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For the purpose of statistical characterization of the spatio-temporal correlation structure
of brain functioning from high-dimensional fMRI time series, we introduce an innovation
approach. This is based on whitening the data by the Nearest-Neighbors AutoRegressive
model with external inputs (NN-ARx). Correlations between the resulting innovations
are an extension of the usual correlations, in which mean-correction is carried out by
the dynamic NN-ARx model instead of the static, standard linear model for fMRI time
series. Measures of dependencies between regions are defined by summarizing correlations
among innovations at several time lags over pairs of voxels. Such summarization does not
involve averaging the data over each region, which prevents loss of information in case of
non-homogeneous regions. Statistical tests based on these measures are elaborated, which
allow for assessing the correlation structure in search of connectivity. Results of application
of the NN-ARx approach to fMRI data recorded in visual stimuli experiments are shown.
Finally, a number of issues related with its potential and limitations are commented.
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1. Introduction

The method of functional Magnetic Resonance Imaging (fMRI) using Blood Oxygen
Level-Dependent (BOLD) contrast has high resolution to localize hemodynamic acti-
vation in space. On this ground, a variety of statistical methods have been proposed
to detect activation from fMRI data, which have been widely applied in experimen-
tal studies where the subjects are involved in the performance of sensory, motor or
cognitive tasks [10–12].

In recent years, there have been increasing interest in using fMRI time series as
a source of relevant information for understanding the interactions between brain
regions under task-related activation. However, a number of problems arose when
attempting to accomplish this task. Some of the most critical ones are the following:

(a) The dimensionality problem that comes from the high spatial resolution of fMRI
images. As a solution, special reference voxels or regions of interest are chosen,
and the data within each region is summarized by its average or first principal
component [27].

(b) The aliasing problem has not been paid much attention to in the past, although
it may easily cause confusion in the study of brain connectivity. The concept
of brain connectivity refers to dynamic activity at the level of neural events,
while fMRI data represents slowly changing hemodynamic BOLD signals mea-
sured with a sampling time of a few seconds, which only indirectly reflects the
underlying fast neural dynamics on the millisecond scale. This may be properly
overcome only by introducing special assumptions about the dynamics [42].

(c) The elucidation of brain connectivity from fMRI time series also faces the
fundamental problem of the limits involved in inferring causal relations from
empirical data. In general, correlation patterns of the output of a system can-
not be conclusively interpreted in terms of causal relations between its compo-
nents without specific information coming from previous theoretical knowledge
(appropriate model assumptions) or designed experimental manipulations (par-
ticularly, through the input to the system). This methodological issue has been
well-known for many years in some applied fields such as statistical experi-
mental design and system identification, and it has been recently made con-
ceptually clearer in terms of causal graphs [36]. Its relevance for the analysis
of brain connectivity has begun to be explicitly dealt with by several authors.
In particular, the acknowledged terminologies of functional and effective con-
nectivity [9, 21] have contributed to draw attention to the distinction between
observed and causal dependencies in connectivity analysis. Difficulties related
to observationally equivalent causal models and spurious causality due to unob-
served variables have been pointed [7]. The importance of elaborating models
that incorporate specific knowledge about causal relations at the neural level
have also been emphasized [14,42,47]. Furthermore, new possibilities in experi-
mental manipulation of the functioning brain to look for causal interactions are
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being initiated, e.g., the “perturb-and-measure” approach based on combining
transcranial magnetic stimulation with fMRI [35].

Several approaches have been proposed for studying brain connectivity from
fMRI time series. They have different advantages and limitations in dealing with
the varied problems involved in this task, as those just described. Standard con-
nectivity analysis by means of correlations [26,44,50] has shortcomings such that it
is not dynamic, thus throwing away temporal information. In particular, only zero
lag, instantaneous correlations are usually taken into consideration. Furthermore,
in order to compute the correlations, mean-correction of the data (which involves
the estimation of the hemodynamic response function) is carried out on the basis of
the standard linear model for fMRI time series [12]. This model is considered to be
static as its stochastic input (i.e., the error or perturbation term of the model) at a
given instant does not affect the future of its output signal. Another non-dynamical
approach is structural equation modeling [3, 30]. Its peculiar advantage is allowing
for the representation of causal influences between brain regions, but their graph
must be pre-specified by the analyst. Thus, it is not very useful when such knowl-
edge is unavailable. In contrast, vector autoregressive modeling [5,18,20,27,49,52] is
an approach that does not assume previous knowledge of the connectivity graph, and
explicitly makes use of temporal information. In this framework, the assessment of
causal influences is carried out in terms of (temporal) predictability; namely, directed
measures of influence related to Granger causality or Akaike’s relative power contri-
bution. However, until now this approach is not fully dynamic in respect to correction
by the mean function of the data. Indeed, the latter is estimated and removed accord-
ing to the static, standard linear model for fMRI data, as part of a preprocessing step
disentangled from the autoregressive model. Finally, another recent approach that
has been suggested is dynamic causal modeling [14,47]. This is based on models com-
posed of (i) a dynamic model for the activities of a set of neural masses in response
to controlled external stimulation (with structural model parameters coding causal
interactions between the neural masses) and (ii) a dynamic model for the biophysical
translation of the neural activities into recorded signals. Regrettably, specification
and implementation of these models require intensive computation and substantial
neurophysiologic knowledge (which is specific for each task-related experiment and
may be unavailable). These challenges must be faced to make it feasible for use with
large systems of neural masses and diverse experimental settings.

In the present paper, we confine ourselves to the problem of statistical charac-
terization of the spatio-temporal correlation structure of fMRI data in the original
full-dimensional time series. We introduce a new practical procedure to be employed
in studies of brain connectivity that is based on Nearest-Neighbors AutoRegressive
modeling with external input, which subsequently will be referred to as NN-ARx
approach.

The NN-ARx model was introduced in [41] as a discrete-time linear approxima-
tion to a stochastic extension [40] of the deterministic continuous-time hemodynamic



December 14, 2010 16:0 WSPC/S0219-6352 179-JIN 00250

384 Bosch-Bayard et al.

model described in [13]. It is therefore a dynamic generalization of the standard lin-
ear model for fMRI time series [12]. It includes not only additive terms correspond-
ing to a deterministic trend, a linear filter of the stimulus signal and a perturbation
noise (likewise the standard linear model) but further autoregressive terms that
reflect contributions at each voxel from its own past and the past of its neighboring
voxels.

The coefficients of the NN-ARx model explain local spatio-temporal dependen-
cies in the data. They allow us to transform the observed time series into inno-
vations (or residuals) that have zero mean and a correlation structure in which
dependencies between neighboring voxels are removed while dependencies between
non-neighboring voxels are retained. This is the starting point of the NN-ARx
approach that we introduce in the present paper. On this basis, we make use of
the correlations between pairs of innovations at voxels in different brain regions to
construct measures that summarize interregional influences. Such a summarization
is carried out without taking the average of the data within each region, thus pre-
venting loss of information in non-homogeneous regions. Both instantaneous and
lagged correlations are taken into consideration in order to retain dynamic informa-
tion on the direction of connections. Furthermore, we introduce statistical tests to
detect significant interregional connections through these measures by resampling
methods.

