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1. Abstract 
 
This paper deals with the EEG/MEG neuroimaging problem: given measurements of 

scalp electric potential differences (EEG: electroencephalogram) and extracranial magnetic 
fields (MEG: magnetoencephalogram), find the 3D distribution of the generating electric 
neuronal activity. This problem has no unique solution. Only particular solutions with 
“good” localization properties are of interest, since neuroimaging is concerned with the 
localization of brain function. In this paper, a general family of linear imaging methods with 
exact, zero error localization to point-test sources is presented. One particular member of 
this family is sLORETA (standardized low resolution brain electromagnetic tomography; 
Pascual-Marqui, Methods Find. Exp. Clin. Pharmacol. 2002, 24D:5-12; 
http://www.unizh.ch/keyinst/NewLORETA/sLORETA/sLORETA-Math01.pdf). It is shown here that sLORETA has no 
localization bias in the presence of measurement and biological noise. Another member of 
this family, denoted as eLORETA (exact low resolution brain electromagnetic tomography; 
Pascual-Marqui 2005: http://www.research-projects.unizh.ch/p6990.htm), is a genuine inverse solution (not 
merely a linear imaging method) with exact, zero error localization in the presence of 
measurement and structured biological noise. The general family of imaging methods is 
further extended to include data-dependent (adaptive) quasi-linear imaging methods, also 
with the exact, zero error localization property. 

 

2. The forward equation 
 
Details on the electrophysiology and physics of EEG/MEG generation can be found in 

Mitzdorf (1985), Llinas (1988), Martin (1991), Hämäläinen et al (1993), Haalman and Vaadia 
(1997) , Sukov and Barth (1998), Dale et al (2000), Baillet et al. (2001). The basic underlying 
physics can be studied in Sarvas (1987). 

 
Consider the forward EEG equation: 

Eq. 1:   c= +KJ 1Φ
where the vector  contains instantaneous scalp electric potential differences 
measured at  electrodes with respect to a single common reference electrode (e.g., the 
reference can be linked earlobes, the toe, or one of the electrodes included in ); the matrix 

 is the lead field matrix corresponding to  voxels;  is the current 
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density; c is a scalar accounting for the physics nature of electric potentials which are 
determined up to an arbitrary constant; and 1 denotes a vector of ones, in this case . 
Typically , and . 
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In Eq. 1, the structure of K is: 

Eq. 2:   
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where the superscript “T” denotes transposition; and , for  and for 3 1
ij

×∈k 1... Ei =
1... Vj N= , corresponds to the scalp potentials at the i-th electrode due to three orthogonal 

unit strength dipoles at voxel j, each one oriented along the coordinate axes x, y, and z. For 
instance, in infinite homogeneous medium with conductivity : σ

Eq. 3:  
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where  are position vectors for the i-th scalp electrode and for the j-th voxel, 
respectively. As another example, for the case of a homogeneous conducting sphere in air, 
the lead field is: 

Ei

Eq. 4:  
( ) ( )

( )3

1 2
4ij

Ei Vj Ei Ei Vj Ei Vj Ei

T
Ei Ei Vj Ei Ei Vj Ei Ei VjEi Vj

πσ

⎡ ⎤− − + −
⎢ ⎥= +
⎢ ⎥⎡ ⎤− − + −− ⎣ ⎦⎣ ⎦

r r r r r r r r

r r r r r r r r rr r
k  

 
In the previous equations, the following notation was used: 

Eq. 5:  ( ) (2 T Ttr tr= =X X X XX )  

where tr denotes the trace, and X is any matrix or vector. If X is a vector, then this is the 
squared Euclidean  norm; if X is a matrix, then this is the squared Frobenius norm. 2L

 
Note that K can also be conveniently written as: 

Eq. 6:   ( )1 2 3, , , ... ,
VN=K K K K K

where , for 3EN
j

×∈K 1... Vj N= , is defined as: 

Eq. 7:   
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Ideally, the lead field should correspond to the real head (with realistic geometry and 

conductivities). For the EEG problem, the voxels should correspond to cortical grey matter. 
For other situations (e.g. EKG), appropriate volume conductor models and solution spaces 
should be used. 
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In Eq. 1, J is structured as: 

Eq. 8:  
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where  denotes the current density at the i-th voxel. 3 1
i

×∈j
 

3. The reference electrode problem 
 
As a first step, before even stating the inverse problem, the reference electrode 

problem will be solved, by estimating “c” in Eq. 1. Given  and , the reference electrode 
problem is: 

Φ KJ

Eq. 9:  
2min

c
c− −KJ 1Φ  

The solution is: 

Eq. 10:  ( )
T

Tc = −1 KJ
1 1

Φ  

Plugging Eq. 10 into Eq. 1 gives: 
Eq. 11:   =H HKΦ J
where: 

Eq. 12:  
T

T= − 11H I
1 1

 

is the average reference operator, also known as the centering matrix, and  is the 
identity matrix. 

