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This paper extends previously developed 3D SPM for Electrophysiological Source Imaging (Bosch et al., 2001)
for neonate EEG. It builds on a prior paper by our group that established age dependent means and standard
deviations for the scalp EEG Broad Band Spectral Parameters of children in the first year of life. We now pre-
sent developmental equations for the narrow band log spectral power of EEG sources, obtained from a sam-
ple of 93 normal neonates from age 1 to 10 months in quiet sleep. The main finding from these regressions is
that EEG power from 0.78 to 7.5 Hz decreases with age and also for 45–50 Hz. By contrast, there is an increase
with age in the frequency band of 19–32 Hz localized to parietal, temporal and occipital areas. Deviations
from the norm were analyzed for normal neonates and 17 with brain damage. The diagnostic accuracy (mea-
sured by the area under the ROC curve) of EEG source SPM is 0.80, 0.69 for average reference scalp EEG SPM,
and 0.48 for Laplacian EEG SPM. This superior performance of 3D SPM over scalp qEEG suggests that it might
be a promising approach for the evaluation of brain damage in the first year of life.

© 2011 Elsevier Inc. All rights reserved.

Introduction

In this paper we present 3D source EEG Statistical Parametric
Mapping (SPM) and norms for quiet sleep in the first year of life.
This is an extension of an earlier paper (Bosch-Bayard et al., 2001)
which introduced norms for 3D EEG source imaging for ages 5–97.
In that paper we also described a type of Statistical Parametric Map
(SPM) obtained by applying the z transform (with respect to the
norm) to each source voxel. The use of this technique for imaging
the electrophysiological consequences of brain disorders was also
illustrated. At that time it was not possible to extend the norms to
earlier ages due to the lack of (scalp) EEG databases and probabilistic
brain atlases for that age range. The present paper remedies this situ-
ation using an appropriate data set and new methods.

In order to better explain our aims it is useful to summarize some
relevant work in quantitative EEG interpretation (a more extensive
review may be found in Hernandez-Gonzalez et al., 2011).

In spite of the electroencephalogram (EEG) being one of the most
noninvasive, inexpensive and useful technique for assessing brain
dysfunction it is still evaluated mainly by visual inspection (Scher,
2005; Schomer and Lopes da Silva, 2011). This is, unfortunately, a
highly specialized skill with relatively low inter-evaluator reliability.
This has spurred research since the 70's (Gevins and Remond, 1987)
to develop more objective quantitative EEG analysis (qEEG) methods
for use with both spontaneous EEG as well as Event Related Potentials
(ERPs). An essential first step of these methods is the extraction of de-
scriptive parameters (DP) that summarize clinically relevant features
of the EEG. An important set of these DPs has been the spectral energy
in either broad (John et al., 1977; Matousek and Petersén, 1973) or in
narrow (Szava et al., 1994; Valdes et al., 1992) frequency bands.

A convenient tool for assessing abnormality is the statistical com-
parison of the DPs of a particular subject with regard to a normative
data (John et al., 1977) especially by means of SPM (Galan et al.,
1994; Huizenga et al., 2007), thus allowing the classification of the
EEG of a given subject as belonging or not to the normal range taking
covariates such as age into account. This approach has proven to be
useful as a complement to visual inspection of the EEG in evaluating
neurological and psychiatric disorders (Cantor and Chabot, 2009;
Fernandez-Bouzas et al., 1995; Harmony et al., 1993). Double blinded
ROC analyses of diagnostic accuracy of scalp EEG SPM procedures are
described in Hernandez-Gonzalez et al. (2011). Obviously the perfor-
mance of this type of SPM is contingent on the existence of the
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appropriate EEG norms for different ages. It is therefore not surprising
that a number of groups have carried out normative studies (e.g.
Alvarez et al., 1987; Harmony et al., 1990; John et al., 1980, 1987;
Matousek and Petersén, 1973; Szava et al., 1994; Valdes et al., 1992).

In spite of these promising results, this type of SPM was initially
limited to DPs for topographic (scalp) EEG with a consequent poor
spatial resolution. The development of Electrophysiological source
Imaging (ESI) (reviewed in Michel et al., 2004) provided better 3D
spatial resolution originating a tomographic version of qEEG. For
more extensive reviews of this active area of research see Sekihara
and Nagarajan (2008); Michel et al. (2009) and Valdes-Sosa et al.
(2009). The natural extension of SPM from topographic to tomo-
graphic qEEG DPs was first described in Bosch-Bayard et al. (2001).
Interestingly, 3D EEG source SPM not only provided higher spatial
resolution but also greater diagnostic accuracy as measured with
ROC curves (Hernandez-Gonzalez et al., 2011). It should be stressed
that these results were obtained with a population based probabilistic
MRI brain atlas instead of each subject's individual MRI in order to
ensure wider clinical applicability.

