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Abstract 
 
We consider exploratory methods for the discovery of cortical functional connectivity. 

Typically, data for the i-th subject ( 1... Si N ) is represented as V TN N

i


X , corresponding to 

brain activity sampled at TN  moments in time from VN  cortical voxels. A widely used method 

of analysis first concatenates all subjects along the temporal dimension, and then performs an 
independent component analysis (ICA) for estimating the common cortical patterns of 
functional connectivity. There exist many other interesting variations of this technique, as 
reviewed in [Calhoun et al. 2009 Neuroimage 45: S163-172]. 

We present methods for the more general problem of discovering functional 
connectivity occurring at all possible time lags. For this purpose, brain activity is viewed as a 
function of space and time, which allows the use of the relatively new techniques of functional 
data analysis [Ramsay & Silverman 2005: Functional data analysis. New York: Springer]. In 

essence, our method first vectorizes the data from each subject   1T VN Nvec
i


X , which 

constitutes the natural discrete representation of a function of several variables, followed by 
concatenation of all subjects. The singular value decomposition (SVD), as well as the ICA of 
this new matrix will reveal spatio-temporal patterns of connectivity. As a further example, in 

the case of EEG neuroimaging, VN N

i


X  may represent spectral density for electric 

neuronal activity at N
  discrete frequencies from VN  cortical voxels, from the i-th EEG epoch. 

In this case our functional data analysis approach would reveal coupling of brain regions at 
possibly different frequencies. 
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1. Introduction 
 
For the sake of simplicity, a particular example will be used for explaining the methods. 

Straightforward generalizations will be considered in a later Section. 
 

Let V TN N

i


X  denote brain activity for the i-th subject ( 1... Si N ), sampled at TN  

moments in time from VN  cortical voxels. Based on such data, it is of interest to find the 

interactions between different brain regions. This is the topic of “functional connectivity”. 
 
Many methods of analysis exist for the study of functional connectivity. Recent reviews 

are presented in [1] and [2]. Two methods are of particular interest here: one based on the 
SVD [3], and the other based on group ICA [1]. 

 
Let: 

Eq. 1    
1 2 ... V S T

s

N N N

N


 Y X X X  

denote the matrix obtained by the temporal concatenation of the subjects. It will be required 
that the elements of each row have zero mean, i.e. that the concatenated time series at each 
voxel have zero mean: 
Eq. 2 Y1 0  

where 1  and 0  are vectors of ones and zeros, respectively. 
 
Consider the spatial covariance matrix: 

Eq. 3 


 
1

V VN NT

S TN N
YYC YY  

and its corresponding correlation matrix: 

Eq. 4    
 

       
1 2 1 2

diag diagYY YY YY YYR C C C  

where the “diag” operator returns a diagonal matrix by setting all off-diagonal elements to 
zero. 

 
Then, as demonstrated by Worsley et al [3], the largest normalized eigenvector of YYR , 

denoted as 


1VN
Y , will detect regions of correlated voxels. In practice, this is achieved by 

thresholding the brain image corresponding to the eigenvector. Those elements with large 
absolute value will convey information on the correlated brain regions. The method of 
Worsley et al [3] was recently extended for the detection of senders, hubs, and receivers of 
cortical information transactions [4]. 

 
A commonly used related approach is known as group ICA with temporal concatenation 

[1], where the matrix Y  in Eq. 1, which must satisfy the condition in Eq. 2, can be factorized 
as: 

Eq. 5  Y YY A S  

with 
 VN K

YA ,  
 S TK N N

YS , and ( )K rank Y  denoting the number of components. This 

form of factorization is typical with EEG related data, while the factorization for the 
transposed of Y is typical of fMRI data (see e.g. [5]). Ideally, the K time series in the matrix YS  

should be statistically independent in a strict sense, which can be approximately achieved in 
many different ways (see e.g. [6]). The columns of the matrix YA  contain the spatial 

components, where each one provides information on the correlated brain regions. 
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Note: The temporal concatenation of data in Eq. 1 is just one possibility. Spatial 

concatenation is another example. Other data organization schemes are also possible, such as 
the three dimensional array in tensorial or PARAFAC analyses (see review in e.g. [1]). 

 
These methodologies are of proven value in the discovery of functional connectivity. 

When they are interpreted from the point of view of functional data analysis [7], new 
generalizations can be derived, giving detailed temporal information about the nature of the 
connectivity patterns. The aim of this study is to present a functional data analysis approach 
to functional connectivity that allows the discovery of brain interactions across space (cortical 
locations), time, and frequency. 