E EN N×∈I

 
This result establishes the fact that any inverse solution (of any form, not necessarily 

linear) will not depend on the reference electrode. 
 
Henceforth, it will be assumed that the EEG measurements and the lead field are 

average reference transformed, i.e.: 

Eq. 13:   
←⎧ ⎫

⎨ ⎬←⎩ ⎭

H
K HK
Φ Φ

and Eq. 1 will be rewritten as: 
Eq. 14:   = KJΦ

 
Note that H plays the role of the identity matrix for EEG data. It actually is the 

identity matrix, except for a null eigenvalue corresponding to an eigenvector of ones (see Eq. 
12), accounting for the reference electrode constant. 
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4. A family of discrete, 3D distributed linear imaging methods with 
exact, zero error localization 
 
The family of linear imaging methods considered here is parameterized by a 

symmetric matrix , such that: E EN N×∈C

Eq. 15:  ( ) 1 2ˆ T T
i i i i Φ

−⎡ ⎤= ⎢ ⎥⎣ ⎦
j K CK K C  

where  is any estimator for the electric neuronal activity at the i-th voxel, not 
necessarily current density (e.g. it can be standardized current density, as in Pascual-Marqui 
2002). 

3 1
î

×∈j

 
Note that in the case of MEG, C must be non-singular. In the case of EEG, C must be 

of rank ( , with its null eigenvector equal to a vector of ones (accounting for the 
reference constant). 

)

)

1EN −

 
Note that in Eq. 15, the symmetric matrix (  is of dimension , and the 

notation 

T
i iK CK 3 3×

( ) 1 2T
i i

−⎡
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K CK ⎤
⎥  indicates the symmetric square root inverse. In the particular case of 

MEG in a spherical head model, the matrix  is of rank two, and its symmetric 

square root pseudo-inverse must be used. 
( )i iKTK C

 
Localization inference in neuroimaging is typically based on the search for large 

values of the power (squared amplitude) of the estimator for electric neuronal activity, i.e. 
2

îj . 

 
In order to test the localization properties of a linear imaging method, consider the 

case when the actual source is an arbitrary point-test source at the j-th voxel. This means 
that: 
Eq. 16:   jΦ = K A

where  is defined in jK Eq. 7 above, and  is an arbitrary non-zero vector (containing 
the dipole moments). 

3 1×∈A

 
Plugging Eq. 16 into Eq. 15 and taking the squared amplitude gives: 

Eq. 17:  ( )2ˆ T T T T
i j i i i i

+
= jj A K CK K CK K CK A  

where the superscript “+” denotes the Moore-Penrose pseudoinverse (which is equal to the 
common inverse if the matrix is non-singular). 
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Following the same type of derivations as in Greenblatt et al (2005), the derivative of 

2

îj  in Eq. 17 with respect to  is: iK

Eq. 18:  
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It can be easily shown that this derivative is zero when  is equal to , 

demonstrating that this family of methods produces exactly localized maxima to point-test 
sources anywhere in the brain, i.e. this family of linear imaging methods attains exact, zero 
error localization. 

iK jK

 
Note that the choice: 

Eq. 19:   ( )T α
+

= +C KK H

gives the sLORETA method (Pascual-Marqui 2002), where  is the regularization 
parameter. 

0α ≥

 
Note that these results can be applied in a straightforward manner to the case where 

the current density orientation is known (i.e. known cortical geometry), but with unknown 
current density amplitude. 