As with the (scalp) EEG in older subjects, there is a long tradition
of the clinical use of visually inspected EEG for neonates (Amzica and
Lopes da Silva, 2011; Fenichel, 2007; Mizrahi et al., 2011; Riviello
et al., 2011). For the same reasons mentioned above there has also
been much work on trying to introduce topographic qEEG methods
for this type of subject, especially in the context of neonatal monitor-
ing (Hellström-Westas et al., 2008). An important part of this type
of work has been the construction of normative databases. An early
example is Hagne et al. (1973), followed by Joseph et al. (1976);
Korotchikova et al.(2009); Mandelbaum et al. (2000); Niemarkt
et al. (2010); Okumura et al. (2006); Paul et al. (2006); Victor et al.
(2005); West et al. (2006); Willekens et al. (1984). Also several full
age range normative databases (Gordon et al., 2005; Hunter et al.,
2005; Thatcher et al., 1987) have also included neonates.

It should be noted that many of the cited studies on resting state
EEG have been focused on stage 2 neonate of sleep (quiet sleep). This
is understandable for several practical reasons: 1) It is easier to collect
data without artifacts during sleep than during awaking in infants;
2) quiet sleep or sleep stage 2 is characterized by presenting sleep spin-
dles, vertex waves and K complex that allow easier recognition during
visual EEG inspection and edition when selecting data for qEEG proces-
sing, and 3)when infants fall asleep they transit directly to sleep stage 2
(Riviello et al., 2011). We also selected stage 2 as the focus of our study
in a previous study inwhichwe reported normative equations for broad
band frequency analysis of the EEG background activity in a group of
infants during the first year of life (Otero et al., 2011). Themain findings
were that delta and theta power decreases with age whereas alpha and
beta increased.

It should be clear by now that the remaining step in the qEEG analysis
of Stage 2 neonate sleep is to obtain tomographic norms for this type of
EEG background activity as an extension of Bosch-Bayard et al. (2001)
and to assess their usefulness in evaluating brain disorders in the first
year of life. This work is precisely what is described in this paper.

This paper is organized in the following manner. In the Materials
and methods section several specific data processing problems are
addressed. One major issue is the rapid variation of brain anatomy
for the first year of life which requires the use of age dependent
forward models for the EEG in order to obtain valid EEG source spec-
tra. The construction of probabilistic brain atlases for this age range
(Fonov et al., 2011) greatly facilitated obtaining age dependent in-
verse solutions and is here described. A short summary of tomo-
graphic qEEG is then given for reference purposes. Special attention
is given to the selection of the sample size in order for the norms
to be representative of the infant population. The Results and
discussion section then presents a quantitative description of the
maturation of current source density spectra of the background EEG
for quiet sleep at frequencies from 0.78 to 50 Hz in infants from 1 to

10 months of age. Data supporting the validity of the normative data-
base is also given. The diagnostic accuracy of the 3D SPM maps is
evaluated with a sample of newborns with brains disorders. Finally
conclusions are drawn.

Materials and methods

Participants

The sample consisted of 93 infants (51 male, 42 female) from 1 to
10 months of age from two states in the central region of Mexico with
a mean age of 5.16 months (±2.34). The age range was stratified to
guarantee larger sample at earlier ages when brain changes accelerate
(Table 1).

The inclusion criteria for normality were:

1. Normal delivery at term.
2. Weight at birth between 2500 g and 3900 g.
3. Apgar ≥8 at the first minute and ≥9 at the 5th minute after birth.
4. With no antecedents of pre or perinatal risk factors for brain

damage.
5. Normal neurological and pediatric examination results.
6. Physical and mental development within normal limits (Bayley

Scales of infant development) (Bayley, 1993).

EEG recordings

Twenty minutes of EEG recordings were in a dim lit and sound-
proofed room with infants remaining on the mother's lap. Electrodes
were placed according to the 10–20 International System: Fp1, Fp2,
F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz by
means of a polyester cap (ElectroCap, International Inc., Eaton,
Ohio), with linked ear lobes as a reference. Electrode impedances
were considered acceptable if less than 5000 Ω. Simultaneously EKG
and EMG were also recorded. Data was acquired using a digital electro-
encephalograph Medicid 4 System (Neuronic Mexicana, S.A., México)
with differential amplifiers and gain of 10,000. The band pass was 0.3–
100 Hz and 60 Hz notch, noise 2 microvolts RMS, and sample period of
5 ms.

Theobtained datawas edited offline. For analysis, 24–26 artifact-free
segments, each of 2.56 s, were visually selected, thus guaranteeing that
estimated cross-spectral matrices be positive definite, a necessary con-
dition for qEEG analysis. An experienced neurophysiologist selected
only windows in sleep stage 2 (Scher, 2005). Segments with artifacts
or transient activity, sleep spindles, vertex waves or K complexes were
discarded.