As this new approach computes correlations on the basis of mean-correction of
the fMRI signals by a dynamic model that comprises the static, usual linear model as
a particular instance, it may be deemed as a dynamic generalization of the standard
connectivity analysis by means of correlations [26, 44]. Also likewise the conven-
tional correlation analysis, detected connections should be primarily thought of as
functional connections (i.e., observed dependencies), and possible interpretations
of them as also effective (i.e., causal) connections should remain tentative though
plausible while waiting for further experimental corroboration and neurophysiologic
understanding. Note that the stipulated approach has several distinctive features
that include mean-correction by the dynamic NN-ARx model and computation of
measures of interregional influences that does not involve averaging the data within
regions.

The introduced method was applied to two data sets: a group of subjects per-
forming a visual task, and a group of blind subjects during a tactile discrimination
task. The results obtained show the feasibility and flexibility of the method, and
are consistent with previous reports describing linking pathways involved in these
tasks.

The organization of the paper is as follows: The NN-ARx approach is described
in Sec. 2. Section 3 presents and discusses results of the application of the NN-ARx
approach to the data recorded from the subjects under two task-related experimental
settings. Finally, in Sec. 4 various issues related to the potential and limitations of
the introduced approach, as well as possible extensions, are explored.
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2. Method

2.1. NN-ARx modeling and estimation

fMRI data consists of high dimensional spatio-temporal measurements of the hemo-
dynamic activity in the brain. The data may be represented by a vector time series yt

whose components yv
t are the magnitudes of the recorded signals at time t = 1, . . . , T

in the voxel with spatial location v = (i, j, k).
The NN-ARx model for fMRI data [41] has the general form

yv
t = µv

t +
p∑

k=1

φv
k yv

t−k + Xvξv
t−∆ +

r∑
k=0

θv
k st−k−d + εv

t , (1)

which is composed of the following terms:

(a) µv
t =

∑δ
k=0 γv

ktk is a polynomial trend term intended to gather the trend or
potential drift of the recorded signal due to factors unrelated to brain activity
(such as instability in the scanner, motion artifacts, slow variations of blood
pressure, etc.). Indeed, Gössl et al. [19] have shown that polynomial models
are a simple approach that achieves results comparable with more sophisticated
ones for removing such nuisance sources of variation in the data;

(b)
∑p

k=1 φv
ky

v
t−k is the autoregressive term that describes the hemodynamics

linear model at the voxel v as function of its own past activity;
(c) Xvξv

t−∆ is a linear neighborhood term that represents the contribution of past
activities of the neighboring voxels to the activity at voxel v at time t (i.e., yv

t );
more precisely, ξv

t−∆ = {yv′
t−∆, v′ ∈ Ωv} is the column vector of past activities

of voxels in the region Ωv that contains the nearest neighbors of voxel v, and
Xv = {χv′

v , v′ ∈ Ωv} is a row vector of (time-independent) coefficients that
summarizes the anisotropic properties of the local vascular correlations;

(d)
∑r

k=0 θv
kst−k−d is the stimulus term consisting of a stimulus sequence weighted

by neuronal activity effectiveness; and
(e) εv

t is a Gaussian perturbation term with zero mean and variance σ2
v , which

represents the stochastic input due to fluctuations of the neural activity around
its mean value at each instant.

Here, d and ∆ are time lags that reflect delays of the effects of the stimu-
lus and of the neighboring voxels, respectively. The parameters of the model are
{φv

k,Xv, θv
h, σv , γ

v
l } where k = 1, 2, . . . , p;h = 1, 2, . . . , r and l = 1, 2, . . . , δ. The

model selection consists of determining both the model orders p, r, δ and the delays
d,∆. These magnitudes, related to the complexity of the dynamics, are called global
parameters and are found in the vector Λ = (p, r, δ, d,∆). Details on the determina-
tion of these parameters are given in Sec. 2.5 below.

From a more empirical modeling view, NN-ARx may also be motivated as a
simple linear model accounting for the local spatial and temporal dependencies of
the data, thus allowing the transformation of the data into innovations. Given the
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past values yt−1, yt−2, . . . of the recorded signals at all voxels and the past values
St−d, St−d−1, . . . of the stimulus signal, the innovation or prediction error at a voxel
v is defined by

ζv
t = yv

t − E(yv
t−1/yt−1, yt−2, . . . , St−d, St−d−1,...),

where E(./.) denotes conditional expectation. By construction, ζv
t is a white (i.e.,

uncorrelated) temporal sequence that is also uncorrelated with the past data
yt−1, yt−2, . . . . A linear approximation to these innovations is provided by the resid-
uals of the NN-ARx model,

εv
t = yv

t −
(

µv
t +

p∑
k=1

φv
ky

v
t−k + Xvξv

t−∆ +
r∑

k=0

θv
kst−k−d

)
,

in which the conditional mean is approximated by

E[yv
t /yv

t−1, . . . , y
v
t−p, ξ

(v)
t−∆, St−d, St−d−1,..., St−d−r]

= yv
t/t−1 = µv

t +
p∑

k=1

φv
ky

v
t−k + Xvξv

t−∆ +
r∑

k=0

θv
kst−k−d.

In other words, according to this model, the one-step-ahead prediction for a voxel at
position v is given by the addition of (a) a trend component, (b) a linear combination
of the own past of the voxel, (c) a linear combination of the past of its nearest
neighboring voxels, and (d) a linear combination of the past of the stimulus.

Note that this model reduces to the standard linear model for fMRI time series, as
described in Firston et al. [12], if the terms (b) and (c) are disregarded. Furthermore,
the sequence of parameters θv

k is conventionally called the hemodynamic response
function (HRF) to the stimulus st. Thus, the NN-ARx model is an extension of the
standard linear model resulting from the inclusion of further dynamic terms, namely
(b) and (c).

Model parameters {φv
k,Xv, θv

k, σv, γ
v
k} at each voxel are estimated by the least

squares method. Model selection is carried out by minimizing the Akaike Information
Criterion (AIC) [2,45].

