neurophysiological inter-
pretation. Antisymmetrization testing for the bivariate variants of
GC and PDC yields a similar result as time inversion testing in that
general significant net flow from the left to the right hemisphere is
observed. However, in combination with the multivariate variants of
GC and PDC, antisymmetrization testing yields a qualitatively differ-
ent result. Here, significant flow is observed to pass predominantly
from higher-SNR channels to lower-SNR channels (where the SNR
of a single channel is defined as the combined strength of contribu-
tions of the two sources in that channel) regardless of the laterality
of the involved electrodes. These spurious connections are slightly
weaker (less significant) for GC than for PDC, and remain significant
only for the latter method in the 59-dimensional multivariate case.
Influence of reference electrode and SNR

Fig. 3 depicts sensor-space connectivity maps resulting from the
analysis of data generated using different simulated electrical refer-
ences as well as different signal-to-noise ratios. Depending on the ref-
erence, the estimated connectivity varies substantially. Most notably,
the left-to-right flow observed on nose-referenced data is not pre-
dominant anymore when the data is in TP9 or TP10 reference. Rather,
we also observe information flow from right frontal to right parietal
areas in TP9-referenced data, and flow from left parietal to left fron-
tal areas in TP10-referenced data, which is in conflict with the sim-
ulated information flow passing exclusively from the left to the
right hemisphere.

In the low SNR regime (γ=0.25), we observe much less signifi-
cant connections than previously. Importantly, the only significant
connections are estimated between posterior channels. Analogously,
for γ=0.75, larger areas than previously show significant interaction.

Inverse source reconstruction

Results of inverse source reconstructions are depicted in the right
part of Fig. 4 as heat maps showing estimated source current ampli-
tudes averaged over time instants and repetitions (and divided by
the estimated source current amplitude of white sensor noise in
case of LCMV). The plot is overlaid with arrows representing the sim-
ulated interacting dipolar sources. The source activity estimated by
WMN is spread over the entire brain. The true sources are not well
separated, as the source amplitude appears to have only one center
of activity located in between the two simulated interacting dipoles.
The amplitude distribution according to LCMV is similarly spread-
out as the WMN estimate. However, there are two distinguished
local maxima close to the simulated interacting sources. The S-FLEX
solution is more focal than the other two, exhibiting two dominant
local patches of activity located near (but slightly deeper than) the
two simulated interacting dipoles. In the right part of Fig. 4, the
amplitude of the summed estimated source signals in each ROI is
depicted as a heat scalp map. All three methods correctly exhibit
two local maxima at the ROIs below the C3 and C4 electrodes, while
there is more energy in the remaining ROIs for WMN and LCMV com-
pared to S-FLEX.

The qualitative assessment of the reconstruction performance
of the three methods is supported by the numerical evaluation of
EMD scores and distances between the locations of the true dipoles
and the local maxima of the estimated source current amplitude dis-
tributions, which are presented in Tables 1 and 2. Source imaging
according to S-FLEX yields better reconstruction of the two simulated
dipoles than WMN and LCMV in all three SNR regimes, as evidenced
by significantly lower EMD scores. The distance between the peaks
of the source amplitude distribution and the true dipole location is
smaller for LCMV compared to S-FLEX in low andmedium SNR ranges,
and is as small as possible (given the discreteness of the source grid)
for high SNR. In the high-SNR regime, S-FLEX also achieves minimum
peak-to-dipole distances.

The estimated effective connectivity between ROIs is depicted in
Fig. 5 using head-in-head plots. Note that the interpretation of these
plots here is much easier as in previous experiments, since the depic-
tions do not represent interactions between electrodes but interactions
between source space regions-of-interest below these electrodes. Since
we simulated the true interacting dipoles to lie exactly belowC3 and C4,
it is sufficient to assesswhether (only) the flow from (the region below)
C3 to (the region below) C4 is present when evaluating source connec-
tivity head-in-head plots. Since information flow is onlymeaningful if it
is estimated between active regions, the information about the strength
of the source activity (as visualized in the right part of Fig. 4) is encoded
in the visualization by means of the alpha (transparency) value. Here,
the ROI with maximal strength is drawn with full opacity, while the
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Fig. 2. Comparison of effective connectivity between simulated EEG sensor measurements as estimated by Granger causality (GC), partial directed coherence (PDC) and the
phase-slope index (PSI) using permutation testing (PERMUT), time inversion testing (TIME INV) and antisymmetrization testing (ANTISYMM). Granger-causal measures are
calculated using bivariate MVAR modeling (GC/PDC 2), as well as multivariate modeling of either 19 or 59 channels (GC/PDC 19/59), respectively. Information flow from the left
(below C3) to the right (below C4) source is modeled by means of a bivariate AR model. The simulated EEG is superimposed by non-interacting biological and sensor noise
(SNR=1). The significance of estimated interactions is measured in terms of z-scores and visualized as head-in-head plots, where red and yellow colors (z>0) stand for informa-
tion outflow and blue and cyan colors (zb0) stand for information inflow. The Bonferroni-corrected significance level is indicated by a thin black line in the colorbar, while the
uncorrected significance level is indicated by a thick black line.
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ROI with minimal strength is drawn with full transparency. Alpha
values for ROIs in between are assigned using a monotonous sigmoidal
nonlinearity.

