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ABSTRACT
This arti& describes a new method for 30 QEEG

tomography in the frequency domain. A variant  of Statistical
Parametrfc  Mapping is presented fof sourea  kg spectra.
Sources are estimated by means of a Discrete  Spline  EEG
inverse soiution  known as Variable Resolution
Electromagnetic Tomoerephy  (VAREIA).  Anatomical con-
straints are incorporated by the use of the Montreal
Neurological lnstiMe (MNI) probabilistic brain atlas. Efiienl
methods  are developed fw frequency domain VARETA in
wder to e&mate  the swrce spectra  for the set of 10-101
voxels  that mmprise an EEG!MEG  inverSe  sduticn. High
resokdkm  swce 2 spedra  are then defined with respect to
tlw age dependent mean  and  standard deviations of each
voxel,  which are summadzed  as regression equations ca!-
c&ted from the Cuban EEG rwrmative  database.  The sta-
tistical  issues invoked are addressed by the use of extreme
value  staBstics.  Examples are shown that. ilk&ate the
potential clinical My of the methods herein developed.

INTRODUCTlON
me quantitafive  evaluation  of the frequency content  of

EEG b&ground activity has been the focus of intenSe
research acMy for several decades.‘* Though other
aspects of EEG activity may be measured,’ quantitative
electroancephalographhy  (QEEG) has been, to date, algIost
exclusively based upon spectral analysis.

L The seminal woik  by Matousek  and Petersen (1973)
showed the age dependence of broad band EEG spectral
parameters (SSSP) and the possibilii  of constructing age
corrected tables of these measurements to highlight
pathology. Subsequent work by John et al (19SQ6  estab-
lished the use of both a) regression equation of QEEG
parameters with age Cdevelopmental  equations”) to parlial

out the variation due to normal brain maturation, and b) the
Z transfwm, to quantify the deviation from normality. This
wwk also underscored the importance of log transforming
BSSP to conform to the requirements of parametric statis-
tics. Shortly thereafter, &iffy et al (1981)’  introduced the
technique of Statistical Probability Mapping and the idea
that mapping of statistics derived from EEG and EP signals
could help to localize  brain abnonnaliiies.  The increase of
diagnoslic  accuracy accruing from use of these procedures
was disarssed in John et al. (1998):  Subsequently, the
use of developmental equations was shown valid for sub
jects  from Cuba*  and from many different  cultures.

Assessments of this technique have documented its
present My in many clinical applications. A number of
classkication  algoriihms  based upon QEEG  have teen
described. The area ‘A’ under the Receiver Operating Cwe
(ROC) assessed the diagnostic -racy of a speMc set of
SBSP. The RCC curve is a plot of True Positive probability
vs. False Posilive  pfobability,‘0  and varied  from a chance
level for some disease entities  to more than 0.8 in tumors
and epilepsy.” The majw recant  developments of QEEG
have been dire&d toward increasing its sensitii  and
specificity for the detection of abnormal background
rhyihms,  especially for classication  of majo+ categories of
new-psychiatric  diseases (see review in Hughes and
John, 1999).‘2

High, independently replicated speciricii  and sensitivi-
ty of mulliple  discfiminant  functions has been demonstrat-
ed fc+ differential classifications of a number of different
neuro-psychiatric  pathologies. Cluster analyses based
upon QEEG  measures have revealed the existence of het-
erogeneous palhophysfufogical  subtypes within sympte
matically  homogeneous samples of patients, with differen-
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tial response to treatment or evolution of illness, and for
identification of subtypes predictive of diirential  evdtion
or response to treatments.‘3”

Further improvements in diagnostic accuracy were
obtained by the use of the full EEG spectrum. In High-
Resolution QEEG,‘D  the means and standard deviations of
the log spectrum are summarized as “developmental SW
faces” that are a hrnctian  both of age and frequency, The Z
transform of the log spectrum (Z spectrum) is then a nar-
row band counterpart to similar BSSP measures, though
the number of variables to evaluate increases and special
statistical techniques are needed to control the type I
error.” Using ROC analysis,l’  showed that the use of the
full log SpecWm  may increase the value  of A up to 16% for
some pathologies when compared to ESSt?

In spite of these promising results for the de&cfion  of
abnormal background atiiity, the general opinion has
been that traditional or Topographic OEEG has very little  to
offer in terms of lmlizah  of underlying pathology. This
impression was ccfroborated  in a study by Siscay  et al
(1992)” in which Localization Operator Curves  (LOC), the
IccaJization  problem andcgues  for ROC curves, were infro-
duced.  LOC curves  graph measures of False Positive and
False Negative  pixels, weighted in accordance to their dis-
tances from the true localization of the lesion and the
region detected as abnormal by the classifier.  LOC anafy-
sis showed that the lxalizing  ability of QEEG parameters
obtained from the raw EEG was quite  limited, even when
transformations such as multiiariate QEEG map620 or the
Laplacian”  montaage  are used.

The basic diicutty is that the events of real  interest to
clinical newphysiology  are the primary currents of neuronat
ensembles in the bfah, which are ufmbsefv~.  The mea-
urements that are available to topographic QEEG are voii-
age 0T magnetic measurements on the scalp. lt is clear that
the activfty  remrded  at each sensor is a linear combination
of the acbvfly  of all generates  due to volume mnduction.
Furthemwe,  the different tissues of the head effectively act
as a spatial low pass fiila? that imposes additional smear-
ing. Thus, there Seems to be a basic limit tc the localization
capability of topographic  QEEG due to the biophysics of
EEG generation. When  this argument is reviewed, together
with the impressive achievements of several other image
m&lilies,  it would seem that there is lilt!+ possibilii  m for
advance in terms of c&acting localizing information from the
EEG cf MEG recordings obtained in clinical Wings. .

Using spatiwtemporal  methods, an early demonstration
that this is not Ihe cas8 was provided by Scherg and van
Cramm  (1995),”  who decomposed the audii  evoked
potental  into a reduced number ofscurce  waveforms, used
to provide an image of the sow3 currents in bated
regions on the human auditory  ccttex  and, shorify  Ihereafter,
Scherg and VCHI Cramon (1990)”  illustrated the clinical utili-
ty of this method in patients with tempcf?J  lobe IBsions.  At
about the same time, Lehman” and Michel (1999)n demon-
strated that FFT data could be used for intracerebral  Ixal-
izatb of dipole sources  of EEG pnuer  maps,

Intensified interest in EEG inverse methods is &cted
in the increasing number of more recent publications
reporting methods to estimate 30 distributions of primary
current density that could explain observed brain electric
and magnetic fieldsP” Pariicular  impetus to such efforts
was provided by the description of a method for Low
Resolution Electromagnetic Tomography, or LORETA.”
This reporl  was shortly followed by the initial work by mem-
bers of the present group on Variable Resolution
Electromagnetic Tomography”” and related MEG efforts
at swrce  localization.” These were the initisJ  attempts to
develop an EEG/MEG  “Tomography” that would integrate
the high temporal resolution of electrophysiological  mea.+
urements with the spatial or metabolic information prwid-
ed by other newt-magfng modalitfes.”