In order to further simplify the local spatial correlation structure of the residuals
or innovations εv

t it is convenient to apply a Laplacian pre-filtering; i.e., to transform
the data by the (discrete) Laplacian operator L, defined by

yv
t = Lx v

t = xv
t −

1
G

∑
v′∈Ωv

xv′
t ,

for any random field xv
t , where G is the number of neighboring voxels in Ωv. Whiten-

ing by Laplacian filtering represents a simple but useful way of characterizing the
spatially homogeneous instantaneous correlation between the noises of neighboring
voxels, and was used for the first time by Galka et al. [16] and Yamashita et al. [51]
for the purpose of estimating dynamical inverse solutions from EEG time series [1].
In particular, spatial correlations due to harmonic random components of the data
are removed by multiplying by the Laplacian because, by definition, the Laplacian
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of any harmonic function is zero [25]. In the present context, it allows for whiten-
ing spatial correlations unfavorably introduced by the usual application of Gaussian
kernels in the fMRI analysis. By fitting the NN-ARx model both with and with-
out applying the Laplacian operator to the same fMRI data set, and comparing
the resulting values of the AIC, it can be confirmed that employing the Laplacian
provides a superior modeling. An additional advantage of Laplacian pre-filtering, as
a consequence of its whitening effect, is the improved efficiency of the least squares
estimators of the model parameters.

More details about the biophysical basis of the NN-ARx model and the pro-
cedures involved in the estimation of its parameters, as well as validations with
simulated and real data sets, may be found in Riera et al. [41].

2.2. NN-ARx-based voxel-wise correlations

Conventional correlations between voxels in fMRI analysis [26, 44] are correlations
between the residuals resulting from mean-correction according to the standard
linear model for fMRI time series [12]. The immediate extension of this procedure
to the NN-ARx model leads to the computation of the correlation between the two
voxels v and w as the correlation between the residuals obtained by removing the
conditional mean according to the NN-ARx model, i.e., the correlation between the
innovations or prediction errors ζv

t and ζw
t :

Rv,w
0 = corr (ζv

t , ζw
t ).

As mentioned above, correction by the conditional mean yv
t/t−1 tends to eliminate

local dependencies of each voxel with respect to its own past and the past of its neigh-
bors, but retains dependencies on non-neighboring voxels. The Laplacian operator,
applied as a preprocessing step, was also designed to remove instantaneous spa-
tial correlations only between neighboring voxels, but not between distant voxels.
Hence, the correlations between innovations of distant voxels contain information
on the structure of influences between brain regions. This will be used to construct
measures of interregional dependencies in the next subsection.

Note also that the zero lag, instantaneous correlation Rv,w
0 plausibly reflects

underlying interactions from past to present activities at the neural level. Indeed,
the neuronal electrical signals transfer much faster than hemodynamic activities
and may reach remote voxels within a millisecond, i.e., almost instantaneous with
respect to the typical time scale of the hemodynamics. Furthermore, two distant
voxels with a special neuronal connection may simultaneously receive a large signal
input coming from a common source, whereby the prediction errors of these two
voxels become strongly correlated.

In order to capture additional information on the temporal arrow of the depen-
dencies between two voxels v and w we also define directed or lagged correlations
between innovations, i.e.,

Rv,w
l = corr (ζv

t+l, ζ
w
t ),
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where the time lag l can be negative or positive. For l < 0, Rv,w
l represents the

correlation of the past activity (at time t + l < t) at the voxel v and the activity at
the present time t at voxel w. This is therefore a directed correlation that reflects the
observed influence of the past at the voxel v, and on the present at voxel w. Similar
interpretations have the lagged correlations Rv,w

l for l > 0, just by interchanging
past and present at the voxels.

The NN-ARx-based correlations Rv,w
l can be estimated by the sample correlation

between the time series residuals ζv
t+l and ζw

t (t = 1, . . . , T ) obtained from fitting
the NN-ARx models at the voxels v and w.

2.3. Measures of dependencies between regions

Correlations between past and present data at different regions offer a tool easy
to compute and interpret for describing directed interregional influences. The usual
way of determining interregional correlations is based on summarizing the recorded
signal within each region by its average or first eigenvariate [44]. However, depending
on the size and localization of the regions, and on the experimental setting, each
region may not represent a functionally homogeneous neural mass but may involve
several activities with each one interacting with different activities in subsets of other
regions. In such a case, the summarization by averaging or first eigenvariate could
fail to suitably represent each region. This difficulty can be overcome by successive
refinements of the definition of the regions into smaller, localized ones. We, here,
introduce an alternative approach that does not require such detailed refinements.

Let M regions of interest in the brain be specified: ΠV , V = 1, . . . ,M . Con-
sider an arbitrary pair of such regions, say ΠV and ΠW . For each time lag
l = −L, . . . ,−1, 0, 1, . . . , L, (L being the maximum lag to be considered), let Rv,w

l

be the correlation between the prediction errors ζv
t and ζw

t , as defined above, where
v ranges over the voxels in ΠV , and w over the voxels in ΠW . With the intention of
capturing both negative and positive correlations, we define the squared correlations,

Sv,w
l = (Rv,w

l )2.

In order to summarize the dependencies between voxels in the two regions ΠV and
ΠW at a given lag l, a number of measures can be considered on the basis of the
squared correlations Sv,w

l , such as their mean or median. A robust summarization
is given by the magnitude:

UV,W
l = upper 90th percentile of the values of Sv,w

l over v ∈ ΠV and w ∈ ΠW .

Likewise the mean, UV,W
l takes a large value if most of the squared correlations Sv,w

l

are high, i.e., if practically any voxel in one region is highly correlated with any
voxel in the other region. However, an advantage of the measure UV,W

l is that it also
shows a high value when there are strong interactions between the regions with some
subsets being uncorrelated. This allows for capturing dependencies between regions
even in cases in which they are not functionally homogeneous. A further robust
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benefit of this measure is that it is not affected by a small fraction of extremely high
correlations that may appear when the segmentation procedure used to demarcate
the regions results in a number of misclassified voxels.

Further summarization over time lags can be obtained by averaging the measures
UV,W

l over positive and negative lags:

UV,W
+ =

√√√√ 1
L + 1

L∑
l=0

UV,W
l ,

UV,W
− =

√√√√ 1
L + 1

0∑
l=−L

UV,W
l .

That is, UV,W
+ reflects correlations between the past activity in the region ΠV and

the future activity in the region ΠW over different lags, while UV,W
− summarizes

correlations between the past of ΠW and the future of ΠV . The square roots in the
previous formulae are used to facilitate interpretation, since they bring back the
measures from squares to the correlation scale.

Note that, by definition, UV,W
− = UW,V

+ , hence the analysis can be reduced to
the measures UV,W

+ .
Due to the fact that the sampling time in fMRI recordings is large (normally

about 3 seconds), it is not necessary to use high lag orders for the purpose of fMRI
analysis. In practice, we set the maximum lag to be L = 1.