 
 
2. Functional data analysis perspective 
 
Typically, measures of connectivity are based on the “similarity” between the time series 

recorded at two different locations. A simple similarity index is, for instance, the cross-
correlation coefficient. However, it is nearly impossible to analyze the massive number of 
similarities when one considers all possible pairs of voxels at all possible time lags. 

 
A solution to this problem can be obtained by considering the basic data as a function of 

several variables: space (cortical voxels) and time. This is the approach used in functional 
data analysis [7]. The data from each subject, consisting of brain activity, is now represented 
as a vector: 

Eq. 6 
 

  
1T VV T N NN N vec

i iX X  

where the “vec” operator transforms a matrix into a vector by stacking the columns of the 
matrix one underneath the other [8]. Thus, the elements of the vector correspond to brain 
activity values sampled at points in the (space, time) hyperplane. 

 
The new group data matrix is now defined as follows: 

Eq. 7    
 1 2 ... T V S

S

N N Nvec vec vec
NZ X X X  

 
This is the basic idea behind functional data analysis, and it may seem deceptively 

simple, but in fact it is radically different from any other published form of group analysis [1], 
[9], [10]. 

 
3. The functional singular value decomposition (fSVD) approach 
 
Here we apply the SVD method described in [3] to the functional data defined in Eq. 7. 

The first requirement is to center the data to have zero mean value for the elements of each 
row, such that: 
Eq. 8 Z1 0  

as in Eq. 2. Next, consider the very high dimensional covariance matrix: 

   
 

1
T V T VN N N NT

SN
ZZC ZZ  

and its corresponding correlation matrix: 

Eq. 9    
 

       
1 2 1 2

diag diagZZ ZZ ZZ ZZR C C C  
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Then, based on the method of Worsley et al [3], the largest normalized eigenvector of 

ZZR , denoted as  


1T VN N
Z , will detect the time course of the regions of correlated voxels. 

In practice, this is achieved by thresholding the time varying brain images corresponding to 
the eigenvector. Those elements with large absolute value will convey information on the time 
course of the correlated brain regions. 

 
3.1. Interpretation example 
 
For instance, after appropriately thresholding Z , if brain region A at an early latency  A  

has high values, and is followed by high values in a different brain region B at a later latency 
 B , then the interpretation is that brain regions A and B are cross-correlated with the time lag 

 A B . 

 
Such cross-spatial and cross-temporal connections can be exposed without having to 

explore nor calculate and analyze explicitly all pairwise cross-correlations. 
 
3.2. A practical algorithm 
 
With respect to the practical aspect of computations, note that it is not necessary to 

perform the SVD on the very high dimensional correlation matrix ZZR . All that is needed is the 

largest left eigenvector of the matrix: 

Eq. 10      
   

1 2
T V SN N N

diag ZZU C Z  

where Z  must satisfy Eq. 8. Typically,  S T VN N N , which allows for a very efficient 

calculation, using for instance, the iterative power method. 
 
4. The functional independent component analysis (fICA) approach 
 
Consider the functional data matrix defined in Eq. 7, satisfying Eq. 8. The functional ICA 

model is: 

Eq. 11  Z ZZ A S  

with  
 T VN N K

ZA , 
 SK N

ZS , and  ( )K rank Z  denoting the number of components. As above 

(see Eq. 5), it is required that the K rows in the matrix ZS  should be statistically independent 

in a strict sense, which can be approximately achieved in many different ways (see e.g. [6]). 
Thus, each component, corresponding to a column of the matrix ZA , conveys information on 

the time course of the correlated brain regions related to that component. This means that the 
interpretation explained above in Subsection 3.1 applies for each independent component 
here. 

 
5. Generalizations 
 
The methods presented here can be applied to other brain activity data, especially when 

using an EEG tomography such as LORETA [11-13]. 
 

In one example the basic data VN N

i


X  may represent spectral density for electric 

neuronal activity at N
  discrete frequencies from VN  cortical voxels, from the i-th EEG epoch. 

In this case our functional data analysis approach would reveal coupling of brain regions at 
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possibly different frequencies. For instance, the method may reveal coupling of frontal gamma 
activity with occipital theta activity. 

 
In an event related potential (ERP) experiment, when analyzing the collection of single 

trial epochs, a time-varying spectral analysis will produce extremely high dimensional 
functional data, consisting of spectral density for electric neuronal activity at N


 discrete 

frequencies from VN  cortical voxels, as a function of time (relative to stimulus onset), for each 

stimulus (i.e. each epoch). In this case the functional components, either with fSVD or fICA 
may reveal coupling of different frequencies at different moments in time between different 
brain regions. 
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