The application of PSI as well as bivariate GC in combination with
time inversion testing on estimated source time courses reveals the
underlying interhemispheric left-to-right flow for all three inverse
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Fig. 4. Source amplitude distributions obtained by weighted minimum-norm (WMN) and
constrained minimum‐variance (LCMV) beamforming. SOURCE AMP: voxelwise amplitud
the closest EEG electrode.
source reconstruction methods. In combination with S-FLEX, the in-
teraction is predominantly observed between the true generating
brain areas, namely the regions below C3 and C4. Beamforming
according to LCMV estimates broader active areas, in which some of
the activity of the simulated interacting sources seems to leak. Conse-
quently, both connectivity measures do not only detect flow from
ROI AMP

sparse basis field expansions (S-FLEX) distributed inverse imaging, as well as linearly
es. ROI AMP: amplitudes of summed activity in regions-of-interest defined based on



Table 1
Earthmover's distance (mean over 100 repetitions±standard error of themean) between
the two simulated dipoles and the source current amplitude distributions as estimated in
single repetitions by means of the weighted minimum-norm (WMN) and sparse basis
field expansions (S-FLEX) inverse imaging estimates, as well as the linearly constrained
minimum-variance (LCMV) beamforming estimate for three different signal-to-noise
ratios. Lower EMD scores indicate better source reconstruction. Entries marked in bold
indicate superior performance.

WMN LCMV S-FLEX

γ=0.25 56.0±0.4 51.2±0.3 32.4±0.8
γ=0.50 47.8±0.2 46.5±0.3 15.2±0.5
γ=0.75 36.4±0.2 42.7±0.2 4.5±0.2
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below C3 to below C4, but also between the areas below electrodes
neighboring C3 and C4. ForWMN inverse source reconstruction, almost
all ROIs are estimated to significantly participate in the general left-to-
right interaction.

Granger causality using 57-dimensional MVAR modeling and time
inversion testing does not yield any significant information flow be-
tween ROIs for WMN and LCMV inverse source reconstruction pre-
processing. However, it does correctly reveal significant information
flow from the area below C3 to the area below C4 for S-FLEX. How-
ever, these results are not as significant as for bivariate GC using the
same testing procedure. The application of GC using bivariate MVAR
modeling and permutation testing does not yield correct results re-
gardless of the type inverse source reconstruction preprocessing
used, and thus does not provide an improvement over sensor-space
results. As in sensor-space, significant bidirectional information flow
is estimated between most of the active brain areas. In particular,
bidirectional positive flow between the areas below C3 and C4 is
incorrectly inferred for all three inverse methods. If GC with 57-
dimensional MVAR modeling is used instead of the bivariate variant,
no significant interactions are found for WMN and LCMV. Interestingly,
a correct result is obtained for S-FLEX, namely a truly unidirectional
flow from the area under C3 to the area under C4. However, the spuri-
ous flow in the opposite direction becomes significant at higher SNR
also for this combination of methods.