A simple simulation is used here to illustrate that this approach preserves cor-
relations between regions much better than simply computing correlations between
averages over regions. Consider three regions R1, R2 and R3, each one composed of
25 voxels. The voxels in regions R1 and R3 are divided in three subsets: R1a, R1b,
R1c, R3a, R3b and R3c (see also the last column of the first row in Fig. 1). The time
series for voxels in R2, R1c, R3a, R3b and R3c are independent standard Gaussian
white noises, while the time series at voxels in regions R1a and R1b are generated
according to the model:

XR1a(t) = 0.75 ∗ XR3a(t − 1) + ωa(t),

XR1b(t) = −0.75 ∗ XR3b(t − 1) + ωb(t),

where X (t) represents the time series at time t for voxels in the specified subset,
and ωa(t) and ωb(t) are independent standard Gaussian white noises. Thus, there
are high correlations between R1a and the past of R3a, as well between R1b and
the past of R3b, but with opposing signs. As can be seen in the first row of Fig. 1,
sample averages within regions show very low (non-significant) correlations between
them. On the contrary, the alternative approach of measuring dependencies between
regions introduced in this paper correctly captures the high correlation between R1
and R3 with lag −1.
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Fig. 1. Correlation results for simulated time series at three regions R1, R2 and R3, according to
a model that induces high dependencies with different signs between subsets of R1 and R3 (see left
upper corner of this figure, and also text for details). First row: correlations between the averages

of the regions for the time lag 1, 0 and −1. Second row: measures of dependencies UV,W
l between

the regions for lags 1, 0 and −1 (first three columns), and also the measures UV,W
+ and UV,W

−
(last column). Note that the latter shows high dependency between regions R1 and R3 for Lag −1

(UR1,R3
−1 = 0.81), and also UR1,R3

− = 0.42, while standard correlations between averages (first row)
fail to capture such a strong dependency between R1 and R3.

It is worth noting that the introduced measures of dependencies can be computed
on the basis of the prediction errors, not only of the NN-ARx model but also of any
model for fMRI time series.

2.4. Statistical tests for interregional dependency graphs

The measures of directed interregional dependencies UV,W
+ over pairs of different

regions (V,W = 1, . . . ,M) determine a dependency or connectivity graph. The
nodes of this graph are the given regions, and there is a directed edge or arrow from
the region ΠV towards the region ΠW if the influence of the past of ΠV on the future
of ΠW , as measured by UV,W

+ , is different from zero.
In practice, only estimates ÛV,W

+ of the measures UV,W
+ are available, thus there

is a need for constructing statistical tests to detect significant connections. For sim-
plicity, denote UV,W

+ by U(V,W ). We will first describe a test to detect non-null
connections (U(V,W ) �= 0) for the one sample problem corresponding to the data
provided by one subject. Since the measures of interest are quite complex and their
distributions are unknown, a resampling or parametric bootstrap approach, which
entails intensive simulations, will be followed (see Bullmore et al. [4] and references
therein for a wide variety of other simulation-based statistical tests for EEG and
fMRI data analysis). Indeed, the main idea in constructing resampling tests is to
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simulate data sets under the null hypothesis. In the present case, this is the hypoth-
esis of zero correlations between voxels in different regions.

The main steps of the testing procedure can be described as follows:

(a) Fit the NN-ARx model to the original data. From this, obtain estimates
{φ̂v

k, X̂
v , θ̂v

k, σ̂v, γ̂
v
k} of the model parameters, estimates Σ̂V of the covariance

matrix of the vector of residuals ζV
t = (ζv

t : v ∈ ΠV ) at each region ΠV , and
estimates Û(V,W ) of the connectivity measure for each pair of regions. Also,
compute the maximum Û of the quantities Û(V,W ) for all pairs of different
regions. (For practical reasons, if the regions are very large, the estimates of the
high dimensional matrices Σ̂V are based on the singular value decomposition of
the sample covariance matrix of the vector of residuals, retaining only a number
of principal components.)

(b) Repeat for b = 1, . . . , B (number of bootstrap simulations, B > 100) the follow-
ing steps:

(i) Generate independent Gaussian vectors ζV,b
t = (ζv,b

t : v ∈ ΠV ) with zero
means and covariance matrices Σ̂V , for t = 1, . . . , T , V = 1, . . . ,M .

(ii) Using the values of the model parameters {φ̂v
k, X̂v, θ̂v

k, σ̂v, γ̂
v
k} obtained in

step (a) and the bootstrap time series residuals ζv,b
t as model errors, com-

pute (according to the corresponding NN-ARx model) a bootstrap data set
yv,b

t .
(iii) Repeat the computations of the step (a) but using the bootstrap sample

yv,b
t as data. Denote the resulting value the maximum measure by Û b.

(c) Compute the upper 95% percentile C0.95 of the values Û b, b = 1, . . . , B. This
threshold is then used for testing the null hypothesis of non-connectivity between
pairs of regions. That is, the hypothesis of lack of connection from a region ΠV

towards a region ΠW , i.e. U(V,W ) = 0, is rejected at the 5% significance level
if the observed value Û(V,W ) is greater than C0.95.

A similar resampling procedure can be used for testing connectivity in one sam-
ple problem corresponding to a group of subjects. Specifically, the only necessary
modification is carrying out the step (a) above for each subject, and then averaging
the resulting measures of dependencies over the number of subjects.

A similar test may also be elaborated for two sample problems, in which the aim
is to compare the connectivity patterns of two groups of subjects or one group of
subjects under two different experimental conditions.

The testing procedure just described may also be applied to other measures
U(V,W ) of dependency between regions; for instance, the measure UV,W

l that sum-
marizes the correlations between regions for a particular lag l.

Also note that the main computational burden of such tests based on simulations
is the repeated generation of random normal variables, because other computations
involved are just correlations.
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2.5. Algorithmic summary of the main steps in connectivity

analysis based on the NN-ARx model

The diagram in Fig. 2 summarizes the sequence of steps that we followed for data
processing, analysis and visualization in exploring connectivity on the basis of the
correlation structure revealed by the NN-ARx model.

2.5.1. Data preprocessing

Before statistical modeling of the fMRI time series, the individual fMRI images were
realigned in order to remove movement-related artifacts, and the slice timing was
adjusted to that of the middle slice. The images were then smoothed.

Taking into consideration that the NN-ARx is a dynamic model, we try to pre-
serve the dynamics of the data by applying the least possible amount of preprocess-
ing that may affect it. We avoid preprocessing procedures such as normalization or
co-registration to the anatomical image. Instead, to allow for the possibility of doing
inter-subject statistics or referring the results to a standard brain, we normalized
the results (model parameters and innovations for all voxels) to the standard space
provided by the Montreal Neurological Institute [8].

2.5.2. NN-ARx model selection and fitting

Model selection consists in the estimation of the global model parameters Λ, namely
the model orders and delays p, r, δ, d,∆ (see Sec. 2.1). It is a voxelwise task that was

fMRI data Data

Model selection 

Model fitting

Model 

preprocessing 
NN-ARx AIC 

NN-ARx 

parameters 

Innovations
analysis 

Stimulus related 
activations plots 

and statistics 

Normalization

Voxelwise 

Lags Connectivity

Summarized Lags
Connectivity

Statistics 

By Regions

Visualizations 

Fig. 2. Sequence of processing steps for connectivity analysis based on the NN-ARx model.
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accomplished by minimizing the AIC with respect to these parameters over specified
ranges. The latter is set according to the user expertise; but a short range (say 1 to
4) is usually appropriate in practice. For the purpose of present work and based on
our previous experiences, we fixed the delay of the neighboring voxels ∆ to 1, thus,
obviating any estimation of this parameter.