Ol particular interest are techniques for using individ-
ual or probabalistic  anatomical information provided by
MRW  to constrain EEG/MEG  inverse solutions to the
sites  where primary currents might be generated. These
constraints contribute to overcome the non-uniqueness of
the inverse solutins.  The use of EEGNEG Tomography
makes it possible to reformulate OEEG techniques in a 3D
anatomic framework. Current methods for EEG/MEG
Tomography allow  the calculation of ‘source derivations”
that are estimates of the time varying activii of neural
generators. This paper fccwes upon spectral analysis of
these source derivations as a natural extension of existing
frequency domain OEEG  techniques. This can be desig
nated as Tomographic QEEG.”  The present method
exiends  topographic CIEEG  to a spatially low-reeofution
tomographic QEEG that might be both practical and of
potential clinical tiilii.*t

Accomplishment of such an exiension  required recon-
ciliation with several realistic issues and the implementa-
tion of a number of new procedures:



Methods are developed in this paper for frequency
domain  VARETA, which  esm?tes  the swrce  spectra
for each of the 101-W  VOX& that comprise an
EEG/MEG  inverse solution. An efficient algorithm,
based  upon the computatii  of the square mot of the
cross-spectral matrix,” is presented here.
High resolution source Z-spectra have been defined*’
and age dependent means and standard deviations for
the log spectrum of each voxel  have been summarized
as regression equations calculated from the Cuban
normative EEG database.
Avariant of Statistical Parametric Mappi@  is introduced
here for the first time to assess the signflcanca  of source
bg spectra.  The statistical issues invoived  are sohed by
the use of extreme value statistics, as has been dis-
cussed  in Gal&l et al (1994)‘O  and placed upon a firm
theoreticel  basis in Worsley  et al (lS%).* l?ris paper is
restiicted  to anatysis  based upan  an eyes closed resting
EEG from 19 scalp electrodes placed according to the
International iOl2O  System. The effecf of using a larger
number of electrodes will be discussed elsewhere.
Examples are shown that illustrate the potential clinical
utility of VARETA, based upon data from only 19 leads.

METHODS
Normatlvr PEEG data

The results to be presented below are based upon
EEG recordings from normal subjects obtained from the
Normative Cuban digiial EEG database.” To construct
this database, 276 subjects (133 male, 143 female) were
randomly selected from a register of 116,000 inhabitants
of different municipalities in Havana City. Using a strati-
fied design, a sample was obtained with an age range
from 5 to 97 years and a quasi-logarithmically spaced dis-
tribution (yearly from 5 to 15.9 years old; every two years
from 16 to 19.9; every five years from 20 to 97). Stdct cd-
teria for selection, which excluded 65% percent of the
original population, resulted in this sample, considered
%nctionally  healthy.”

The EEG recordings from these subjects had been
obtained using the MEDICID-03M  system. The amplifier
specifications of this system were: gain of 1OooO  dS, low
cut at 0.5 Hz and high cut at 30 Hz, 60 Hz notch filter and
a noise level of 2 mV RMS. The sampling frequency was
100 Hz. Nineteen monopolar  derivations of the lo/20 sys-
tem were recorded (FPl, FP2, F3, F4, C3,  C4,  P3, P4.01,
02, F7, F6,  T3,  T4, T5, T6,  Fz, Cz,  Pz) using linka ear-
lobes as a reference. The impedance of all derivations was
required to be below 5 KS& Eye movement anifacts  were
monitored by use of the electrc-oculcgram  (EOG).

I\llifact free segments of 2.56.~~ duration were
selected by means of visual editing  by an expert elec-

trcencephalographer,  who was also requested to eliminate
obvious changes in state such as drowsiness. Twenty-four
such segments of eyes closed (EC) EEG were collected
from each subject. It has been shown that quantitative
analysis of this amount of EEG yields a stable replicable
set of (IEEG measures.~‘~4
Frequency domaln  dlstrlbuted source analysis

The source analysis in the frequency domain consists
of the following steps:

First, as is usual in QEEG analysis, time domain EEG
data is transformed to the frequency domain (see Appendix
A). Using each frequency in every channel, the Wmplex
covariance  matrix, known as the cross-spectra, is calculat-
ed. when  analyzing topographii  spectra, only the real val-
“es [the diagonal of the cmss-spectral  matrix) are used.
However, as is shown in Appendix 6, calculation of the
swrce  spectra for tomography requires the use of the full
information, which is available in the cross-spechal  matrix.
This is because the tomographic inverse solution is a linear
mmbinatiin of both the spectra and cross-spectra derived
from the surface recording. In other words, the addhional
information contained in the EEG cross-spectra quantifies
the inter-correlations of elect&l activity among elec-
t&s, which provides essential constraints upon potential
configuration of sources.

Second, the cross-spectral matrices obtained from Me
surface are used to calculate the cross-spectral matrices  of
the sources for each frequency. To do this, il is necessary
to obtain an estimate of the primary currents in the sources
that generate the v&ages measured in the electrodes dur-
ing the EEG recording. This problem is known as the
“inverse problem (IP) of electroencephalography.”  It fs wetl
known that the IP problem has no unique solution. Anum-
her of methods have been proposed to circumvent this did-
ficuliy In this paper, we use the method deve@wd by
Valdes  and his collsborators,3’*  named Variable
Resolution Electrical Tomography (VARETA).

VARETA is a technique for estimating the distribotii
of the primary current in the source generators of EEG
data. Like Low Resolution Electromagnetic Tomography
or LORETA,”  VARETA is a Discrete  Spliie Distributed
Solution.” Spline  estimates are the spatially smoothest
solutions compatible with the observed data. However,
while LORETA imposes  maximal spatial smoothness.
VARETA imposes different amounts of spatial smooth-
ness for different types of generators, the actual degree
of smoothness in each voxel  being determined by the
data itself, hence the use of the term variable resolution.
VARETA allows spatially adaptive nonlinear estimates of
current sources and eliminates ‘ghost soltions” (artifac-
tul interference patterns), which are often  present in lin-



ear distributed inverse solutions.* Due to this procedure,
VARETA produces focal solutions for point sources, as
well as distributed sokrtions  for diffuse sources.

Understanding this nonlinear estimation prccedure
requires some further comment. Bayes theorem is used
whenever a @xi constraints are necessary in a statistical
estimation problem. Both LORETA and VARETA are
Bayesian  estimators of the primary current. While  LORETA
assurnes  a fixed ‘smwth”  covariance  matrix for the primary
current, VARETA estimates the spatial covariance  matrix
and actually uses the resuiis  to impose voxel current gradi-
ents which best  conform to its assumptions of smoothness.
Tcgether with the use of voxel Z scores (see discussion of
effects  of Z in Appendix B), this acts to diminish the domi-
mm over deeper sources  otherwise assigned to sources
near the surface of the cortex. The effectiveness of these
steps can be gauged by the apparent abilky  of VARETA to
localbe  deep sources accurately.w In addition, anatomical
Cc&RiMs  are placed upon the allowable solutions by intro-
ducing a “gray matter weight” for each voxel. The efiect of
theea  weights on the inverse  solution is to prohibit sources
where the mask is zero (for example, CSF or white matter).
VARETA sololions  are plotted in proportional Talairach
spew using  probability masks de&d  from the average
Probabilistic MRI Atlas produced by the Montreal
Neurological lnstitule.1”.*6’  The mean head usad  in this
work was obtained4 by averaging a set ot SO5 normal MRI
scans, transformed toTalairach  space after being subjected
to nonlinear warping to match a set of SO mrnmon land-
marks. When a precise lx&ation  is desired, MRI  scans of
an individual subiect  can be used.