Discussion

Avoiding spurious connectivity caused by volume conduction in
Granger-causal analyses

Our study illustrates challenges in the estimation of brain interac-
tion from EEG measurements. We tested three measures of effective
connectivity in combination with three different approaches to
assessing the statistical relevance of the results. All combinations cor-
rectly reveal the direction of information flow when being applied di-
rectly to (noiseless) source time series. However, real EEG data is
always characterized by source mixing and the presence of brain and
sensor noise. In this case it is easy to show that all pairs of electrodes
are causally related to each other according to Granger's definition,
even if only a single brain source is active. The reason for this is that
the autoprediction of any noisy channel is improved if the prediction
model is augmented by another channel measuring the same signal
but different noise realizations. Our analyses confirm this theoretical
Table 2
Average Euclidean distance between the two simulated dipoles and the corresponding
two strongest peaks of the mean source current amplitude distributions (taken over
100 repetitions) as estimated by WMN, S-FLEX and LCMV. Smaller distances indicate
better source reconstruction.

WMN LCMV S-FLEX

γ=0.25 11.1 cm 4.9 cm 6.0 cm
γ=0.5 3.7 cm 0.5 cm 1.9 cm
γ=0.75 2.6 cm 0.5 cm 0.5 cm
consideration for both connectivity measures based on the idea of
Granger causality (GC and PDC), demonstrating that these measures
are not applicable to EEG data the way they are commonly applied
using either permutation or analytic statistical testing.

In this work we have pointed out that spurious results of Granger-
causal analyses can be attributed to weak data asymmetries caused,
e.g., by linear mixing of the interacting sources, as opposed to strong
asymmetries related to genuine time-lagged information flow. Our
novel approach of time inversion testing is designed to alleviate the
influence of weak asymmetries on the result of any causal measure,
while maintaining (or even amplifying) the contribution of strong
asymmetries. Our results demonstrate that this approach effectively
makes GC and PDC robust to artifacts of volume conduction. As a
result, the simulated information flow from the left to right hemisphere
is correctly recovered. Moreover, the fact that the corresponding nega-
tive flow in the opposite direction is as well recovered indicates that GC
and PDC are capable of detecting reverseflow from reversed time series,
further increasing the statistical power of the time inversion testing
procedure. Note that this is not a trivial finding, since the dynamics of
the time-reversed simulated data cannot necessarily be described by
the finite-order linear MVAR process assumed by GC and PDC.

As a general remark, note that in a multivariate setting it would in
principle be desirable to be able to destroy (or rather invert) strong
asymmetries while preserving weak asymmetries only for a specific
connection. This is not possible using time reversal since, e.g., inversion
of only some of the time series would amount to cutting some connec-
tions completely. In practice, (complete) time inversion often leads to
almost identical results for Granger-causal methods on real EEG data,
indicating that partial manipulation would not have any effect either.

A third testing approach based on assessing net connectivity
scores achieves good results for bivariate variants of GC and PDC,
but breaks down for multivariate variants in the sense that predomi-
nantly spurious interactions are estimated. These spurious connec-
tions indicate that there are systematic differences in the GC/PDC
scores of most of the channel pairs. Those are not related to the actual
interaction but rather to asymmetries in the channelwise SNR (and
even to the scale of the data in the case of PDC). As a general conse-
quence of our analyses, we suggest to use Granger-causal measures
only in combination with time inversion testing in the context of
EEG connectivity studies. Importantly, it is possible that this combina-
tion even yields advantages over in settings comprising more than
two interacting sources. Our experience shows that time inversion
can be safely combined with antisymmetrization, if an analysis of
net connectivity scores is desired. In order to better understand the
behaviour of pure antisymmetrization testing, a thorough theoretical
investigation of the properties of multivariate GC and PDC scores
under spatial source mixing has to be conducted.

We observe that in most of our analyses the bivariate variants of GC
and PDC achieve more significant results than their multivariate coun-
terparts. Moreover, the result obtained using antisymmetrization test-
ing is qualitatively better in the bivariate case than in the multivariate
case. One reason for the inferior performance of multivariate MVAR
modeling might be overfitting caused by the fact that the number
of parameters of these models grows quadratically with the number
of variables included. Suitable regularization of the MVARmodel fitting
(e.g., Haufe et al., 2010a) might therefore improve the results. In order
to avoid biased results due to overfitting, Granger scores should more-
over generally be evaluated on data that have not been used for fitting
the underlying autoregressivemodels. Such potential biases are howev-
er not the predominant cause for the detection of spurious connectivity,
as demonstrated here using bivariate Granger-causal models. Note that
multivariate methods are commonly employed based on the consider-
ation that the inclusion of more time series helps to rule out indirect
connectivity between channels that are caused by a common confound-
er. However, that argument does not apply to EEG data,where all causal
confounders contribute to all channels due to source mixing.
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Fig. 5. Comparison of estimated effective connectivity between regions-of-interest defined based on the closest EEG electrode. Sources are estimated according to weighted
minimum-norm (WMN) and sparse basis field expansions (S-FLEX) distributed inverse imaging, as well as linearly constrained minimum‐variance (LCMV) beamforming. Connec-
tivity is estimated using the phase-slope index (PSI), as well as variants of Granger causality using either bivariate (GC 2) or multivariate (GC 57) MVAR modeling in combination
with either time inversion testing (INV) or permutation testing (PERM).
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Interpretability issues in EEG sensor-space connectivity analysis