2.5.3. Interregional connectivity graphs

While voxelwise connectivity analysis will be the subject of future works, in the
present paper we focus on interregional connectivity analysis. For this purpose, we
divided the brain into regions using segmentation of the gray matter of the brain
provided by the Montreal Neurological Institute. Specifically, we adopted the one
that divides the brain in 71 regions (see details in Appendix A).

Lagged correlations based on the fitted NN-ARx model were computed, as well as
their summarization through the directed measures of connectivity between regions,
as described in Sec. 2.3. Then, statistically significant connections were detected by
the tests introduced in Sec. 2.4.

Finally, 3D graphic tools were used to visualize the connectivity graph. They aid
the analyst to explore the topology and strength of the correlation structure, and
to acquire a global view of its neural distribution.

3. Results and Discussion

We analyzed two data sets: first, a group of subjects performing a simple visual
task; second, a group of blind subjects during a tactile discrimination task. The
experimental settings are described below. For reference, the first data set is the
same one that (for other purposes) was studied in Riera et al. [41].

For each experimental data set we followed the processing steps described in
Sec. 2.5. That is, for connectivity analysis we used the measurement of interre-
gional connectivity UV,W

+ as defined in Sec. 2.3, which summarizes lagged correla-
tions between regions on the basis of NN-ARx modeling. The brain was divided
into 71 regions using segmentation of the gray matter of the brain provided by the
Montreal Neurological Institute. The connectivity measures all 71 regions, resulting
in a 71 × 71 connectivity matrix for each subject. For each group of subjects, we
then applied the statistical test described in Sec. 2.4.

3.1. Visual experiment

Visual paradigm: A 3-T scanner (VP, General Electric, Milwaukee, WI) was used
in this experiment to collect the visual stimulus data. Ten volunteers (5 males
and 5 females) aged 25–43 years were used in the visual paradigm, consisting of
3 blocks of 30 seconds checkerboard visual stimulus and 30 seconds of control con-
dition (starting from task condition). During the task condition, the checkerboard
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was intermittently presented at a frequency of 8Hz. Tight but comfortable foam
padding was placed around the subject’s head to minimize head movement.

fMRI parameters: Inter-scan interval TR = 3 seconds. Each volume consisted
of 36 slices from the bottom to the top of the head, with a voxel size of 3.44 ×
3.44 mm2 in plane, a slice thickness of 3.5 mm and a 0.5 mm gap covering the whole
brain. T2∗-weighted, gradient echo, echo planar imaging (EPI) sequences (TE =
30 milliseconds, FOV = 22 cm).

Parameters of scanner for anatomical reference: T2∗-weighted, 2D-fast spin echo
sequence (with parameters of FA = 90 degree, TR = 6000 milliseconds and TE =
70 milliseconds) consisting of 112 trans-axial slices, with slice thickness 1.5 mm, and
pixel size was 0.859 × 0.859 mm2.

Figure 3 shows some of the plots and statistics used to assess model goodness of
fit for different models (rows of this Figure): the model with only the stimulus term
(A); the model with stimulus and AR terms (B); and the complete NN-ARx model
with stimulus, autoregressive and neighborhood terms (C). It can be observed that
for no model, the Gaussianity of the prediction errors is rejected but AIC values and
the degree of whiteness of residuals notably improve as more terms are included.

Fig. 3. Plots and statistics used to assess goodness of fit for different models for a selected voxel
at the calcarine sulcus. Columns from left to right: first, plots of the stimulus (bold step curve) and
prediction errors signals, and values of the AIC, sum of residual squares; second, sample autocorre-
lation; third, histograms and Bera-Jarque test for Gaussianity. Rows, from upper to bottom: first,
model with only the stimulus term (A); second, model with stimulus and autoregressive terms (B);
third, complete NN-ARx model with stimulus, autoregressive and neighborhood terms (C). Note
that the goodness of fit as measured by AIC improves as more terms are included.
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The (5%) significance threshold for the interregional connectivity measures was
calculated using the bootstrap technique, as described in Sec. 2.4.

The complete NN-ARx model is the one selected according to the AIC. As a
reference, Fig. 4 shows the results of the connectivity analysis for the three models
(A)–(C).

As shown in Fig. 4(C) and Table 1 in Appendix B, our method detects sig-
nificant connections between visual striate and extrastriate cortex, correspond-
ing with occipital pole, inferior occipital, medial occipito temporal and lingual
gyri for the nomenclature used in this work. These results are in agreement with
functional neuroimaging studies on visual attention [22]. Striate regions involve
primary visual areas while extrastriate cortex is activated during focused atten-
tion [22, 29]. In turn, our results show those areas interconnected to frontal
regions through frontoparietal and temporal areas, respectively. Within this frame-
work our study extends cited reports describing linking pathways, strengths and
directions.

For comparison, we have also included in Fig. 4 results obtained for simpler
models, i.e., disregarding some terms of the NN-ARx model. It can be observed
that for simpler models, not including the neighborhood term (A and B in Fig. 4) a
number of connections appear in areas not related with the visual task. We also show
results obtained using maximum correlation (i.e., the 1.00 percentile) instead of the
0.90 percentile (see E in Fig. 4). This seems to be less robust, leading to patterns with
many connections that are difficult to interpret in terms of the neurophysiological
knowledge about visual processing. Finally, in part D of Fig. 4 we show the effect
of averaging over each region on the connectivity analysis. It is evident that all the
meaningful connections in the visual area are lost except a few connections between
homologous regions.

3.2. Braille tactile discrimination task

As another illustrative example, the fMRI data from a group of 6 blind subjects
during a Braille tactile discrimination task [43] was analyzed.

During a Braille tactile discrimination task, a session consisted of six task
and six rest periods that alternate each 30 seconds in duration. During the task
period, Braille stimuli were presented passively to the subject’s right index finger
for 3 seconds every 6 seconds. The subject’s left hand was placed on a button box
connected to a microcomputer for recording the response. The subject responded
by pushing a button with his left index finger if the pair-wise characters were the
same, or with their middle finger if the characters were different. A 30 second rest
condition followed, in which the subject pushed buttons with his left index and mid-
dle finger alternately. The cue for a response was a touch to the subject’s left toe,
given every 6 seconds by the examiner. The comparison of images collected during
the discrimination task with those during rest periods allows for correction for the
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(A) (B)

(C) (D)

(E) (F)

Fig. 4. Significant connections obtained for the visual experiment (A–E) and tactile discrimination
task (F). Measures of dependencies are obtained under model with only the stimulus term (A),
with stimulus and autoregressive terms (B), and with all the terms of the NN-ARx (C, E and F).
The measures are computed by using either the 0.90 percentile (in A, B, C and F) or maximum
correlation (in E). For comparison, the standard correlations based on averaging voxels over each
region are also shown in D. Note that averaging leads to miss all dependencies in the occipital area
(D); the use of the maximum correlation seems to be less robust leading to patterns with many
connections and difficult to support in terms of neurophysiological knowledge (E); and the complete
NN-ARx model concentrates on long-range connections in the occipital area.