An average head volume conductor model  was ~)n-
strutted  and placed in registration with the Probabilistic
MRI  Atlas with the positions of the 19 electrodes in
Talairach space, as has been defined in Brain Electric
Source Analysis (BESA).”  Further details of this three  con-
centric sphere model  have been described elsewhere.’
The version of VARETA in previous desniptions,“-“**
was developed for the time domain. In this paper, we
extend this methodology to the frequency domain. For
those readers interested in the mathematical aspects, a
detailed descripton  of this procedure is provided in
Appendix B. The most outstanding feature of this imple.
mentatlm  is that the cross-spectral matrices in the sources
are obtained directly from the cross-spectral matrices in
the suriace.  This greaUy  facilitates the cumputatig.
QEEG for source rpcctra  (OEEGT)

The methodology developed for the quantitative
analysis of the EEG (QEEG) at the scalp electrodes has
ken extended here to the sources. Two major steps
were required:
a) Previous studieW*‘“‘*~  have shown that the loga-

dthmic transform ensures approximate Gausaianity  both
for broad band as well as narrow band absdute  power

spectral parameters. Following this approach a rsgres-
six model was fitted ti the full set of frequencies and
all VOX&.  (See Equation (9) in Appendi B). Therefore,
age regression equatiws  were calculatesi  far the source
spectra fcf the full frequency rtige, from a database of
normill  subjects. Evaluating these  equations for every
0.39 Hz narrow band across the frequency range 0.39 to
19 Hz and the age range (5 to 97 years) of the norma-
tive database, 3D surlacas  of the evolution of the EEG
spectra fw each source were obtained.

b) The tachniques  that have been developed by Vald6s et
al (1990, 1992)‘~” for the statistical parametric mapping
of lhe log spectra calculatad  from scalp recordings were
now extended  to the analysis of source spectra. In order
to~~tethes~~~lprobabilily~anyvoxel~LUBa1
any frequenq  h is newsary to compare  the log trans-
formed wurca spsctra  with age matched normative val-
“es for the corresponding voxel. This transformation was
initialb introduced by John et al. (tS7iJ2  to achieve a
known standard distribution for al CIEEG variables. To
achieve similar known diitributions for values to be used
in VARETA, we have defined the Z transfwm  fw the
source  spectrum (Equation (10) in Appandix  B). This
prmils  the calculation al Me 2 hnsform for every voxel
at every frequenw,  relative to the age expected numb
tie vakrea  The resuii  yields  a 3D image of Z values for
all the sources at each frequency, which can be viewed
as a statistical pobabilii tomographic image, with each
voxel &+coded  proptional  to its Z score.
Use of the Z-transform not only provides an objective

criterion for estimation of statistical signiiicanc6.  but also
confers an additional major benefit. Resealing  each voxel
at each frequency to Z-values, in conjunction wiih the use
of variable rather than fixed resolution and the spatial WI-
shaints  provided by use of a probabilistic mask restricting
swrces to gray matter, acts to diminish the relative contri-
butions to VARETA images from swrces close to the sur-
face. Without this mitigating modification, sources near the
cortical surface would dominate the images and effectively
mask the detection of deep-lying sources (Equation (6) in
Appendix B shows another way to deal with such domina-
tion by the more superficial sources). The e#ectiiess  of
Z transform in this ward will be illustrated by simulations
In a subsequent paper.

Z values  may be displayed either:
*as a fundlon  of frequency (Z source  speche)  ai a

given voxel,  or
* as a function of selected tomographic slices (Z image)

spaced  at intervals which correspond to the slices in
the Talairach  atlas (depending upon the orientation of
the slices, the interval between them varies from
abaut4to17mm).

Sped purpose 3D graphic teals  were developed in
order to allow such interactive eulwtion  of the large
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Figure  1.
Scalter  plot of me source spctrum  wth age.  Vertical axis: the spectrum  at frsqusncy  9.75 Hz for a voxsl  “ear the calcadne suIci&
Horizontal axis: age. The thick lines are  the regression curve and the 95% corrfdmca  intends  for the data.

amount of hsnsformed  data that is available. The tom+
graphicslicescanbescannedr~ly,i”thehansawia,ooro-
“al or sagatal  planes. Alternat~eiy,  should it Lx? desirable, a
brain electrical  tomographic (SEQ viewer  software algorithm
enables v&u&at&  of ths 3D image sliced &mg any
desired oblique plane. The anatomical identification of a”y
selectsd  voxel is automatically displayed, based on the
probabilistkxlassifrc&”  of b& tissm  developed at MNI.

In a generalization of topographic maps, three-dimen-
sionti color-coded images are generated, in which every
voxel is colorcoded,  scaled  in units of standard deviations.
This quantifies the significance of the deviation of a given
voxel from the wrresponding  age matched normative
group. Extreme deviations from the normative values will
show up as “hot spots” as has become standard in
Statistical Parametric Mapping (SPM).

As with other variants of SPM, an important issu;!  is the
correct  assessment of the probability of d&lions  from the
norms. This must take into consideration the large number
of measurements and their correlation.m  In this work, the
approach introduced by Worsley  et al (1S95)”  is taken.
This author usas the theory of Gaussian random fields to
compute the probability of the maxima or minima of image
data. Thii probability depends  ori ths shape of the search
region as well as on the correlatio” between voxel values.

Regularizatlon  paramaters
The source spectra for the 276 individuals in the “or-

mative  databass  ware analyzed  for each of 49 freq&ncies,
in steps of 0.39 Hz from 0.39 to 19 Hz, for a grid size of
3623 voxets,  yielding a basic databass  of appmximataly  49
million source  spectra. In order to restrict the permitted
gradients from voxel to voxel and thereby s$ec+fy  the
arrmtmt  of smwthing,  a *reguladzatio”  parameter” (see
aquation  (5) in Appendix 6) must bs calculated.

A major question was whether it was necessary to cal-
culate the regularizatio”  parameter for each single cmss-
spechd  matrix. The rsgularizafion  paramatar  calculated
from the raw EEG crass-spectra of the normafive  sub@%
varied considerably.  However, after transformation to the
average reference and resealing  to standardize the gee-
metric power as the Global Scale Factw (see  expression
(3) in Appendix A), the log of Me regularizatio”  panuneter
was well described by a Gaussian distribution with mean
0.22 and standard deviation 0.04. In view of this small
value for the standard detiatian.  the regular&ion  param-
eter was fixed to the mea” value. This accelerated the Cal-
culations by a” order of magnitude.