 

5. Unbiased localization for sLORETA 
 
As in the previous section, consider the case when the actual source is any arbitrary 

point-test source at the j-th voxel, but now the measurements are contaminated with 
measurement and biological noise. This means that: 
Eq. 20:   j ε εΦΦ = + + JK A K
where  represents the measurement noise and  the biological noise. It will be assumed 
that both noise sources are zero mean and independent, with covariance matrices: 

εΦ ε J

Eq. 21:   ( )cov ε σΦ Φ= H

Eq. 22:   ( )cov ε σ=J JI

This gives the following expected covariance matrix for the measurements: 
Eq. 23:   ( )cov T T T

j j σ σΦ ΦΦ Σ= = + + JK AA K H KK
 
The corresponding expected square amplitude then is: 

Eq. 24:  
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The derivative of 
2

îE ⎛ ⎞⎜ ⎟
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j  in Eq. 24 with respect to  is: iK
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It can be easily shown that the derivative in Eq. 25 is zero for the sLORETA case, 

when the parameter matrix is: 

Eq. 26:  T σ
σ

Φ

+
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠J

C KK H  

and when  is equal to , thus demonstrating that sLORETA produces exactly localized 
maxima to point-test sources anywhere in the brain, even in the presence of noise, i.e. 
sLORETA is unbiased. 

iK jK

 
This new result is to be contrasted with those published by Sekihara et al (2005) and 

Greenblatt et al (2005). They showed that under pure measurement noise, sLORETA is 
biased, and only attains exact localization under ideal conditions of no noise. They did not 
consider the more realistic case where the brain in general is always active, as modeled here 
by the biological noise. Under these arguably much more realistic conditions, sLORETA is 
unbiased. 

 

6. eLORETA: exact low resolution brain electromagnetic tomography 
 
The eLORETA method was developed and officially recorded as a working project at 

the University of Zurich in March 2005. A description (including the official registration 
date) can be obtained from the University of Zurich server at: 
http://www.research-projects.unizh.ch/p6990.htm 

 
An additional reference to eLORETA is: 

Roberto D. Pascual-Marqui, Alberto D. Pascual-Montano, Dietrich Lehmann, Kieko Kochi, 
Michaela Esslen, Lutz Jancke, Peter Anderer, Bernd Saletu, Hideaki Tanaka, Koichi Hirata, E. 
Roy John, Leslie Prichep. Exact low resolution brain electromagnetic tomography 
(eLORETA). Neuroimage 2006, Vol 31, Suppl. 1, page:S86 

 
Consider the general weighted minimum norm solution (see, e.g. Pascual-Marqui 

1999): 
Eq. 27:  ˆ Φ=J T  

with: 

Eq. 28:   ( )1 1T T α
+− −= +T W K KW K H

where  denotes the symmetric weight matrix, and  denotes the 
regularization parameter. 

( ) (3 3V VN N×∈W ) 0α ≥
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The particular case of interest here will only consider a structured block-diagonal 
weight matrix W, where all matrix elements are zero except for the diagonal sub-blocks 
denoted as , the i-th voxel, with . 3 3

i
×∈W 1... Vi N=

 
Note that for , this is a genuine solution, in the sense that 0α = Ĵ  is a direct 

estimator for the current density, and it reproduces exactly the measurements. In other 
words, for : 0α =

Eq. 29:   
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The current density estimator at the i-th voxel then is: 

Eq. 30:   ( )1 1ˆ T T
i i i α Φ

+− −= +j W K KW K H

 
Based on the results of the previous section (entitled “A family of discrete, 3D 

distributed linear imaging methods with exact, zero error localization”), by comparing Eq. 30 
with Eq. 15, exact, zero error localization is attained with weights satisfying: 

Eq. 31:  ( )
1 2

1T T
i i iα

+−⎡ ⎤= +⎢ ⎥⎣ ⎦
W K KW K H K  

 
This result is easily derived by noting that Eq. 30 matches Eq. 15 when: 

Eq. 32:   ( )1 T α
+−← +C KW K H

and: 

Eq. 33:  ( ) 1 21 T
i i i

−− ←W K CK  

 
The weights satisfying the system of equations given by Eq. 31 define the eLORETA 

method, which is a genuine solution to the inverse problem (not merely a linear imaging 
method), and attains exact, zero error localization. Additionally, eLORETA is standardized 
by definition, meaning that its theoretical expected variance is unity. 

 
Furthermore, following the derivations as in the previous section entitled “Unbiased 

localization for sLORETA”, it can easily be shown that eLORETA is unbiased in the presence 
of measurement and structured biological noise of the form: 
Eq. 34:   ( ) 1cov ε σ −=J JW

 
Unfortunately, such a structure on background brain activity (the so-called biological 

noise) is determined by the physics properties of the head model and the laws of 
electrodynamics, and might have little relation to electrophysiological reality. This might be 
seen as a disadvantage of eLORETA as compared to sLORETA. 
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7. An alternative theoretical approach to eLORETA, including 
numerical methods 
 

7.1. The classical weighted minimum norm tomography 
 
Consider the regularized, weighted minimum norm problem: 

Eq. 35:  
2min Tα⎡ ⎤− +⎣ ⎦J

KJ J WJΦ
)

 

where  denotes a given symmetric weight matrix, and  denotes the 
regularization parameter. 