Transformation to the frequency domain

Following the methodology introduced in Bosch-Bayard et al.
(2001), VARETA in the frequency domain (fdVARETA), was used to
obtain an estimator of the EEG spectra at the sources of the brain elec-
trical activity from the EEG voltage recorded at the scalp leads.
VARETA is an Electrophysiological Source Imaging (ESI) method.
Like LORETA (Pascual-Marqui, 2002; Pascual-Marqui et al., 1994)

Table 1
Mean and standard deviation of the sample ages. The sample was stratified in three
groups of age to guarantee greater representation of lower ages in the sample, where
the EEG and the brain size are changing faster.

Age range Number of subjects Mean age (months) Std

≤4.2 months 42 2.99 0.53
>4.2 and ≤7.2 months 32 6.20 0.60
>7.2 months 19 8.90 0.51
Total 93 5.16 2.34
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VARETA is a Discrete Spline Distributed Solution (Riera et al., 1996).
However, while LORETA imposesmaximal spatial smoothness, VARETA
imposes different amounts of spatial smoothness for different types
of generators, the actual degree of smoothness in each voxel being
data driven. VARETA eliminates “ghost solutions” (artifactual inter-
ference patterns), which are often present in linear distributed in-
verse solutions (Lutkenhoner et al., 2000). Recent surveys of the
use of different types of ESI solutions in qEEG have recently been
published (Hernandez-Gonzalez et al., 2011; Valdes-Sosa et al.,
2009). Applications of VARETA and LORETA to the study of neurological
(Fernandez-Bouzas et al., 2001) and psychiatric (Fernandez et al., 2007;
Pascual-Marqui et al., 1999; Ricardo-Garcell et al., 2009) disorders, as
well as for psychophysiological studies (Lehmann et al., 2006) have
shown its validity for the study of these brain processes.

The Frequency domain version of VARETA (fdVARETA) is as
follows:

a) Selected EEG epochs were transformed to the Average Reference.
b) Re-referenced EEG data was transformed to the frequency domain

by means of the FFT and cross-segment averaging. Cross spectral
matrices were calculated for every 0.39 Hz from 0.78 to 50 Hz.
Spectral estimates were log-transformed in order to achieve
approximate Gaussian distribution.

c) A Global Scale Factor (GSF) (Hernandez et al., 1994) was obtained
from the spectral matrices and was applied to normalize the
power spectra. The GSF is specific for each individual and accounts
for the individual differences in power values due to skull thick-
ness, hair volume, electrode impedance and other factors of vari-
ance of the EEG amplitude, not related to the electrophysiology.

d) Cross-spectral matrices at each frequency were used to calculate
the source spectra for tomography (as described in the next
section).

Estimation of the EEG spectra at the sources

In the Bosch-Bayard et al. (2001) paper the head and brain model
necessary to solve the EEG forward problemwas based on theMontreal
Neurological Institute (MNI) brain template (Evans et al., 1993). As
pointed out by one of the reviewers this brain template is not adequate
for the first year of life. In order to obtain adequate EEG forward prob-
lem models, we used the age dependent brain templates created by
V. Fonov at the MNI (Fonov et al., 2011), publicly available at http://
www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj1.

Unfortunately, at present there is no parcellation of the infant
brain, however this is work in progress,1 and a more precise identi-
fication using IBASPM (Alemán-Gómez et al., 2006) will be possible
in the near future.

Four templates were used: 0–2; 2–5; 5–8 and 8–11 months of age.
Fig. 1 illustrates a representative T1 axial view for these four tem-
plates. In the first row, note the change in the intensity of the white
matter from one template to the next. In the first two templates,
the distribution of white matter intensity values overlaps with that
of gray matter, making automatic tissue segmentation difficult.
Therefore, segmentation of the gray matter for these templates was
obtained by a semiautomatic procedure. For this same reason, it was
not possible to calculate the forward model using realistic geometry
since models failed either with Finite or Boundary Element Methods.
Instead, using the aforementioned templates, an age dependent three
concentric spheres model was used. The spherical model has signifi-
cantly greater localization errors (3 cm on average) than more so-
phisticated model that warps the template to fiducial markers on
the subject's head (0.8 cm on average) as described in Darvas et al.

(2006). Nevertheless it was felt that it could provide a coarse localiza-
tion of EEG sources that could later be refined in subsequent studies.
For example the new methods described in Valdes-Hernandez et al.
(2009), such as the Average Lead Field, could decrease the localiza-
tion error even more but have yet to be adapted to the aforemen-
tioned difficulties in evaluating newborn MRIs.