December 14, 2010 16:0 WSPC/S0219-6352 179-JIN 00250

Spatio-Temporal Correlations from fMRI Time Series Based on the NN-ARx Model 397

effects of the cue and response movement. A total of 30 pairs of Braille characters
were presented, half of which were different and half of which were the same.

MRI parameters: A time-course series of 126 volumes was acquired using T2∗-
weighted, gradient echo, echo planar imaging (EPI) sequences with a 3.0 Tesla
MRimager (VP, General Electric, Milwaukee, WI). Each volume consisted of
36 slices, with a slice thickness of 3.5 mm and a 0.5-mm gap, to include the entire
cerebral and cerebellar cortex. The time-interval between two successive acquisitions
of the same image was 3000 ms, and echo time was 30 ms. The field of view (FOV)
was 22 cm. The in-plane matrix size was 64 × 64 pixels with a pixel dimension of
3.44 × 3.44 mm. For anatomical reference, T2∗-weighted fast spin echo images were
obtained with location variables identical to those of the EPIs. In addition, high-
resolution whole-brain MRIs were obtained with a conventional T2∗-weighted, fast
spin echo sequence. A total of 112 transaxial images were obtained. The inplane
matrix size was 256 × 256, and slice thickness was 1.5 mm, and pixel size was
0.859 × 0.859 mm.

The (5%) significance threshold was obtained by the bootstrap technique. The
results obtained from the analysis of this data show that the present approach cap-
tures the task-related activity. The effective connectivity showed here (see Fig. 4(F)
and Table 2 in Appendix B) represents the intrinsic (not task-related) connectivity
that reflects the deafferentation-related plastic change.

The connections do not appear at random but are grouped into different iso-
lated sub-networks: (i) thalamic; (ii) occipital; (iii) from the cingulate to the middle
frontal orbital gyrus; (iv) from the supra parietal lobes to the postcentral gyrus; and
(v) between the left and right precuneus.

When the threshold is decreased to the significant level of 5%, connections
between the sub networks appear, as well as projections from the supra parietal
lobe and the postcentral gyrus to the precentral and the middle frontal gyrus.

4. Some Final Comments

Furthermore, we would like to comment on some issues concerning the advantages,
limitations, variants and extensions of the NN-ARx approach introduced in the
present paper. They are relevant for both practical implementation and future
research.

Computational burden

The bootstrap statistical tests introduced in the present work for detecting inter-
regional connections require intensive computation, as a consequence of repeated
generation of random variables. This drawback is shared with other resampling
methods that have been suggested for EEG and fMRI analysis [4]. They allow for
great flexibility in constructing complex test statistics and have wide validity under
minimal probability assumptions but at the expense of considerable computer effort.
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An open problem is the elaboration of asymptotic approximations to such tests
that obviate the need for expensive simulations, at least in situations in which the
amount of data is sufficiently large.

Nonlinear extensions of NN-ARx modeling

It has been shown that there exists some nonlinear dynamical structure in BOLD
signals [13, 40]. On the other hand, Lahaye et al. [27] reported that nonlinearity in
fMRI time series is weak. Our simulation study also implies that linear modeling
approaches are quite robust in detecting instantaneous correlations, even though the
time series might be generated by a nonlinear system. However, this does not mean
that the ability of detecting instantaneous correlations cannot be further improved
by employing nonlinear dynamical models. The generalization of the NN-ARx model
methodology into the realm of nonlinear models, e.g., by generalizing the AR param-
eters to become state-dependent [34, 38] may be an interesting topic for future
research.

Physiological interpretation of lagged correlations

fMRI time series, far from being completely random, show obvious patterns of tem-
poral and spatial correlation structure. A plausible physiological interpretation of
instantaneous correlations between distant voxels could be that spatio-temporal
hemodynamic activities triggered by fast neural dynamics seem to occur almost
simultaneously when recorded with a low sampling frequency. But we also find
lagged correlations in fMRI time series, e.g., over a lag of one sampling period. It will
be very difficult to provide meaningful interpretations for such correlations, unless
additional physiological information relating to the specific experimental setup (e.g.,
cognitive task, sensory stimulation, etc.) can be taken into account.

Innovation approach for dynamic causal models

The approach introduced in the present paper strongly relies on extracting relevant
information from the prediction errors or innovations associated to a dynamic model.
The importance of innovations are worth emphasizing. First, they are not a nuisance,
but a useful source of dynamical information. Second, under general conditions they
have a simple distribution, thus allowing for computing the likelihood function of the
model as a general basis for statistical inference (i.e., for model selection, parameter
estimation, filtering, etc.). We will comment more on the theoretical framework that
supports the innovation approach.

A useful way to express the correlation structure of a time series data is to
consider the prediction of the series. We aim at removing temporal dependencies
on the past and to whiten the observed time series yt into an independent series by
subtracting the predicted value from the realized (and observed) data value yt:

ζt = yt − E[yt/yt−1, yt−2, . . .].
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To perform this whitening step we need to find a suitable dynamical model providing
the prediction of the time series by using past observations. This concept has led
to the well-known innovation approach developed by N. Wiener in the 1930s. In
this framework the prediction errors (i.e., the innovations) are not a nuisance, but a
useful source of information that contains the key to explain the dynamical processes
in which we are interested.

The concepts described thus far are supported by a very strong mathematical
theorem given by Levy ([28]; see also theorem 41 in Protter [39]) which states that
“for any continuous–time Markov process yt the corresponding innovations can be
represented, under mild conditions, as the sum of two white noise processes, namely
a Gaussian noise process and a Poisson noise process”. This theorem is a stronger
version of the well-known theorem for Markov diffusion processes [6, 23], according
to which “any dynamical process can be represented by a differential equation driven
by Gaussian white noise, if the process is Markov and continuous (i.e., without any
discontinuous jump)”. The case of additional observation noise has been treated by
Frost and Kailath [15]. Consequently, we expect that, under the assumption of con-
tinuous dynamics, the time series of resulting innovations, for an optimal predictor,
will be uncorrelated (in fact, independent) and Gaussian, even if, due to possible
nonlinearities in dynamics, the process is non-Gaussian distributed. This theorem
implies that, if we employ a properly chosen model for the dynamics, the prediction
errors will be distributed as Gaussian white noise. Then the log-likelihood func-
tion for the time series may be calculated using the standard Gaussian likelihood,
even though the original observed time series may have displayed nonlinearities and
non-Gaussian distribution).