( ) (3 3V VN N×∈W 0α ≥

 
The solution is linear: 

Eq. 36:  ˆ =J TΦ  

with: 

Eq. 37:   ( )1 1T T α
+− −= +T W K KW K H

where the superscript “+” denotes the Moore-Penrose pseudoinverse (which is equal to the 
common inverse if the matrix is non-singular). 

 
The choice  gives the classical minimum norm solution. This was the first 2D 

distributed linear solution introduced in MEG by Hämäläinen and Ilmoniemi (1984). Some 
of the images in that publication show that when the solution space is parallel to the 
measurement space, point-test sources are correctly localized, albeit with low resolution. 

=W I

 
However, when the solution space is extended to 3D, the minimum norm solution is 

utterly incapable of correct localization of depth. This was clarified in Pascual-Marqui 
(1999), where it was shown that the minimum norm solution is harmonic, and harmonic 
functions attain their extreme values on the boundary of their domain of definition. This 
means that deep sources are always incorrectly localized to the outermost cortex. 

 
Another popular choice is depth weighting for the 3D solution space, i.e. larger 

weights are assigned to deeper sources, with the hope of correcting depth localization error. 
These solutions achieve lower localization error than the classical minimum norm, but their 
errors are still significant, no matter what inverse power for depth weighting is used. 

 
The weighted minimum norm method that uses combined depth weighting and 

Laplacian smoothing, known as LORETA (low resolution brain electromagnetic 
tomography; Pascual-Marqui et al 1994), achieved the lowest localization error up to the 
present, among linear solutions. Yet, the method has non-zero error, but quite lower than 
the two previous methods. 
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7.2. eLORETA: optimal weights that produce exact localization 
 
The regularized problem in Eq. 35 was presented from a “functional analysis” point of 

view. Alternatively, a Bayesian point of view renders the same formulation, where the 
quadratic functional in Eq. 35 is part of the posterior density, with: 
Eq. 38:   noise α= HΦΣ
being the covariance matrix for the noise in the measurements, and: 
Eq. 39:   1−=J WΣ
being the “a priori” covariance matrix for the current density J. 

 
Based on the linear relation in Eq. 14, extending it to include possible additive noise 

in the measurements, making use of Eq. 38 and Eq. 39, and assuming independence of 
neuronal activity and measurement noise, the covariance matrix for the electric potential is: 
Eq. 40:   1T noise T α−= + = +JK K KW K HΦ ΦΣ Σ Σ

 
Based on the linear relation in Eq. 36, and making use of Eq. 40, the covariance 

matrix for the estimated current density is: 

Eq. 41:   
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When W is restricted to be a block-diagonal matrix, with the j-th block denoted as 

, for 3 3
j

×∈W 1... Vj N= , then the solution to the problem: 

Eq. 42:  ( )
22

1 1
ˆmin min T T α

+− −− = − +
JW W

I I W K KW K H KWΣ 1−  

produces an inverse solution (Eq. 36 and Eq. 37) with zero localization error. 
 
Zero localization error is defined in this study as follows: For a given point-test source 

anywhere in the solution space, with arbitrary orientation, compute the extracranial 
EEG/MEG measurements, give them to the linear inverse solution, threshold the inverse 
solution to the absolute maximum of the amplitude of the current density vector field, and 
compute as localization error the distance between the actual point-test source and the 
position of the absolute maximum. 

 
This property has not been achieved by any previously published discrete 3D 

distributed linear solution. 
 
Note that the covariance matrix for the estimated current density (Eq. 41) is not the 

resolution matrix of Backus and Gilbert. 
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The solution to the problem in Eq. 42 satisfies the following set of matrix equations: 

Eq. 43:  ( )2 1 , 1...T T
j j j Vfor j Nα

+−= + =W K KW K H K  

where the matrix  is defined in jK Eq. 7. 
 