The most important factors considered when creating the age de-
pendent spherical EEG forward model for neonates were:

1. Change of head size: Fonov's methodology co-registers all brain tem-
plates to the same size.We correct for this bymodeling the differences
between infants' head size by assuming percent of increments of 4%
from 0–2 to 2–5 months, 3% from 2–5 to 5–8 months and 2% from
5–8 to 8–11 months.

2. Changes in skull thickness and conductivity: When setting the
conductivity of the different compartments of the spherical
model in adults it has been common to use 1 for the brain tissue,
1/80 for the skull and 1 for the scalp (Homma et al., 1995; Rush
and Driscoll, 1968). Lai et al. (2005) have estimated a more realis-
tic conductivity value for the skull as 1/25 instead of 1/80.
Oostendorp et al. (2000) have even proposed a value of 1/15. We
are not aware of any study establishing the skull conductivity for
the first year of life, but it is well known that the skull conductivity
in infants is higher than in adults. Based on that evidence we as-
sumed the 1/25 value for the conductivity of the adult skull and
tentatively established the following rates for the infants' brain:
1:1/15:1 (for 0–2 months), 1:1/17:1 (for 2–5 months), 1:1/20:1
(for 5–8 months) and 1:1/23:1 (for 8–11 months).

3. Changes in the cortical graymattermask: A grid over the graymatter
was defined with a voxel size of 3×3×3 mm (see Fig. 1, second
row). According to the thickness of the graymatter of each template,
a different number of sourceswere obtained for each of them. For the
purpose of this paper, we selected the subset of sources that were
common to all templates. The total number of sources produced by
this procedure was 7368.

Thus using a spherical model that varied in size and conductivity
for each age as well as varying cortical grid, the Lead Field matrices
of the EEG forward problem were calculated for each template. The
main factors involved in this computation are shown in the third
row of Fig. 1, for a representative axial slice.

The resultant age dependent lead fields were used to estimate the
source spectra for the 93 infants in the normative database, analyzed
for each of the 127 frequencies, in steps of 0.39 Hz from 0.78 to 50 Hz.
In order to restrict the permitted gradients from voxel to voxel and
thereby specify the amount of smoothing, a “regularization parame-
ter” must be calculated (Pascual et al., 1994). The regularization pa-
rameter calculated from the raw EEG cross-spectra of the normative
subjects varied considerably. A major question was whether to calcu-
late individual regularization parameters. However, after transforma-
tion to the average reference and rescaling to standardize the
geometric power with the Global Scale Factor (Hernandez et al.,
1994), the log of the regularization parameter was well described
by a Gaussian distribution with mean 0.0222 and standard deviation
0.0061. In view of this small value for the standard deviation, the reg-
ularization parameter was fixed to the mean value. This accelerated
the calculations by an order of magnitude.

Regression equations

Polynomial regressions were fitted to the log of the EEG spectra at
all leads and sources. Thus age regression equations were calculated
for the full frequency range (from 0.78 Hz to 50 Hz with a frequency
resolution of 0.39 Hz) and age range (from 1 to 10 months), for the
normative database.

Infant EEGs have a large inter-individual variability due to factors
such as brain maturation, changes in the scalp conductivity and1 A. Evans & L. Collins, Montreal Neurological Institute, personal communication.
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others. This often caused outliers in the sample which are not artifac-
tual recordings or abnormal individuals. To cope with this type of
data, the alternative is to use methods that are robust to the presence
of outliers. In this regard, the ordinary least squares regression is one
of the worst choices.

To limit the effect of outliers, in the present paper, the regression
equations were calculated by a robust regression (Huber, 1964,
1981; Huber and Ronchetti, 2009; Wager et al., 2005) using iterative-
ly reweighted least-squares, with the bi-square weighting function. In
each step new weights were computed for each point to give lower
weight to points that were far from their predicted values, and the
fit was repeated using these weights. The process continued until it
converged. Tests for the degree of the polynomial fit, when corrected
for multiple tests using the FDR criterion (see below) showed that lin-
ear regressions adequately explained the dataset.

While we have only described the regression equations for the
values of log spectra, a matching set of developmental equations
was obtained for the standard deviation around the mean. Values
for age dependent mean and standard deviations are both necessary
for Statistical Parametric Mapping as will be made clear in the next
section.