Since PSI inherently implements the ideas of antisymmetrization
and time inversion testing, it yields results qualitatively similar to
those of GC/PDC with time inversion testing in all our experiments.
In a quantitative evaluation conducted on data provided by the “Sig-
nal Separation Evaluation Campaign” (SiSec) challenge 2011,4 PSI
however outperforms all competing methods including a variant of
GC involving time inversion testing (Haufe et al., 2012).

Our simulated example has been designed such that the correct-
ness of sensor-space connectivity estimates could be assessed in
terms of the simulated left-to-right flow also on sensor level. Howev-
er, in general the interpretation of sensor-space connectivity is much
more difficult even when using robust measures, and generally re-
quires knowledge of the field patterns of the underlying interacting
4 http://sisec.wiki.irisa.fr.
sources. As one example, if it was unknown that our simulated
sources give rise to bipolar field patterns, one would possibly incor-
rectly infer the presence of four sources (two sending and two receiv-
ing ones) located in frontal and parietal areas, while in fact there are
only two simulated sources located centrally. One can easily imagine
that interpretation becomes even harder if the source have more
complex (and potentially more strongly overlapping) field spread
patterns, and if there are more than two interacting sources. In addi-
tion, our analysis shows that even comparably small changes in the
measurement setup such as the change of the reference electrode
produce considerable variations in the resulting sensor-space connec-
tivity maps, since such modifications affect the relative strengths with
which driving and receiving sources are expressed in the sensors. A
problematic influence of the choice of the reference has previously
been mentioned by Nunez et al. (1997) and Marzetti et al. (2007).

The signal-to-noise ratio affects the results of all methods only
quantitatively. As a result, however, the extent of the scalp regions
between which significant interactions are detected may vary, which

http://sisec.wiki.irisa.fr
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in turn may alter the qualitative assessment made by the data analyst.
For example, analysis of the high-SNR scenario in Experiment 2 might
lead to the conclusion that almost all brain sites are interacting, while
the same analysis for lower SNRmight infer interactions only between
a number of parietal channels.

Benefit of source connectivity analysis

It is possible to transform EEG data into a reference-free represen-
tation by computing the scalp Laplacian (Kayser and Tenke, 2006).
However, doing so does not ensure interpretability of sensor-space
results, nor does it solve more general problems related to volume
conduction, since the scalp Laplacian is incapable of extracting other
than superficial radially oriented current sources. General source re-
constructions via inverse methods or blind source separation (BSS)
techniques are as well independent of the choice of the reference,
while not exhibiting this limitation. They are therefore widely consid-
ered to be appropriate preprocessings for EEG-based connectivity
analysis. While an evaluation of BSS methods is provided in Haufe
(2011), we here assessed three inverse source reconstruction algo-
rithms, two of which have been used in EEG source connectivity
studies before. The advantage of working on inverse solutions com-
pared to BSS methods is that the former allow one to study brain in-
teraction directly in terms of the estimated signal-generating brain
structures.

The quality of the overall source connectivity estimation relies
on the ability of the employed inverse method to recover the spatial
distribution of the sources. Importantly, we observe that large esti-
mated active brain areas also translate into large areas between
which significant connectivity (according to PSI or GC with time
inversion) is estimated. The sources estimated by WMN and LCMV
are more distributed around the simulated dipoles than it is the
case for the S-FLEX estimate. Consequently, S-FLEX is more success-
ful in narrowing down the interacting brain regions to the areas
below C3 and C4, followed by LCMV. Note that the accuracy of the
source reconstruction and thereby the quality of the source connec-
tivity estimation increases with higher SNR for all source recon-
struction methods.