The methodology based on Levy’s theorem has been employed in time series
analysis since the early 1990s [17,32–34]. In neurosciences it has been applied to the
identification of dynamical causal models, such as the Zetterberg model for EEG
time series [48] and Balloon model for fMRI time series [40].
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Appendix A

71 regions gray matter segmentation defined by the MNI

1 = Mid-FrontoOrb-Gy-R 37 = Mid-Temp-Gy-L
2 = Mid-Front-Gy-R 38 = Cerebellum-L
3 = Insula-R 39 = Lingual-Gy-L
4 = Precentral-Gy-R 40 = Sup-Front-Gy-L
5 = Lat-FrontoOrb-Gy-R 41 = Accumbens-L
6 = Cingulate-R 42 = Postcentral-Gy-L
7 = Mid-Front-Gy-L 43 = Inf-Front-Gy-R
8 = Sup-Front-Gy-R 44 = Cerebellum-R
9 = Globus-pallidus-R 45 = Precentral-Gy-L

10 = Globus-pallidus-L 46 = Mid-front-Orb-Gy-L
11 = Putamen-L 47 = Sup-Pariet-Lob-R
12 = Inf-Front-Gy-L 48 = Lat-Front-Orb-Gy-L
13 = Putamen-R 49 = Inf-Occip-Gy-R
14 = Parahippocampal-Gy-L 50 = Sup-Occip-Gy-L
15 = Angular-Gy-R 51 = Lat-OccipTemp-Gy-R
16 = Brain-stem 52 = Hippocampal-L
17 = Subthalamic-Nuc-R 53 = Thalamus-L
18 = Accumbens-R 54 = Insula-L
19 = Uncus-R 55 = Postcentral-Gy-R
20 = Cingulate-region-L 56 = Lingual-Gy-R
21 = Precuneus-R 57 = Mid-Front-Gy-R
22 = Subthalamic-Nuc-L 58 = Mid-OccipTemp-Gy-L
23 = Hippocampal-R 59 = Parahippocampal-Gy-R
24 = Inf-Occip-Gy-L 60 = Mid-Temp-Gy-R
25 = Sup-Occip-Gy-R 61 = Occip-pole-R
26 = Caudate-Nuc-L 62 = Inf-Temp-Gy-R
27 = Supramarginal-Gy-L 63 = Sup-Temp-Gy-R
28 = Mid-Front-Gy-L 64 = Mid-Occip-Gy-L
29 = Sup-Pariet-Lob-L 65 = Angular-Gy-L
30 = Caudate-Nuc-R 66 = Inf-Temp-Gy-L
31 = Cuneus-L 67 = Mid-OccipTemp-Gy-R
32 = Precuneus-L 68 = Cuneus-R
33 = Supramarginal-Gy-R 69 = Lat-OccipTemp-Gy-L
34 = Sup-Temp-Gy-L 70 = Thalamus-R
35 = Uncus-L 71 = Occip-pole-L
36 = Mid-Occip-Gy-R
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Appendix B

Table 1. Values of the significant correlations between the brain regions for the group of subjects
under the visual task. Sorted in descending order.

Region 1 Region 2 → ← Region 1 Region 2 → ←
LingGR LingGL 0.54 0.53 MidOccTmpGR CunR 0.45 0.44
PreCunR PreCunL 0.51 0.51 ThalL SubThaNucL 0.45
MidOccTmpGL MidOccTmpGR 0.51 0.51 SupOccGL SupOccGR 0.44 0.44
CunL CunR 0.5 0.49 PreCunL CunL 0.44
MidfrontOrbGL MidFroOrbGR 0.49 PreCunR CunR 0.44
MidFroOrbGR MidfrontOrbGL 0.49 CunR PreCunL 0.43
LingGL MidOccTmpGL 0.48 0.46 ParaHipGR ParaHipGL 0.43 0.43
MidOccTmpGR CunL 0.48 0.48 CunL LingGL 0.43
LingGR MidOccTmpGL 0.48 0.45 MidOccTmpGL LatOccTmpGR 0.43
MidOccTmpGL CunL 0.48 0.47 CunR LingGL 0.43
LingGR MidOccTmpGR 0.47 0.44 ParaHipGL MidOccTmpGR 0.43
LingGL CunR 0.47 ParaHipGR MidOccTmpGR 0.43
LingGR CunR 0.47 LingGR LatOccTmpGR 0.43
LingGL MidOccTmpGR 0.46 0.44 CunL SupOccGL 0.43 0.42
LingGL CunL 0.46 CunR LingGR 0.42
ThalL ThalR 0.46 0.46 ParaHipGL CunL 0.42
PreCunL CunR 0.46
LingGR CunL 0.46
MidOccTmpGL CunR 0.45 0.44

Table 2. Values of the significant correlations between the brain regions for the group of subjects
during the tactile discrimination task. Sorted in descending order.

Region 1 Region 2 → ← Region 1 Region 2 → ←
MidFroOrbGR MidfrontOrbGL 0.46 0.46 LingGL CunL 0.34
LingGR LingGL 0.44 0.44 MidOccTmpGR CunR 0.34
OccpoleR LingGR 0.41 OccpoleL MidOccTmpGL 0.34
OccpoleR InfOccGR 0.41 0.41 CunR CunL 0.34 0.34
LingGR LatOccTmpGR 0.4 0.4 OccpoleL SupOccGR 0.34 0.34
OccpoleL LingGL 0.4 0.4 MidOccGL AnguGL 0.34
InfOccGR LingGR 0.4 0.39 MidFroGL SupFroGR 0.34
PreCunL PreCunR 0.4 0.4 CerebR LingGR 0.34
OccpoleR LingGL 0.4 0.39 CerebR LingGL 0.34
LingGR OccpoleR 0.4 LatOccTmpGR OccpoleL 0.34
InfOccGR LatOccTmpGR 0.4 0.38 PutL PutR 0.34 0.34
OccpoleL OccpoleR 0.4 0.39 SupParLobR LingGL 0.34
InfOccGR LingGL 0.4 0.38 MidTmpGL InfTmpGL 0.34 0.34
LingGL MidOccTmpGL 0.39 0.39 InfOccGR InfTmpGR 0.34 0.33
AccumL AccumR 0.39 0.37 OccpoleR MidOccTmpGR 0.34
SupParLobL SupParLobR 0.39 0.39 SupParLobL AnguGR 0.34
LingGL LatOccTmpGR 0.38 0.37 MidOccTmpGL OccpoleL 0.34
LingGR OccpoleL 0.38 0.38 MidTmpGL InfOccGL 0.34
LingGL LatOccTmpGL 0.38 0.37 OccpoleR CunR 0.34
CaudNucL CaudNucR 0.38 0.37 InfOccGR CerebL 0.34
LingGR MidOccTmpGR 0.38 0.37 SupParLobL PreCunL 0.34 0.33
OccpoleL InfOccGL 0.38 0.38 CaudNucL LingGL 0.34
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Table 2. (Continued)