SPM

The coefficients of the regression equations can be used, combined
with the age and log-spectra of a new individual, to calculate the Z prob-
abilistic transformation for every source (lead) at each frequency:

Z ¼ x−μffiffiffiffi
σ

p ;

where x is the value of the subject for the variable, μ and σ are respec-
tively the mean and the variance obtained from the regression equa-
tions for the variable in consideration. As a further refinement we
used the modified z score proposed by Crawford and Howell (1998)
which distributes as a t statistic:

ZC ¼ x−μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ� Nþ1

N

� �q :

At the leads, these values can be viewed as the topographic Z-maps.
At the sources, they can be viewed as a statistical 3D Z image (Bosch-
Bayard et al., 2001), with each source color-coded proportional to its

0-2 months 2-5 months 5-8 months 8-11 months

Radius-Brain= 64.5 Radius-Brain= 67.4 Radius-Brain= 70 Radius-Brain= 72
SkullConduct =0.067 SkullConduct =0.059 SkullConduct =0.05 SkullConduct =0.044

Fig. 1.Neonates Brain Templates. Representative slices of the MNI age dependent brain MRI templates for infants. A) The upper row shows gray/white matter development with age
in T1 images (Fonov templates). Note that the white-gray matter intensities in the 0–2 months' template are not clearly delimited. B) The middle row shows the gray matter seg-
mentation defined for each template together with the grid where EEG sources are defined. C) The last row shows the spherical model adjusted for each template. The radiuses in
the figure correspond to the sphere fitted to the brain cortex and it increases with age. The conductivities are the skull conductivity assumed for each template, which is decreasing
with age .These basic parameters define the age dependent forward models used in source imaging.
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Z score. These maps and images quantify the significance of the devi-
ation of a given lead or source from the corresponding age matched
normative group. Extreme deviations from the normative values
will show up as “hot spots” as has become standard in SPM.

An overall summary statistic of deviation from the norm may be
obtained using multivariate methods (Huizenga et al., 2007). A sim-
pler approach, more suited to tomographic images, is to simply count
the number of voxels that exceed the FDR threshold (Benjamini and
Hochberg, 1995). This global measure of abnormality shall be called
the global Z index.

Study sampling design

The sampling design to construct normative databases must
ensure a large enough sample to provide adequate statistical power
for the hypothesis to be tested. In our case, compare a single subject
with the normative database.

For SPM the situation is complicated by simultaneously testing a
large number of highly correlated variables. Thus power calculations
must be able to cope with a high number of multiple comparisons.
At least two methods for power calculations in neuroimaging have
been developed: 1) Hayasaka et al. (2007) developed a methodology
based on non-central random field theory; and 2) Suckling et al.
(2010) have proposed another alternative which is able to estimate
the power quite accurately using the False Discovery Rate (FDR). In
the present work, we focus on the latter (FDR) alternative.

Unlike traditional analysis that estimates the power (1-β) (type-II
error rate) for a fixed significance level (α) (type-I error rate), the
expected value for the FDR (q) statistic is used as a control parameter,
in the following equation: (Eq. 6 in Suckling et al. (2010))

q ¼ α
αþ ∅

1−∅ϕ� ZC
α−δ=SE

� � ;

where q is the expected value of the FDR allowed for multiple testing
(q=0.1 in the present work); α is the traditional significance level
(α=0.05 in the present work); δ is the effect size that centers the
distribution of the alternative hypotheses; SE is the standard devia-
tion of the normative database; θ is the proportion of tests that be-
longs to the alternative distribution (θ=0.1 in the present work)
and ϕ* is the survival function of the normal distribution; ZαC is the
critical value for p of the Crawford corrected Z. The appropriate sam-
ple size of the normative database (N), which is implicit in the Zα cal-
culation, was evaluated using the above specified parameters. The
resulting calculations are shown in Fig. 2. The left panel shows that
the smallest effect δ detectable asymptotes to about 3.2 for sample
sizes larger than 50. Using a δ of 3.4 the right panel shows that for
an FDR of 0.1 the power achieved is 0.86 for the sample size of the
normative database presented in this paper.

ROC analysis of the global z index

To test sensitivity and specificity of the normative database (with
the global z index as a classification score) a cross validated receiver
operator characteristic (ROC) technique was used. A sample of 17
neonates (9 from the Institute of Neurobiology in Queretaro, Mexico
and 8 from the “Juan Manuel Marquez” Pediatric Hospital in Havana,
Cuba) with different history of brain damage (hypoxia, convulsive
crisis, brain infarct, myoclonic epilepsy and others) was taken as the
pathological group. Seventeen randomly chosen subjects were then
removed from the normative sample and the age dependent topo-
graphic and tomographic regression equations were obtained with
the remaining 76 normal subjects as a training set. This assured an
unbiased evaluation of the normal subjects.

A summarizing ROC curve for the global z index was based on the
17 patients and a 17 normal test set. This procedure was repeated 10

times, randomly selecting the 17 subjects of the normal test sample in
each trial. The ten ROC curves were then averaged. As a general index
for diagnostic accuracy we retained the area under the ROC curve
(AUC) at a specificity of 0.15. This is a general measure of diagnostic
accuracy that is independent of the specific threshold for classifica-
tion (Obuchowski, 2006).