RESULTS
A quadratii regresskm  provkied  a” adequate fit to the

data in all cases. The adequacy of the log bansforms  to
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Figure 3.
~~~~~  mean EEG  IO~.SOMW  spectra  for  ages 10,  I 5,25,  and 50 years for voxels  indicated as 6, D. and  F in Figure  2.
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achieve the Gaussian distriifons  required for valid usa  of
parametric statistics is shown in Figure 1, which shows the
scatter plot ot the values of log source spectra at 9.75 Hz
against age. Thii evidence was checked by means of star+
dard goodness of fit tests for Gaussian@ The vertical axis
corresponds to the log of the spectral value at this fre-
quency for a voxel  near ffie calwine sulcus.  The horizo+
tal axis corresponds to the logarhhm  of age. The lines over-
laid on the data points  are the regression curve and the
99% confidence intervals obtained for the data.

New knowledge aboot  the maturational  changes in the
QEEG was generated from the developmental surfaces.
The full set of functions which define the mean value of the
log spectra of the sources in each voxel, es a function of
frequency and age, is the generalization of the “develop.
mental equations” of John et al (1977):  and the “develop-
mental surfaces” of Valdes  et al (lS90)?smey describe the
developmental changes of the EEG source spe&um with
maturation, for every voxet  within the full volume of the
brain. Figure 2 shows some of these patterns of EEG
source spectral maturation.

For typical voxels  from the different brain lobes, this 6g-
ure shows developmental surfaces in which the Z-axis is
the mean value of the log spectra  of the swrces. the x-axis
is fraquency  (0.39 to 19 Hz) and the y-axis is age (5 to 07
years). The symmetry of the surfaces for homologous right-
left regions of the brain is striking. The main features of this
surface are similar to those described previously for top+
graphic High Resolution QEEG.2  A peak in the alpha band
is superimposed on a l/l type  spectral component. The
alpha peak increases in height and frequency with matura-
tin and then slows  at the upper age limit. This peak is well
localized in space and frequency and shows a clear ante-
rior-posterior gradient, being most prominent near the ca-
CarllIe  SUICUS.

These features can be seen more clearly  in Figure 3,
which shows the mean EEG log-source spectra fw ages
10, 15, 25, and 50 years, for the voxels  designated as 6,
D, and F in Figure 2. Note that the scales for Figures 3 8,
D, and F are logarfimic and not equal. In fact, the spec-
trum plotted in F is much larger than that in 8.

Figure 4 presents a number of examples intended to
illustrate some of the features and advantages provided
by VARETA, as well as to demonstrate the accuracy of
spatial localization and  clinical sensitivity of Statistical
Parametdc  Mapping of source  spectra. The frequency
selected for the illustration of the utiliky  of VARETA images
for basic and clinical investigations was either at the max.
imum value  of the topographic power or at the most abnor-
mal point in the Z-spectra of each example. A full dewip
tion of each element of Figure 4 is provided in the legends
of Panels A.E:

In brii, Panel A illustrates the ulilii of VARETA images
to deblur  the excessively diffuse  and often misleadingly

wkhpread dlstributll of actllity seen  at the scalp level,
produced by distance from the source  and the smearing
influences of the scalp, skull, cerebrospinal  fluid and
menicges.  In this Panel, QEEG  topographic (a] and VARE-
TAtomographic  images (b) can bs compared, as they were
computed from the same eyes closed resting EEG data of
one individual. Tim predominant and asymmetrical alpha
sources are lateralbed  to the left side  in both images. It has
elsewhere been showng  that, depending on their direction-
al orientation, the tomographic map may reveal lateraliza-
Con of the strongest sources either ipsilateral  or conhalat-
eral to the pedcminant  location  of activity in the top+
graphic map. The VARETA image (c) from the same sub-
ject and at the same frequency, but computed  from the
eyes open EEG. Note the diminution of power that cone
spends  to alpha bloc+.ing.  A quantitafwe  study of alpha
sources and their desynchronization  is under preparation.

Panel B (ad) demonstrates the utility of Z-transforma-
Eon ol every voxel in the source spectra. It presents a) the
raw VARETA image from a patient who presented with right
hemiparesis and aphasia and b) the camparable  VARETA
image averaged across a group of healthy 76year.olds

from the Cuban normative database. The raw difference  (c)
between  the VARETA images of the patient and the normal
group and (d) the Statistti Probabilii  VARETA Z-Image
are shown, to illustrate the improved lccaliition  of abnor-
mality obtained by replacing the raw data in each voxel by
the color coded value of the corresponding Z-score corn-
puted for that frequency in that voxel.

Panel C illustrates the neuroanatomical  locus’of  the
space occupying mass parietal  meningioma  found in the CT
of the sama  patient whose VARETA data ware shown in
Panel 6. The muRimcdal  ccngruence  of the l&m seen in
the VARETA and CT images is apparent. Similar good neu-
roanatomical  cweapwdence  has been da&&d  in other
radiological investigtis  of the utility  of VARETAfor local-
itiiw of space  occupying brain lesions.**

Panel D permits comparison of CT and VARETA local-
ization of a cerebrovascular  k&n in another patiint,  who
presented with a Iti hemiparesis, right facial palsy and
dysarthria.  As can be seen, the CT scan from this patient
revealed a hemorrhagic stroke in the right putamen  and the
VARETA Statistical Probabiliky  Image showed an abnor-
mality centered upon this brain region.

Panel E illustrates findings in a patient who presented
with a left hemiparesis.  Clinical recovery was complete
after 15 days, indicating a reversible ischemic  neurological
deficit, or RIND. While a CT scan (not shown) within the
first 24 hours was negatis, a SPECT scan carded out in
the same time period (brougM into registration with the
average head of the probabilistic brain atlas to construct
the illustrated 3D image) suggested an occlusion of the
anterior branch of the i@ht  mfddla  oerebral  arty.  The
interpolated topographic QEEG Statistical Probability Map
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Figure 4.
NOTE: In the DEEG  image in Panel A (a) and in Panel E (a. b, c) of *is Figure, tie RIGHT side of the head  is displayed ~1 the RIGHT

side of the topographic image. However, radiologic  convention was used in Panels B, C and D, and the LEFT side of the brain  is
depicted on the RIGHT side of tie tomcgraphic  VARETA and CT images.

Panel A (a-c; Iti to right):
a) Topographic map (viewed  from above wR tie face at tie top of me map, 19 channel eyes dosed, resdng  EEG recording) of
absolute  power  (uv) at the peak of the Alpha band (9.75 Hz). from a mm1al25.year-old  male subject.

b) VARElA tomographic image of the MWW  109  &lute Alpha power  (cg pv2) at the wrespanding  peak (9.75 Hz). recorded  frw
the same mrma individual (eyes dosed, resting EEG recording).  In this  and all otbw VARETA images  depict& in this colar  plate. the
view  is ham b&w or in front so the Iti hemisphere is on me right side of ma image and  sources are located in accordance ti mn-
stmkns  provfded  by tie MNI  probabilistic brain atlas. Note the more focal  distdbtion and mul6ple  lod of alpha swce generators in
the tomqraphic  image.

This tomographic inverse sokdion  was mlculated using oniy  19 electrodes arrayed according  to the lnterw&nal  lo/20 Splem.

C) VARETA tomographic image of the source  lag  absolute  Alpha  paver, in the sane subject  and at me same  freqwwy as in b)
above,  bid far Ihe eyes open resting  EEG.

Panel B (a-d: lefl to right):
a) VARETA image of source  log  d&a  (2.73 Hz) in a ‘IEyear-old male patient  wft!~  dgM  hemiparesis,  who was aphasic.