The following simple iterative algorithm (in pseudo-code) converges to the block-

diagonal weights W that solve the problem in Eq. 42 and equivalently satisfies Eq. 43: 
1. Given the average reference lead field K and a regularization parameter , initialize 0α ≥
the block-diagonal weight matrix W as the identity matrix. 
2. Set: 

Eq. 44:   ( )1 T α
+−= +M KW K H

3. For 1... Vj N=  do: 

Eq. 45:   
SymmSqrtT

j j j⎡ ⎤= ⎣ ⎦W K MK

Comment:  denotes the symmetric square root of the matrix . 
SymmSqrtT

j j⎡ ⎤⎣ ⎦K MK T
j j⎡ ⎤⎣ ⎦K MK

4. Go to step 2 until convergence (negligible changes in W). 
 
Finally, the block-diagonal matrix W produced by this algorithm should be plugged 

into the pseudoinverse matrix T (in Eq. 37). This is denoted as the eLORETA inverse 
solution. 

 

7.3. eLORETA for EEG with known current density vector orientation, 
unknown amplitude 

 
The average reference forward EEG equation (Eq. 14) is now written as: 

Eq. 46:   Φ = =KJ KNL
with: 
Eq. 47:  =J NL  

where  contains the current density amplitudes at each voxel, and  
contains the outward normal vectors to the cortical surface at each voxel. Note that the 
columns of N, denoted as  for 

1VN ×∈L ( )3 V VN N×∈N

( )3 1VN
j

×∈N 1... Vj N=  are: 
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where  is a vector of zeros, and  is the normal vector at the j-th voxel, i.e.: 3 1×∈0 3 1
j

×∈n

Eq. 49:   1T
j j =n n

 
In this section, N is assumed to be known. 
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The regularized, weighted minimum norm problem is: 

Eq. 50:  
2min TαΦ⎡ ⎤− +⎣ ⎦L

KNL L WL

+

1−

 

where  in this case denotes a given symmetric weight matrix, and  denotes 
the regularization parameter. 

V VN N×∈W 0α >

 
The solution is linear: 

Eq. 51:   ˆ Φ=L T
with: 

Eq. 52:   ( ) ( ) ( )( )1 1T T α
+

− −= +T W KN KN W KN H

 
Following similar lines of reasoning as in the previous section, the covariance matrix 

for the electric potential is: 
Eq. 53:   ( ) ( ) ( ) ( )1T Tnoise αΦ ΦΣ Σ Σ −= + =LKN KN KN W KN H
where: 
Eq. 54:   1Σ −=L W
is the “a priori” covariance matrix for the current density amplitudes L. In addition, the 
covariance matrix for the estimated current density is: 

Eq. 55:   ( ) ( ) ( )( ) ( )1 1
ˆ

T T αΣ
+

− −= +
L

W KN KN W KN H KN W

 
When W is restricted to be a diagonal matrix, with the j-th element denoted as , 

for 
jW

1... Vj N= , then the solution to the problem: 

Eq. 56:  ( ) ( ) ( )( ) ( )
2

2 1 1
ˆmin min T T αΣ

+
− −− = − +

LW W
I I W KN KN W KN H KN W 1−  

produces an inverse solution (Eq. 51 and Eq. 52) with zero localization error. 
 
The solution to the problem in Eq. 56 satisfies the following set of equations: 

Eq. 57:  ( ) ( ) ( )1 , 1...T T
j Vj j

for j Nα
+−= +W KN KW K H KN =  

where the vector  corresponds to the j-th column of . ( ) 1EN
j

×∈KN ( )KN

 
The following simple iterative algorithm (in pseudo-code) converges to the diagonal 

weights W that solve the problem in Eq. 56 and equivalently satisfies Eq. 57: 
1. Given the average reference lead field K, the cortical normal vectors N, and a 
regularization parameter , initialize the diagonal weight matrix W as the identity 0α ≥
matrix. 
2. Set: 

Eq. 58:   ( ) ( )( )1 T α
+

−= +M KN W KN H

3. For 1... Vj N=  do: 

Eq. 59:  ( ) ( )T
j j j

=W KN M KN  

4. Go to step 2 until convergence (negligible changes in W). 
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Finally, the diagonal matrix W produced by this algorithm should be plugged into the 
pseudoinverse matrix T (in Eq. 52). This is denoted as the eLORETA inverse solution. 

 

7.4. eLORETA for MEG with fully unknown current density vector field 
 
This case follows the same derivations as given above for the case “EEG with fully 

unknown current density vector field”. 
 