Results and discussion

Topographic regression equations of EEG spectra with age

Our prior paper (Otero et al., 2011) described regression equations
for topographic Broad Band Spectral Parameters (BBSP), for three EEG
montages: linked ears, laplacian and average reference. In this paper
we present the more detailed Narrow Band Spectral Parameter equa-
tions (Szava et al., 1994). Additionally we extend the frequency range
studied to 50 Hz, up from the 19 Hz of our prior work.

In general agreement with the above cited paper, we found that
the Log Spectral Power in all EEG neonates pooled over age is con-
centrated in the slow frequency range (from 0.78 to 7.5 Hz), showing
a decrease with frequency with an approximate 1/f shape, as can
be seen in Fig. 3. Fig. 4 illustrates the topographic distribution of
EEG power (pooled over age) for selected bands. There is a clear
anterior–posterior increase with a superimposed area of power in-
crease at Cz from 0.78 to 18 Hz.

A different way to analyze the topographic regression develop-
mental equations is to look at the rates of change of spectral power.
For this purpose, t-tests were used to assess the significance of the
robust regression coefficients at all leads and frequencies. These
tests were thresholded with a correction for multiple comparisons
setting the global False Discovery Rate at q=0.05 (Benjamini and
Hochberg, 1995). We thus can obtain a topographic t-map for the
rate of change of log spectral power with age. Stacking the maps
for all frequencies yields a 3D image that summarizes the significant
changes of EEG power with age (Fig. 5).

Several features are evident from Fig. 5. In the first place, there is
striking left/right symmetry of regression slopes. Moreover, power
changes with age are concentrated to only certain frequency
bands—there is no change for 12.5–19 Hz (low-Beta band) and
32–45 Hz (middle-Gamma). There is a marked decrease for slower
frequencies, widespread over all leads for delta with a concentration
in frontal leads for theta and alpha. This decrease is mirrored in high
Gamma (45–50 Hz) with concentration in frontal regions that spread
out to the all leadswith higher frequencies. In contrast, power increased
sharply with age from 19 to 32 Hz, except in frontal leads, changes
being more evident at central, parietal and temporal leads than at
occipital ones.

Summarizing these scalp EEG findings, they provide greater spa-
tial and frequency detail than those previously reported by our group

Fig. 2. Power calculations for normative databases. Power for normative studies depen-
dence on sample size. Parameters that remain fixed are displayed in the corresponding
title. Left panel: Minimum effect size of the alternative distribution vs. the normative
database sample size for a fixed power of (1-β). Right Panel: Power vs. sample size of
the normative database. All curves have the expected FDR (E(Fdr) in the figure title)
controlled at q=0.1.
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—in effect dissecting the topographic features of frequency specific
changes that were previously lumped together in Otero et al.
(2011). In particular in the theta band it is evident that age depen-
dent changes for 3.5 Hz are widespread, whereas those at 7.5 are
quite localized. While we have reported only results for the average
reference EEG montage, similar regression equations were obtained
for other montages including the laplacian.

How are the developmental changes in EEG topographic power
reflected at the sources? This will be dealt with in the next section.

Tomographic regression equations of EEG spectra with age

The behavior of the mean Log spectra at the sources was similar to
the one observed for power spectra at the leads. Fig. 6 illustrates this
characteristic at the sources; note the correspondence with Fig. 5. In
Fig. 6, each cut in the YZ plane is a sagittal view of the maximum in-
tensity plot (MIP) of the t-test (threshold with the global FDR cor-
rected threshold) at all sources, created for a specific frequency. The
lower panel is a 2D (ZX) projection of the same image to facilitate vi-
sual inspection of the frequencies where significant age related
changes took place.

By frequency bands, the observed changes are very similar to the
results at the leads, except in the Alpha band, where no source
exceeded the threshold.

Condensing such amount of information in just one figure is illus-
trative but some details are missed. For example, in the Delta band,
the sources near the vertex were not significant, same as at the
leads, where Cz was not significant. In the temporal poles greater
values for the slow frequencies were observed up to 6 months of
age compared to occipital and parietal cortices. These results are in-
teresting since in our knowledge they have not been previously
reported.

The greater amplitude of the slow frequencies in the temporal
lobes of infants up to 6 months is a finding difficult to explain. As
in the log power spectra the general tendency of the log current
spectra in these frequencies is to decrease with age. These results,
as the results of the log power spectra are in agreement with previ-
ous reports in the literature by visual inspection of the EEG (Otero,
2001) and by quantitative analysis (Hagne et al., 1973; Otero et al.,
2011).