b) VARETA image of U?a average  rmmW  source lq de&  (2.73 Hz) for beaiihy  76ywolds,  corn@&  from fhe Cuban rmmx?dve
database.

c) VARETAimage  of me diirence  at 2.73 Hz between  me 76yewold  patient  and the average mr”,al76-year-old.

d) Statistical Probabilii VARETA Z-image of me patient at 2.73 Hz. For comparison with the actwl  CT scan of this p&m, sac
Figure C (a).

Pti C (a, b: from top to bntfom):
a) CT scan of ‘Ibyear-old  male p&m. shown  above  in Panel 8, with right  hemiparesis  and aphasia, revealing a hypodense  region
reflectirtg  edema surrounding * IeR parietal  meningioma.

b) VARETAZ-image of mis  paient  (same as in 8. d). at the very narrow  lrequercy  band centered al 2.73 Hz showing abnormal
excess  acMy  in kn pareital  region.

Panel D (a. b; from top to bouom):
a) CT scan of a 54-year-old  female patient with hemipareis,  right facial palsy and  dywifvfa  which was d$gnosed as a hemorrhagic
stroke in the right putamen.

b) VARETA Z-image of this patient,  at the arrow frequency band  centered at 1.59 Hz, showing  abwmal excess  acfivm,  wi81 maxi-
mum in right putamen.

Panel E (a, b, cl:
Data from  a 72.year-old  who  presented  ti neurological symptoms which were eventually determined to reRect  a reversible
itiemic  neurological deficit  (RIND). A CT scan of tiis patient wilhin  the first 24 hours was ne
(Note mat in 8, b. and c, the 3D images  are viewed in diagonal orientation as if lwking toward the lower  right, wti me dgbt  forehead
nearest to me viewer and the rose at the laver  right  margin.)

a) Reconstrwtion of a SPECT St&y of this patient wah a RIND, diagmxed as caused by an ccciusiwl  of U?a anterior branch of the
right middle cerebral tiq. Note the asymmetry of rCBF mat  cornborates  me clinical diagnosis. I% 3D image was obtained by
placing the SPECT in registrrnon  wfth the averaga  MNI head. The image has me same  orientatian  as in b) and c).

b) Topographic  statistical probabilii map showing 2 wes diibutkn at 4.29 Hz for this  patient, maximum in right ant&r  regions.

c) Tomographic  VAKTA  statistical  probabilii 3D image at 4.29 Hz for this  patient, indicating a slow wave localized  in dx dgM ante-
rior regions just anterior to the region of least rCBF  in me SPECT. The abiwti region in me topcgmphic image is much  more  dC
fuse man in the tomographic image. Note that the 30 images have been placed in normal  orientati~l  wnh the rigid  side of the head
on me righf side of the image, to make more clear tie good correspondence be&en me site 01 Occlusion  idenWied by these  two
diiererd functional imaging techniques
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ot this patient, obtained during the same time period.
showed a highty significant but diiwety localtied  power
excess on the anterior regions of the right hemisphere. The
tomographic VARETA Statistical Probabilii  Image was in
gcod  correspondence with Me SPECT, exhibiting a maxi-
mal Z value in a region of the brain just anterior to the zone
of least rC6F shown in the SPECT study, but the abnor-
mality was more discretely l%atized  than in the topograph-
ic QEEG image.

DISCUSSION
This paper extends classical QEEG methoddogy,  orig-

inally developed to provide statistical evaluation of local
deviations from normative values of brwdband  spectral
parameters for scalp derivations and their interpolated
topcgraphic  mapping, to the tomographic localization witb-
in the volume of the brain of the generators of such scalp
measurements. This requires determination of source der-
ivations as obtained by EEG inverse solutions and their
statistical  evaluation. A particular type of EEG Distributed
tnverse  Solotion,  VARETA, is used for this purpose. VARE-
TA is extended to the frequency domain, for the estimation
of EEG source  spectra and moss-speztra.

The result of applying VARETA to id&i the locus  of
the alpha rhylhm  corresponds well to results obtained
wing frequency domain source localization based upon
equivalent dipole localization.~’ Surface topographic EEG
maps reveal alpha rhythms etiensively  distributed acmss
the scalp  albeit with posterior predominance. The VARETA
distributed inverse solution shows concentrated foci for the
alpha rhythm and thus lends support to a localiied  origin
fwthis rhylhm  in normal subjects.

One ot the main object&s  of the present paper  was to
describe the development of tomographic QEEG methods
that cwld be used with conventional digital EEG recxxding
systems and pfacadures.  In order to enable widespread
dinicat  uiilization  of VARETA, two obstacles had to be
overcome: the need for a) individual high resolution MRI
scans  and b) for spatially dense arrays of EEG electrodes
as prerequisites for achieving usehrl  lwalizatii.  The first
goal was reached by using a probabilistic brain atlas in the
calculation of the inverse &i?ion  instead of the individual’s
MRI. It is shown here, tbrwgh examples,  that this approx-
imation may be sufficient in many situations in which a very
precise MRI  reconstruction is not essential. Our studies
comparing the tomographic images of dense *versus
sparse arrays of scalp electrodes indicate that useful
resuiis  may be obtained with the relatively small number of
electrodes in the International lo/20 System.

These results  should not be construed to mean that we
are advocating the use of only a reduced electrode set. It
is inevitable that the point  spread function of the inverse
solution increases as the number of electrodes decreases.
The  effecl  of spatial under sampling on EEG studies has
been dealt with quite thoroughly recently from a theoretical

point  of view.=  The use of a reduced electrcde  set should
therefore be considered only  a first approximation.

Neither do we wish to imply that individual radiological
images are nd advantageous for VARETA to provkle  more
accurate functional localization. Provision has been made
for VARETAto  be computed when individual MRls  migM be
readily  available or considered essential for the precise
localization required for a padicutar  clinical application.
Nonetheless, reassuring evidence has been obtained
which shows  that IDci of brain lesions within Me pseudo
MRI tomcgram  obtained by VARETA localizations  using
Me Probabilistic MRI  Atlas are in gwd registration with
images of the same lesions obtained fmm CTor MRI scans
of the individual patient-Abundant evidence also exists
that the brain dysfunctions distinctive fm cerebral &hernia,
cognitive deterioration in the elderly, developmental disor-
ders, major  psychiatric illnesses and traumatic brain tnjuty
or piwconcussive syndrome are anatomically exiensive.‘2
Thti,  for many patential  applications, the VARETA image
may be found to provide a clinically useful “viiual  function-
al MRI” image, readily available and cost effective.

Examples of clinical results Mat can be obtained by
using SPM for source QEEG have  been presented The
analysis of the patient with a pad&l meningioma illustrat-
ed the utility of the Z transfcmntion  to make more evident
and provide statistical evaluation of a QEEG abnormdity.
The close correspondence between localization of lesions
by VARETA Z images with more conventional radiological
imaging methods was illustrated by ccmparison  with CT
images of this meningioma case and of a case of a hem-
orrhage in the putamen.  The analysis of the patient with a
reversible ischemic  neurological d&it show a dose cor-
respondence between the QEEG source Z image and the
SPECT study. The degree to which source QEEG may
sawe  in the evaluation of cerebrovascular  disease is the
suL$%t of current quantitative evaluation by using L-RQC
cuIyesz Until now,  metabolic images have had to be WI-
lapsed in a somewhat arbiiriuy  fashion to EEG electrodes
in order to permit comparisons.m  Additional  evaluations of
Me validity of VARETA in neurological disease have been
carded out by studying local brain lesions and some  exam-
ples have been shown elsewhere.“”

Studies by means of simulations have demonstrated
that a variable resolution inverse solution  possesses car-