Region 1 Region 2 → ← Region 1 Region 2 → ←
LingGR LatOccTmpGL 0.38 0.37 OccpoleR MidOccTmpGL 0.34
ThalL ThalR 0.38 0.37 MidFroGR InfFroGR 0.34 0.33
MidOccTmpGR MidOccTmpGL 0.38 0.38 InsR InsL 0.34
InfOccGR OccpoleL 0.37 0.37 ThalL LingGR 0.33 0.33
OccpoleR InfOccGL 0.37 0.37 PosCenGL SupParLobR 0.33
ThalL SubThaNucL 0.37 InfOccGR CunR 0.33
SupOccGR SupOccGL 0.37 0.37 AnguGL SupParLobL 0.33
LingGR MidOccTmpGL 0.37 0.36 SupParLobR AnguGR 0.33
LingGR InfOccGL 0.37 0.36 LingGR MidOccGL 0.33
MidOccGL InfOccGL 0.37 0.36 SupFroGL MidFroGL 0.33 0.33
OccpoleR LatOccTmpGR 0.37 0.36 SupParLobR LingGR 0.33
InfOccGL LingGL 0.37 0.37 CaudNucL SubThaNucL 0.33
SupFroGL SupFroGR 0.37 0.37 SupParLobL PreCenGR 0.33
LingGR CerebL 0.37 0.35 LingGL SubThaNucL 0.33
AccumL PutL 0.36 0.36 CaudNucL LingGR 0.33 0.33
SupParLobL SupOccGL 0.36 0.34 PreCunL SupOccGL 0.33
InfOccGR InfOccGL 0.36 0.36 SupFroGL MidFroGL 0.33
SupOccGR LingGR 0.36 0.36 MidFroGL MidFroGL 0.33 0.33
LingGR CunR 0.36 0.34 LatOccTmpGR MidOccTmpGL 0.33 0.33
LingGR SupOccGL 0.36 0.36 SupParLobR MidFroGL 0.33
InfOccGL SupOccGR 0.36 0.36 PreCenGL PreCenGR 0.33 0.33
MidOccGL SupOccGL 0.36 0.36 MidOccGL MidOccGR 0.33 0.33
OccpoleR SupOccGR 0.36 0.36 MidFroGL SupParLobL 0.33
InfOccGL LatOccTmpGL 0.36 0.36 CunR MidOccTmpGR 0.33
MidFroGL MidFroGR 0.36 0.35 PosCenGL MidFroGL 0.33 0.33
LingGL MidOccTmpGR 0.36 0.35 SupParLobR PreCunL 0.33
InfOccGR LatOccTmpGL 0.36 0.35 CaudNucL PutR 0.33
ParaHipGR MidOccTmpGR 0.36 0.35 CaudNucL PutL 0.33
LatOccTmpGL LatOccTmpGR 0.36 0.36 MidOccTmpGL LatOccTmpGL 0.33 0.33
InfOccGL SupOccGL 0.36 0.36 PosCenGL PreCenGL 0.33 0.33
SupParLobR SupOccGR 0.36 0.34 CunR LingGL 0.33
MidOccGL SupOccGR 0.36 0.35 SupParLobL PosCenGR 0.33
GlobPalL SubThaNucL 0.36 0.35 SubThaNucL ThalL 0.33
SubThaNucL SubThaNucR 0.36 0.35 OccpoleL CunR 0.33
LingGL CerebL 0.36 0.35 SupParLobL LingGR 0.33
OccpoleL LatOccTmpGL 0.35 0.35 AccumL MidOccTmpGR 0.33
SupOccGL LingGL 0.35 0.35 OccpoleR CerebL 0.33
CingRegL CingR 0.35 0.35 InfOccGR CerebR 0.33
OccpoleR SupOccGL 0.35 0.35 MidFroGL MidFroGR 0.33 0.33
PosCenGR PreCenGR 0.35 0.35 ThalL MidOccTmpGL 0.33
InfOccGR SupOccGR 0.35 0.35 ParaHipGL InfTmpGL 0.33
LatFroOrbGL LatFroOrbGR 0.35 0.35 OccpoleR MidOccGL 0.33
LingGL CunR 0.35 ParaHipGR MidOccTmpGL 0.33 0.33
LingGR SubThaNucL 0.35 SupFroGR PreCenGR 0.33 0.33
LingGR CerebR 0.35 ParaHipGL AccumL 0.33
LatOccTmpGL InfTmpGL 0.35 0.35 PosCenGL PreCenGR 0.33
SupFroGR MidFroGR 0.35 0.34 CaudNucR PutR 0.33
SupParLobL AnguGL 0.35 MidFroGL MidFroGR 0.33
ParaHipGL ParaHipGR 0.35 0.34 MidOccTmpGL CunL 0.33
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Table 2. (Continued )

Region 1 Region 2 → ← Region 1 Region 2 → ←
SupParLobL PosCenGL 0.35 0.34 ParaHipGL MidOccTmpGR 0.33
SupOccGL OccpoleL 0.35 0.35 InfOccGL LatOccTmpGR 0.33
OccpoleR LatOccTmpGL 0.35 0.34 SupParLobR PreCenGR 0.33
SupParLobR SupOccGL 0.35 InfTmpGR LatOccTmpGR 0.33
LatOccTmpGR MidOccTmpGR 0.35 0.34 ThalL LingGL 0.33
OccpoleL LatOccTmpGR 0.34 InfOccGR SupOccGL 0.33 0.33
SupParLobL MidFroGL 0.34 SupParLobR PosCenGR 0.33
CaudNucL ThalL 0.34 0.34 MidOccGL LingGL 0.33
InsR AccumL 0.34 SupFroGR MidFroGR 0.33
SupOccGR LingGL 0.34 0.34 InfOccGR MidOccTmpGR 0.33
SupParLobL SupOccGR 0.34 SupOccGL SupParLobR 0.33
SupParLobL LingGL 0.34 SupOccGL MidOccTmpGL 0.33
MidOccGL OccpoleL 0.34 0.34 ParaHipGL MidOccTmpGL 0.33
InfOccGL MidTmpGL 0.34 CunL LingGL 0.33
AnguGL MidOccGL 0.34 InfOccGR MidOccTmpGL 0.33
LatFroOrbGR MidFroOrbGR 0.34 0.34 CerebR CerebL 0.33
SupParLobL MidFroGL 0.34 SupOccGR SupParLobL 0.33
MidFroGL PreCenGR 0.34 0.34 MidFroGL SupParLobL 0.33
SupParLobL MidOccGL 0.34 PreCenGR MidFroGR 0.33
LingGL CerebR 0.34 ThalL SubThaNucR 0.33
SupParLobR PosCenGL 0.34
SupFroGR MidFroGL 0.34
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