The Log Spectra at the sources in frequencies between 7.5 and
19 Hz showed higher values in the low alpha band in the occipital re-
gions and lower values were in orbito-frontal regions. In the tempo-
ral regions a progressive increase in the Log spectra values with
increasing age was observed. In dorsal frontal and parietal regions
no major changes with age were apparent. The Log Spectra at the
sources in high-Beta and low-Gamma frequencies had an important
increase with age in all explored regions between 19 and 32 Hz ap-
proximately. Our findings in relation to the Log Spectra at the sources

Fig. 3. Age pooledmean log spectrum. Themean Log Spectrum (Y-axis) pooling over the age range, for each lead from 0.78 to 50 Hz (X-axis). Slow activity (078 to 7.5 Hz) predominates.
Note there is an anterior/posterior gradient with increase in the posterior leads (the Log spectra in the posterior leads reach the maximum values).
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in the studied frequencies during the first year of age have important
developmental implications. For the first time it has been evident
across this range of age the differences in EEG maturation between
different cortical regions in a frequency range from 0.78 to 50 Hz. It

has been also shown the development of oscillations at higher fre-
quencies as high-Beta and low-Gamma that play an important role
in cognition.

0.78-7.5Hz 7.5-18Hz 18-32Hz 32-50Hz

Fig. 4. Topographic distribution of age pooled mean log spectrum at selected frequencies. Scalp topographic maps showing the anterior/posterior gradient of the Log Spectra mean
for all ages at selected frequency ranges. From left to right: 0.78–7.5 Hz, 7.5–18 Hz, 18–32 Hz and 32–50 Hz. Note that the gradient peripheral to Cz does not appear at frequencies
higher than 18 Hz. There is an increment of the power log spectra at the parietal leads from 18 to 32 Hz.

Fig. 5. Regression slopes for topographic EEG log spectra. Upper panel: 3D map showing
the significant t-test results for regression slopes of all leads and frequencies from 0.78
to 50 Hz (X-axis). Each cut in the ZY plane is a topographic map (seen from above) of all
t tests for a specific frequency. Only t-values exceeding the global FDR corrected threshold
(2.46) are shown. The lower panel is a 2D view of the above image, showing the specific
frequencies where the regressions were most significant. Blue codes for a decrease with
age, while red color an increase.

Fig. 6. Regression slopes for tomographic sources log spectra. Upper panel: 3D map
showing the significant t-test results for the regression of all sources and frequencies
from 0.78 to 50 Hz (X-axis). A sagittal maximum intensity (MIP) plot is shown in
each ZX cut at a specific frequency. Only t-values exceeding the global FDR corrected
threshold (3.49) are shown. The lower panel is a 2D view of the above image, showing
the specific frequencies where the regressions were significant. Blue codes a decrease
with age, while red codes an increase. Note that these results are in agreement with
the findings at the leads (Fig. 5).
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Implications of topographic and tomographic regression equations

In spite of recent progress in elucidating the neural origins of dif-
ferent EEG rhythms (Amzica and Lopes da Silva, 2011), a direct
connection of this line of work to changes in the different EEG oscilla-
tions in the human newborn and infants is not yet completely clear
(Mizrahi et al., 2011; Riviello et al., 2011). Nevertheless there is abun-
dant evidence that during the first year of life remodeling or resculpting
of interconnected neural networks is very intense, since dendritic arbor-
ization, synaptogenesis, myelinization, neurotransmitter development,
apoptosis and many other plastic changes evolve in an intensive and
extensive manner. As argued in Scher (2008) and Ednick et al. (2009)
the ontogeny of sleep (and EEG) in neonate and infants will ulti-
mately be explained by these changes. Recent Neuroimaging studies
may help test these hypotheses. For example the linear regressions
described here are echoed in those published by Kuklisova-
Murgasova et al. (2011) for gray and white matter. Even moreover
detail is provided by Oishi et al. (2011) with a multi-contrast neona-
tal brain atlases showing that white matter in neonates has a de-
crease in Mean Diffusivity and an increase in Fractional Anisotropy
for DWI with age. These changes indicate a posterior- to-anterior and
a central-to-peripheral maturation of white matter consistent with
the spectral changes shown in Fig. 3. Future work outside of the
scope of this paper will relate these MRI morphometric measures
with EEG changes along the lines initiated in Valdes-Hernandez
et al. (2010).

Validation of the normative database

Specificity
Thatcher et al. (2003, 2005) have proposed standards to assess the

specificity of normative databases using the empirical probability dis-
tribution of Z scores for all subjects.2 These scores are computed by
leaving each subject out and calculating the corrected z value with
the respective mean and standard deviation (SD) provided by the re-
gression equations calculated with the rest of the subjects. Z scores
are pooled for all voxels and frequencies. Fig. 7 shows the histogram

of the distribution of the Z scores for all variables and frequencies.
The black line is the approximate Gaussian distribution.