lain advantages over a fixed resolution method..*
Speclficalty,  VARETA seems to eliminate ghost s&lions
and minimize the diffuse  allocation of variance especially in
the case of mulple  OT distributed sources.

A quantitative description of the age development of
EEG source spectra has also been constructed. The result-
ing tomographic norms constitute a 3 dimensional exten-
sion of previous topographic normative description.2’  They
also serve as the basis for construction of Statistical
Parametric Maps @PM)  for sowe QEEG.
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Obvtousiy,  turther work is needed to establish the kinds
ot errolS that migM be intsodwxd  by using the average
MRI atlas and the level ot accuracy of spatial resoluiion
required for useful clinical  results to be provided by this
method. Multimodal registration of VAFtETA images with
other modalities  of funckonal  brain imaging in a variety of
Main dysfunctions can be expected to provide impotta”f
estimates of the reliabitii  of this technique for source local-
hation. A vexing question is the issue of what source of
information coukl  be considered as the “gold standard.”
Should  the sante  gold standard be relied upon, for exam-
ple, in applications as diverse as tocalbdng  the discrete
brain st”&ktres occupied by a tumor or containing an
epileptic focus M identifying the muitiple regions and intsr-
actions possibly responsible for the bshavioral  and cogni-
tive dysfunctions in a psychiatric patient, for which no reli-
able imaging technique has been estabfished? How might
one disttnguish  between a cause versus a correlate of a”
abnormal brain  state?

Ma”y improvements to or exte”sio”s  of the method are
possible and some of them are being currently evaluated:
1. Though based upon VARETA.  the SPM principles

underlying tonxgraphic  QEEG are equally applicable
for any type of inversa technique curre”ky  available or
to be developed [e.g. Grave de Peralta et rd (1996,
1 SSZ)]!”

2. The probabilistic atlases used were thee available.
These atlases  were not designed specfftcaliy  for con-
straining EEG inverse solutions. The development of
statfstical  atlases designed for EEG studies is being
evaluated.

3. A possible  problem with a probabilisttc  a&as  migM be
the presence of gross brain deformations. Methods
must be developed in wder to deal with this situation.

4. Studies are under way to develop nonnat’kn?  equations
for a full 12Schannel  normative QEEG database.

5. Though possible to compute, Z images of coherence
for EEG sources present a daunting problem in scien-
tktc datavisualization.  It is, however, the anaiysis of the
interactions bshveen  brain  regions, which is potenkally
the most promising area of Mure  development of
source QEEG.

6. Finally,  the use of information from other neuroimaging
mcdatiiies  may bs combined with  the EEG inverse solu-
lo”, in order to pmvtds  a multimodal. integrated stake
tical parametric map that could provkfe  a” enhanced
view of nonal  and pathological brain  function.
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APPENDtXA
It is well established that quantitathe  analysis of a total

ofSSseomdsadifadfreeEEGissuflidenttoobtainsta-
ticmy spectrd  estimales.  Therefore, a total of 24 &fact-
free epochs,  each 2.56 secmds long, were &acted.  Each
epcchwasmnsideredtobeaimesedesthatcontprts4s
Nd=19components,onefcreachdartv&”.Foreachgive”
timeinstantt,thbrawEEGcanberepr~byavectoc
denoted as, V;; (t), where i varies frcm 1 to Ns (Number
of subjects), j front t to N,= 24 (Numbar  of EEG epochs),
andtvadesfrcm1toNf256(Numberoftimeinstants).
Tran&r”aSo”  to the frequency domain

In thii method, it is assumed that the observed EEG
epoch V[; (t), results  tmm distortions of the “true” EEG
acthky  Via(t) by two ikdfuences:  a) the first c+te  adses  from
attenuation of the raw EEG by vartabtltt  of scalp and skull
thickness, changes in conducthtty between the brain and
the surface related to age and other factors; b) the contri-
bution of the reference activtty,  whii has been subtractad
from each dsctmde.

Data preprocessing was based upon the model shown
in equation (1)” In this step, two corrections are applied to
the raw EEG to deal with these distcdions, as explained in
a) and b):

a) muitiplicatkm by a random, general scale factor
(GSF) &, specific  for individual km

bl subtraction of tha actfffty of the reference electrode

This resutts  in:
V&) = ci V:l (t) - pt.i(t)  i&i@). (1)
where i is the Nd vector of ones.
Thismodelisbasedupon~eassumplionthatall~ime

&3sareobservaumsfrmlstafio”arystcchasticprocesses.
In c&r to enable a tomographic analysis, which  can
descrlk  spectral swrces  of the dfrant frequandes  without
the need to resider  ikttemcticns.  k is desirable  to ccnskxf
a dsscdptlon  in which  the frequencies are indepsndent  lt has
been shcwrP that under the abe  awmplim,  transfom
Urn to the frequency dontatn  by tha Fast Fourier Transform
(FFI)  (yistdfng  a comptex  Gaussian distrfbtion)  is equivalent
to a Principal Components Analysis  which  provides  contp
nants  lhat are independent by dslinfkon.

After the correcticrts  defined above, the resulting Vii(t)
were  tra”sfor”ted  to Ute frequency domain by means of the
FFT,  prcdudng a set of comptsx  vectors V,,,(O). 0 refers
to frequency and varies from 1 to t-&49 (number of fre-
quencies). These indexes correspond to the frequencies
every039  Hz, frcm 0.39 to 19.11 Hz, whii  is ths bandwidth
of the normathe  database presently  used wfth VAREfA
(Note that this limitation is not inherent in VARETA. In fact,
the raw VARETA can be calculated for any frequency bard-
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width one selwts. However, wfthcui  a ee database
wiih such  bandwidth, the 2 transform cannot be Cal&ted,
so Stadstlcal  Paramedic  Mapping cannot be provided.)

To accomplish tomographic mapping of the source
spectra, k is first necessary to establish the interactions or
covadances  among all channels at each frequency, which
can be calculated as a complex wariance  matrix. By
virtue of the central limit theorem,” VU(W) is distributed as
a complex multivariate  Gaussian vector that is statistically
independent from the vectors at all other  frequencies. This
vector has zero mean and a complex symmetric (hermtic)
cwariance  matrix E,(W), which is estimated by:

1 NB
SiKUbR ~Vi,jCO) Vi,jCa)*s (2)

where l denotes the conjugate transpose of a vector.”
(Note: On ccmsion,  it may bs desirable to wc& directly

wfthihecmss-spe&almatiaodnotbeginMththeraw
EEG.  In hat case, the oorrediws  for Ihe Global Scale  Factor
(GSF)  a-d  U!e reference deck& cm bs removed in a dt
ferent way, as follows:

$(a) = lH * Si (0) - H.
5?

(3)

where H denotes the centering mat<@  that transforms the
data to the average referen& and the maximum likeli-
hood edmate of the GSP is:

the I,m entry in the cross spectral matrix, axp is the expo-
nential  function and fog is the natural logarithm.]

APPENDSI S
Frequency domain VARETA
Source  EEG hwerse  Solution

Based on the three concentric sphere model,=  the for-
ward problem of EEG may be swified  in the frequency
domain as follows:s’~s

Vi(~)=K*Ji(~)tEi(w), (4)
where lhe magniiude  Vi (0) denotes the bus data and 6
(0) refers to woi cmtWons  from im7uences  such as
impedance fltions ~1 the setwx anay  Ji (0) repre-
sents~matrixof~x,yandZcomponentsoftheprimary
currem field disaethed  an a grid inside the brain. In Ihis
w&,thegridsizewassstto&=3623@nts.Kisfhe!ead
field maklx  that relates current den&w to observed  meas-
urements, which is obtained  by spatial disctization:~

A complete treatment of the problem  would require a
discussion of how to select the reference. Following
Pascual-Marqui  et al (lS94),’ we have chosen to bans-
form the data and the matrix K to the average reference.

The voxels  for which primary  currents must be estimat-
ed were detined  by a grid placed in the volume of the brain.
For VARETA using Me average MRI atlas, voxels  were  only
induded  as specified  by a mask identifying regions where