It is often assumed that the application of (any) inverse source
reconstruction eliminates the effects of volume conduction in the
data such that connectivity measures designed to work well on
unmixed data can be applied on reconstructed sources without hesi-
tation. Our results, however, demonstrate that this is not the case due
to artifacts of volume conduction persisting in all source estimates.
Precisely, the application ofGCwithpermutation testing on reconstructed
sources leads to the detection of spurious connectivity regardless of the
inverse method used.

Degree of realism of the simulations

In this study we modeled the simplest case that we consider real-
istic in the sense that the simulated EEG data comprises noise with
temporal and spatial structure, as well as source mixing due to vol-
ume conduction. All remaining parts of our simulations were maxi-
mally simplified to the extent that meaningful connectivity analysis
is still possible. Undoubtedly, more complex simulations involving
more interacting sources with more strongly overlapping field pat-
terns etc. would further aggravate connectivity estimation which, as
we show, is already a non-trivial task even in the case of one pair of
interacting sources. Similarly, linear dynamics as modeled here is an
oversimplification of what can be expected to take place within the
brain. Nevertheless, a linear source MVAR model does represent a
possible mechanism of information transfer in the brain. Here, the
source innovation sequences correspond to local brain activity, which
is generated independently at various distant locations in the brain.
The MVAR matrices relate to a stationary, but task-dependent brain
network, which distributes the local information to all brain sites in-
volved in themental taskwith certain delays. The incoming information
is fused at the various brain sites with the current local information to
produce the source electrical activity that is indirectly observed in the
EEG through the forward mapping.

Benchmarking

We would like to propose our data as a benchmark dataset for the
evaluation of EEG-based connectivity estimation algorithms. Data-
generating code can be downloaded.5

Establishing a standardized benchmarking protocol is more in-
volved than proposing a dataset, since the performance measures
have to be chosen depending on the general type of algorithm used
for source and connectivity estimation. The statistics reported in
this paper merely relate to the significance of the estimated connec-
tions rather than their correctness. Consequently, connectivity results
have been presented rather qualitatively using the visualizations that
would in reality be interpreted by neurophysiologists. We hereby
encourage attempts on developing a generalized quantitative evalua-
tion scheme for EEG-based connectivity analysis, possibly making use
of the dataset proposed here. However, it is rather challenging to ac-
commodate the various approaches including sensor-space, inverse
source reconstruction and potentially blind source separation ap-
proaches into a common evaluation framework. Since sensor-space
approaches lack the notion of sources, it is hard to assess their perfor-
mance in terms of source connectivity estimation in general. In genu-
ine source connectivity analysis, the overall estimation is split into
source and connectivity estimation steps, and so must be the evalua-
tion. We here quantified source estimation accuracy using the earth
mover's distance in the inverse source reconstruction setting. A
meaningful quantitative evaluation of the subsequent connectivity
estimation is only possible if the estimated sources can be matched
to the true sources one-to-one, which is not always easily possible.

Given the simplicity of the current simulation scenario, the fact
that a method performs well here does of course not guarantee that
it will do so on any other (in particular real) dataset. However, results
obtained for a number of different methods do provide an indication
of which method should be preferred. To increase the confidence in a
methodology (or to possibly invalidate it), it is necessary to perform
additional experiments reflecting prior assumptions as closely as pos-
sible. In particular, the influence of inaccuracies in the forward model
should be investigated, where numerical simulations may also be
complemented with phantom studies. Finally, it would be desirable
to obtain a real-world benchmark dataset for which the active brain
regions as well as the predominant information flow between them
is known with high confidence.

Conclusions

In this paper we have studied simulated EEG data generated from
a simple computational model of brain interaction. We have demon-
strated that standard Granger-causal measures are not able to deal
with such data due to the inherent source mixing caused by volume
conduction, and have proposed a practical remedy based on time
inversion statistical testing. However, even for measures robust to
volume conduction the interpretation of EEG sensor-space connectiv-
ity is difficult. In order to obtain better interpretable results, it is help-
ful to conduct connectivity analysis on source estimates. However,
the EEG inverse problem is ill-posed; therefore, the assumptions
made by a source estimation algorithm must match the properties
of the sources to be reconstructed. Inverse source reconstructions al-
gorithms, for example, should be able to spatially separate multiple
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distinct sources, while being applicable to entire EEG time series. A
parallel field of research not covered here is the development of BSS
methods suitable for source connectivity analysis (Gómez-Herrero
et al., 2008; Haufe et al., 2010b).
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