In our study we obtained 2.53% at +2SD; 2.12% at –2SD, 0.37%
at +3SD and 0.20% at –3SD, demonstrating that the specificity of
the z values for our normative database is in the expected range of
values with those described in Thatcher et al., 2003.

Diagnostic accuracy
Example of topographic (scalp) z maps for brain damaged infants

had already been shown in Otero et al. (2011). We now present z im-
ages for normal and brain damaged infants in Figs. 8 and 9 which
show substantial differences for both groups. Fig. 8 allows a pano-
ramic view of all pathological and all normal subjects in the database.
It can be seen that, while not perfect, the procedure does seem to
have adequate diagnostic accuracy. Fig. 9 is a detailed rendering of
z images for some of the brain damaged infants as well as for a
normal subject. For one pathological case the MRI is shown with a
striking correspondence of EEG source abnormalities with the MRI
findings.

These qualitative impressions were then substantiated by calculat-
ing the ROC curve for the global z index as described in the Materials
and methods. The highest area under the ROC curve (AUC) was that
for the tomographic procedure (0.80). This is in agreement with previ-
ous results of our group reviewed in Hernandez-Gonzalez et al. (2011)
that suggested that Electrophysiological Source Imaging may sharpen
classification results due to the spatial deconvolution it entails. The
AUC for scalp measures was much lower, 0.69 for average reference
and 0.48 for the laplacian montages respectively. The disappointing
results with the laplacian procedure came as a surprise in view of
the expected higher spatial localization that was obtained in initial
publications by our group (Pascual-Marqui et al., 1988). However
they do seem to be typical of this type of data as suggested qualita-
tively in Otero et al. (2011) and quantitatively in Thatcher et al.
(2003). We speculate that the greater spatial accuracy of the lapla-
cianmay be offset by the increase of signal to noise whichmay be im-
portant in infant recording.

The sensitivity and specificity achieved with 3D EEG SPM, while
statistically significant certainly needs improvement. One avenue is
to construct discriminant equations in which take into account not
only the probability distribution of the normal sample but also that
of infants with brain dysfunction. Such methods are available from
the Brain Computer Interface literature (Dyrholm and Parra, 2007)

2 Note that in Thatcher et al. (2003) the definition of sensitivity and specificity is not
the usual one in Medical Statistics—we adhere to the latter.

Fig. 7. Histogram of the cross validated Z scores for all variables and frequencies. The black line is the fitted Gaussian distribution.
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and from Multivoxel Pattern Analysis (Klemen and Chambers, 2012)
and will be evaluated more extensively in a future paper.

Conclusions

This paper presents developmental equations for the age dependent
means and standard deviations of narrow band EEG log spectral power
for a normative sample of 93 neonates from age 1 to 10 months in
stage 2 of sleep. This normative data is obtained for the frequency
band 0.78–50 Hz for scalp data (thus extending a prior study) and for
current source densities estimated with Electrical Source Imaging.
The main finding from these regressions is that slow wave activity
decreases with age, at lower frequencies for the whole brain, at
slightly higher frequencies only in the frontal areas. This same situa-
tion is valid for 45–50 Hz, a frequency range not much studied till

now. By contrast there is an increase with age in the frequency
band of 19–32 Hz localized in parietal, temporal and occipital areas.
The diagnostic usefulness of these regression equations is validated
by ROC analysis that includes 17 neonates with brain damage. The
area under the ROC curve for EEG source SPM is 0.80, for average ref-
erence scalp EEG SPM is 0.69 and for laplacian EEG SPM is 0.48—this
latter technique performing essentially at chance levels. Thus, 3D
Statistical Parametric Mapping of quiet sleep EEG is a promising
approach for the evaluation of brain damage in the first year of life.
However, the calculation of EEG normative data is particularly inter-
esting since these norms may serve as early markers of cognitive and
behavioral development. Deviations from normal EEG ontogenesis
may help to discriminate high-risk infants (i.e. preterm newborns
with lowweight, term and preterm newborns with asphyxia, infants
with infections) and to follow up their neurodevelopment.

Fig. 8.MIP of Z-scores in the delta band for both normal and pathological neonates.Maximum Intensity Projection (MIP), top view, of the Z-scores for the 17 pathological neonates (top of the
figure, demarked by black lines) and the 93 normal subjects at the frequency (in theDelta band)most deviant from thenorm. Z-scores for normal subjectswere obtained by recalculating the
norms each time using the leave one out procedure. All Z-scoreswere thresholded to a common value of±2.4 SD. Two of the pathological cases only showed Z-scores above the threshold in
theBeta band between 15 and 24 Hz andappear inwhite in thisfigure. The third onewas included as pathological due to clinical evidence of brain damage, butwith visual EEG inside normal
range. This case did not show Z-scores beyond the limits in any frequency of the whole frequency range.
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