the pobabiliiy of gray matter was not zero, based upon the
probabilistic brain tissue maps available from the Montreal
Neurological Institute.

The usual objectiie  of distributed EEG kwerse  solu-
tlons  is to estimate the primaty  current field Ji from the data
matrix V. This is the inverse EEG problem for the sauce
time series  and, as is well known, has no unique sol&n.
The general VARETA inverse solutM’  for this problem is
obtained  by searching for those J that minimize the follow-
ing ob@tive  function:

&lb(w) - KY Jk (CO))’  x S;, (CO)  x (V,(O) - Kx J+

(W))+J~(W~X~~YJi,(W))+(m+N3xlnI  S,(o)I

&T&;: (0) x G> (5)

where 7 is the reguladtion  parameter and G = & * Ls’
.A$*s.hs)--

This is a hierarchical generalization of the usual
Savesian  formulation for inverse oroblems.”  It should be
noted that to minimize expression (5). the Ji(W)  must be
the ouimme  of a tradeoff between  several faclws:

1. N~Y#+K~Ji,WP &~WW~~*Ji,~~))
l-1

is just the usual measure of R between the data and the
model.  & is the covariance  matrix of sent  noise.

2.8
J, (my - %{  (CD)  f J, (0) is a term that impas-

es lhe mask upon the sokdian  which d&es  tb+ voxeis  in
whi&sowesoftheEEGaretobepermiltedThesource
mvarianca  xJJi  (0) matrii speciftes  ties8  assumptions.
3. The remaining term results from placing a natural con-
jugate pdo? on zJJi  (W) in which the a p&ri mvadance
matrix is proportional to 0.

The purpose of G is to incorporate a number  of
assumptions about  the sounxs which  define the ‘regular-
ization  parameter”:

s&M smoothness is determined by Ls, the Kmnecker
product of L with the identhy  matrii  I* L is any scalar
mughness  operator such as the discrete Laplacian  or
discrete  thin plate split operator. In this  paper, the
Laplacian  operator is adopted as in Pascual-Marqui  et
al (la94j.~
the diagonal mabix  & specilies  the amount ofsmwth-
ness to be applied at each point of the spatial grid.
La* values of smcothing  force constant solutions.
Zero values spdy no smo&ing,  i.e., a point solution.
the diagonal matrix h, defines Me a prnri  pmbabilii,
obtained from the mask, that there might be any pri-
mary current density at a given location.

In this work. & = W * & (6)

where W is the weight matrix introduced” to eliminate the
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bias due to the greater sensitivh of observations to more
sop&&l  sources. The diil matrix 14; cwtaii  an
estimate of the probability that there might be cortical gray
matter for each point on the solution grid. The% pmbabili-
ties are available  from the probabilistic tissue maps avail-
able at MNI.

In its most general fwm, the cakultion of a VARETA
estimate involves the use of the Expectation-Maximization
(EM) AlgorithmR  in which Zip)  is estimated by minimizing
the Generalized Cross-Validation Criterion (GUI).*
Essentialiy,  an estimate of the source spectra is obtained
far each voxel  and frequency by interpolation from the
neighboring VOX& and compared with the values actually
allccated  to that voxel. This nonlinear estimation procedure
may achieve super re.Mtion and eliminate ‘ghost solu-
tions” that are artifacts of simple linear inverse solutions.”
Source  Case-speclral  Malrfx  Estimation

What has been described  up to now is the estimm  of
the sources Ji(o) for tomcgraphy.  Topographic m&&s in
Me frequency domain are based upon estimates of zi(W),
fhe source wss-spxfrum.  An algorithmic simpliication was
introduced to allow the efficient estimation oflhis parameter.
That simpi~cetica  an&& of substiMing  the data set Ji(0)
= (Ji,,  P), Ji,* (W),  L, JI,N  (WI fw a given  frequency  bv its

statisti& equiielent ST(m) in all calculations.

This statistical equivalent is the symmetric square root
of the estiite of the “true EEG” crossspectrum  defined

as ST(a) = Yi (w) * diag (Ii@)) *‘I’: (W),  where Yi (0)

is the matrix of eigen-vectors  and diag(?$(W))  is the diag-
onal matrix of the square roots of the eige;-values  of Si(0).

Wth this notation, the estimatL3n  procedure  is as follow
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Localization of Deep White Matter
LymphomaUsingVARETA: ACaseStudy
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ABSTRACT
Methods have racentiy bean proposed  for loealhation  of
multiple  tin scurces  of particular EEG frequencies record-
ed ban t&e scalp, to identii their mmt probable  nau-
roanatomiml  generators. This paper reports the acwate
hzcabiionofadeepwhilematterlymphoma,usingwabls
Resolution  Electromagnetic Twncgraphy  (VARETA). The
acaracy  of thii kxaliiicn  was cor&rned  by MRI studies.
The pa&t was refarrad fw a quanlitativs  EEG evaluation,
two w&s following an automobile acckient.  with no know
IOSS  of consoiwsness.  mere was makd  excess and
asymmetry of front4 slow wave aaivity,  wfth  highly sign%
cant hypccoherence.  Signicant gradient shifts within the lefl
hemisphere were also seen. Vwal  inspection of the EEG
bacings  revealed theta paroxysms in left dorsolatsra!  and
menial  frontal regions. me MRI  wealed  a large space-
capytng lesion deep within the white matter of tie left
frontal lobe, with evidence of subspendymal  spread and sig-
nificant  surrounding vascgenic  edema. Localization  of Ihe
sources of the timal QEEG abnormatities  using VARETA
was amistent  wtth  the lesion location seen  in the MRI
images. This case demonsbates  that VARETA can achieve
highly sensitive and accurate  IxaliiiMl of sources of
QEEG abrmrn~aliias  which lie in the deepest  brain regions.

INTRODUCTION
lnthelastssveralyears,anumberofmethodshavebaan

describedfotthesourcslocalizationofgeneratorscf,EEGor
evokedpotentialsrecordedfromthescalp.Theinitialefforls
towardthisgoalweredirectedtowarddipolesourcepotential
analysisin thetimedomain, applied tothe  brainstemaudito-
ryevoked pctentials’andtocorticalauditoryevoked  poten-
tials.%ubsequently,  attentionwasdirectedtotheproblemof
localization of multiple sources in the frequency domain,
enablinganalysisofthegeneratorsofEEGrhy?hm.”

Whiletheliteratureaheadycontainsanumbrofdemon-

strationsofclinicalapplication  of such methodsforthe local-
ization of epileptiiorm activity: cerebrovascular  accidents
andtumors,“anissueofmajorclinical  relevanceistheques
tion whether such methods are necessarily restricted to
sourcesinthec&c&raymattarrsla0velynearthesurfaceof
the brain, or whether meaningful results can be obtained in
deep brain structures such as the thalamus.  This paper
reports successful localization of a deep white matter lym-
phomainasinglepatient,withconfiurnation  byMRlstudies.
CASEHISTORY

The patientwasa66.year-oldfamalewhoprssentedfor
electrophysiologicalexaminationtotheNeurometricEvalu-
ation  Sarvics (NES).  Department of Psychiatry, New York
University School  of Medicine, two and a half weeks after
beinginamotorvehideaccident.Thepatient  hadnoracallof
thespacificsoftheaccident, butrepwtedtohavsbeenmild-
ly bruised. There was no report of loss of consciousness.
Subsequenttotheaccident,  thepatientcomplainedofaper-
sistent headache, confusion, and memory problems. No
abnormalities were found on conventional neirrological
examination, however, the patient was referred for an MRI
evaluationandaquantitativeEEGevaluation.

METHODS
EEGAcquisitionand  Analysis

Twentyminutesofeyesclosed,  resting EEGwereracord-
edfrom 19ekctrodespastedonthsscalpat  positionscorrs-
sponding to the International 10/20  Electrode Placement
System .‘Oln  addition, EOG electrodes were placed diago-
nallyaboveandbelowtheorbiloftheeye,fordetectionofeye
movementarittact,  agroundelsctrodeplac?duponthecheek
andanEKGleadonthethorax.Therecordingwasmonopo-
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A Selected Wide Band B Very Narrow Band
Z - QEEG Features Z - Spectra

Figure IA & 18.
A) Topographic  QEEG Z maps of absolute  power (top  !ow),  relative power  (second row) and interhemlspheric  power symmetry (third
row].  These  maps represent  the dlffwnce  be~ee”  this pat~e,“i  and  the expected normal values for her age, expressed in standard devi-
ation  of the mmal group (not  show” in me figure). Color  coding IS proportional  to the Z-score. in, steps,correspo”ding  i0 those Show” 0”
the z scale, (range ~2).  The center of the scale is normal (black), with shades al red to yellow lndicailng  excess  and blue 10 green lndl-
catmg deficfl. [Anterior is up and left on the leH.1
6) The vev  ~~~~~~  Band Z Spectra for each of the 19 scalp locations. Each panel represents the Z-spectra for that region, wnh a hori
mdal  line  at 7. = 2.0 (P > o.05). Show” at ihe Fpl loc.90”  liw lefi square) with v are the lrequency  points  selecied  for ‘JARETA imag
‘ng from  these spectra.

lar,refere”tialtolinkedearlobes.Amplltlers  hadabandpass
from 0.5 to 70 Hz (3 dB points), with a 60 Hz notch filter. All
impedanceswerekepibelow5000ohms,CheCkedregul~rly
throughout the procedure. The ND converter sampled ai
200 Hz per channel, with 12.bit resolution. The data were
reducediolOOHzpriorioanalysis,  usingaresamplingalgo-
riihm which minimizes &sing. This data acquisition v&S
performedusingaCadwellSpectrum32.

Afier visual editing to remove artifacts, 46 artifact free
samplesweselected,  each2,5secondslang,forquaniita-
tive analysis. Significant test-retest reliability of samples of
thislength  has beenco”firmed.“Thesedaiawereihe”sub-
miiiedfor”eurometricQEEGa”alysis.’2Fast  FourierTrans-
forms (FFTs)  were performed on every segment in each
channel. Average values  across the 46 segmt?“tS were
obtai”edforalargenumberofquaniiiaiivespeciralfeaiureS,
including absolute and relai~ve  power in the delta (1.5-3.5
Hz), theia(3.5.7.5Hz),alpha(7.5-12.5Hz)a”d  beia(12.5-20
Hz), as well as the inter- and intra-hemispheric  coherence

and symmetry between regions for the same frequency
bands. DatawerelogtransformedforGaussianiiyandage-
regressed.1314  Standard or Z-scores were then computed
foreachofthesemeasures,usingthemeanvaluesandstan-
dard deviations of the normative distributions from the neu-
rometricdatabaseforeach.

RESULTS

WideBand  NeuromeiricFindings

There were highly significant abnormalities (P < 0.001)
seenintheQEEGanaiysis,including:  [l]excessesofabsoMe
powerindeliainleHfrontalregions,maximalaiF3;  [Z]exceSs-
esofabsoluteandrelativedeltaactivityoverfronialandcentral
regionsinboih hemispheres;[3]increasedmeanfrequencyin
delta in the left frontal and central regions; [4] slow Wave
asymmetries between frontal regions and between central
regions,withmorepoweroniheleftihaniherighthemisphere;
[5] gradient shifts in slow waves within the left hemisphere
betweenanteriorandposieriorregionswithmorepowerinthe
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B MRI Images

QEEG VARETA Images

).

A) QEEG VARETA 30 images at Iwo  different narrow-band frequencies. At each frequency the VARETA images of transaxial,  sagittal
and coronal  sections are shown at levels  shown in the schematic (third row). The top row is at 1.96 Hz and the second row IS at  4.68 Hz.
Color coding is in standard deviation unit.3 of the normals, not shown in this figure. wdh white representing the center of the scale.
shades ot  red 10 yellow showing increasing excess  and green showing increasing deficit. The Z scale range is ?1 .O for Ihe first raw of
imaaes  and ?3.0 for the second row.  These images follow radiologic convention, iateralily is reversed.
8) Selected slices from the MRI  evaluation of thk  patient.

6 4



anterior regions; [6] hypocoherence  in slow waves between
leftandrigMfrontalreg~ns,  betweencantralregicns,  between
posterior temporal regions and between parieial  regions.
Visual inspection of the EEG record revealed theta parox-
ysmsinleftdorsolateral  andmesialfrontalregions.

Topographic interpolated head maps of Z-scores for
selectedfeaturesshowingthemostprominentabnonalities
are displayed in Figure 1 A, including absolute power (top
row), relatiiepower(middlerow)  andinterhemisphericpower
symmetry (bonom row) for the delta and theta frequency
bands. These maps are color coded in standard deviations
unitsofthenorroativereferencegroup(not  shown inthefig-
we). Examinaiionofthesetopcgraphicmapsindicatessig-
nificant  departures from expected normativevalues.  Colors
attheetiremesindicateP<O.OOl.

The abnormal QEEG findings did not correspond to our
considerable experience with patients after mild head injury,
nordid  the muiiivariateprofileofabnormalltiesb.xrespond  to
thatdefined bystatisticaldesaiptorsofpost-mncussionsyn-
drwne~~mildheadin~,desaibedbyus’2~~hhers.’l
VeryNarrowBandFindings

meverynanowbandP/NB)powerZ-spechafromthe  19
leadswereexaminedandareillustratedin  Figure1 B.Theres-
oMionoftheseVNBspectrawas0.39Hzoverthefrequency
rangefrom0.39to19Hz.TheVNBfrequenciesatwhichthe
largest Z-scores were found (significant differences from
expected normal value for age) were ascertained to be at
approximately 1.96 Hz and 4.66 Hz. These two points are
markedwithavatfpl  in Figure1 B.Anasymmetryofsignifi-
cantdeltaexcesscan  beseen,with  higherZvaluesonanteri-
orregionsontheleflside.Thethetapeak,  whilelargestonthe
lettside,  spreadsacmssthemidlineintheF4andC4regions.
VariableResolution
ElectmmagneticTomcgraphyFiodings

ThetwomostabnomWrequendesfmmtheZVNBspec-
tra(describedabove)werel.96Hzand4.68Hz.  UsingVari-
able Resolution ElectromagneticTomography  (VARETA),
the sources of these abnormalities were sought. VARETA
identifies the most probable underlying sources ofthescalp
recordedEEG,estimatedbymeansofadiswetesplineEEG
inversesoMion,‘(Bosch-Bayardetal,thisvolume).Anatom-

-~ ~~~~ ical  constraints are incorporated by the use of the Montreal
Neiir~cgical  Institute (MNI) probabilistic brain atlas.‘6The
VARETAresultsaredepicted  in Figure2A.Thesourceofthe
deitaactivity  (toprow)  wasattributedtoarelatiielyfocaldeep
source, sMtedtotheleflside.Thethetasource(sewnd~ow)
waslessfocal,alsodeepandmaximalontheleft.

MRlFindings
The MRI indicated a large abnormal enhancing mass

lesionwithinthedeepwhilemaUeroftheleftfrontallotewith
evidenceofsubependymal  spread aboutthemarginsofthe
l&ventdcularsystemaswellastherightfrontal  horn. Signif-
icantsurroundingvasogenicedemawasalsoreporied.The
lesion was noted to have decreased signal on T2 weighted
imagingandincreasedsignalowJiisionweigMedimaging.
Thesefindingswerewnsideredto  beconsistentwiththatof
CNSlymphoma.Figure2BshowstheMRIlwelsmostclear-
ly showing thelesion.

Comparing the images shown in Figure 2A and 28, a
very high correspondence between the VARETA localize
tionofmaximalabnormaliiandtheMRIcanbeseen.

DISCUSSION
Thiscasedemonshatesthehighsensi~~~~~~e

localization of sources of QEEG  abnormalities lying in the
deepest brainregions.ThewnclusionshomMeseobserva-
tionsarecompatible withthosereached  byothars.“These
auihors  describedVARETAlacalization  ofcerebrovascular
IeSions  or tumors in many different brain structures. In the
gmupofpatien6whichtheydescribed,thecentersotmassof
the space occupying lesions, as ascertained by CT scans,
werewithin afewmillimeiersofthecentroidsofthesourcesof
excessive delta activity, and the centers of the edematous
surrounds of the lesions were close to the centroids  of the
thetaexcesses.

Wesuggestthatthedeitaexcessesaroundthetumor  in
thepresentcasearoseduetocompressionofneuraltissue
(at the level of the Malamus)  by the expanding tumor vol-
ume.  The source of the theta excess was more diffuse,
most probably reflecting the edema at the margins of the
tumor.The  correct location ofthesources  which served as
thegeneratorsofthesalientneurometricOEEGabnormal-
ities provides support for the belief that valid VARETA
images can be constructed for generators in deep brain
regions and are not a priori restricted to sources near the
surfaceofthecortex.

Thesefindingsdemonstratethepotential  clinicalutilityof
OEEG andVARETAanalysisforapreliminarykfenti6catjonof
such brain abnormalities. This has important implications
forclinicaluseduetotheavailabilityandcosteffectivenessof
EEGevaluationsascomparedwith  MRI  andothermoreinva-
siveimaging methods.

DEDICATION
ThispaperisdedicatsdtothememoryofRB.
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