The forward MEG equation has similar form to Eq. 14. For the MEG case,  would 

represent the magnetometer or gradiometer measurements,  would represent the 
magnetic lead field, and  is exactly the same current density vector field (common to both 
EEG and MEG). 

Φ
K

J

 
In the MEG case, there is no reference electrode constant to be accounted for. The 

consequence is that the EEG regularization term  appearing in some of the equations 

above (

(αH)

i

3

Eq. 37 to Eq. 44) must be changed to the MEG regularization term ( , where I is 
the identity matrix. 

)αI

 
In the case of spherical head models, care must be taken in the MEG case because 

only the tangential part of the current density vector field is non-silent. The same occurs in 
realistic head models, in areas that are quasi-spherical. This implies that all calculations at 
the voxel level have only rank=2 for MEG. Therefore, inverse and symmetric square-root 
matrix computations should be made via the singular value decomposition (SVD), ignoring 
the smallest eigenvalue if it is numerically negligible relative to the largest eigenvalue. 

 
In particular, consider the algorithm involving Eq. 44 and Eq. 45. Note that Eq. 44 

makes use of the inverse of the weight matrix, which consists of the inverses of all  
block-diagonal submatrices. In the quasi-spherical MEG case, these submatrices have 
rank=2. Referring to 

3 3×

Eq. 45, consider the SVD of the matrix of interest: 

Eq. 60:   
3

1

T T
j j i i

i

λ Γ Γ
=

⎡ ⎤ =⎣ ⎦ ∑K MK

where  are the orthonormal eigenvectors, and  are the eigenvalues. Then 3 1
iΓ ×∈ 1 2λ λ λ≥ ≥

Eq. 45 should be replaced by: 

Eq. 61:  

( )
2

3 1
1

3

1

,

,

T
i i i

SymmSqrt iT
j j j

T
i i i

i

if

otherwise

λ λ λ

λ

Γ Γ

Γ Γ

=

=

⎧ <⎪⎪⎡ ⎤= = ⎨⎣ ⎦
⎪
⎪⎩

∑

∑
W K MK

ε

ε

 

where  depends on the numerical precision of the calculations (typically ). ε 510−≤
 
Moreover, the inverse of  (see jW Eq. 61), which is needed in Eq. 44, and later on after 

convergence in Eq. 37 for the final inverse solution, should be calculated as the Moore-
Penrose pseudoinverse (ignoring the smallest eigenvalue if it is numerically negligible 
relative to the largest eigenvalue). 
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Given these provisions and modifications, the discrete 3D distributed linear solution 
known as eLORETA is given by Eq. 36 and Eq. 37 with the weights defined by the solution 
the problem in Eq. 42, obtained with the algorithm specified by Eq. 44 and Eq. 45. 

 

7.5. eLORETA for MEG with known current density vector orientation, 
unknown amplitude 

 
This case follows the same derivations as given above for the case “EEG with known 

current density vector orientation, unknown amplitude”. 
 
The forward MEG equation in this case has similar form to Eq. 46. For the MEG case, 

 would represent the magnetometer or gradiometer measurements, K  would represent 
the magnetic lead field, N would contain the outward normal vectors to the cortical surface 
at each voxel (assumed known), and L contains exactly the same current density amplitudes 
(common to both EEG and MEG). 

Φ

 
As explained previously, the EEG regularization term (  appearing in some of the 

equations above (

)αH

Eq. 52 to Eq. 58) must be changed to the MEG regularization term , 
where I is the identity matrix. 

( )αI

 
The existence of silent MEG sources might occur in practice, especially for quasi-

radial sources in quasi-spherical head geometry. Care should be taken to exclude these 
possible silent sources from the solution space, even if this implies that there are missing 
cortical patches for the MEG solution space. 

 
Given these provisions and modifications, the discrete 3D distributed linear solution 

known as eLORETA is given by Eq. 51 and Eq. 52 with the weights defined by the solution to 
the problem in Eq. 56, obtained with the algorithm specified by Eq. 58 and Eq. 59. 

 
The general family of linear imaging methods is further extended to include data-

dependent (adaptive) quasi-linear imaging methods, also with the exact, zero error 
localization property. 

 

8. A family of discrete, 3D distributed quasi-linear imaging methods 
with exact, zero error localization: data-dependent (adaptive) 
methods 
 
Formally, this family of methods is identical to the one defined by Eq. 15, except that 

now, instead of defining the parameter matrix C as a given, fixed matrix, it can, for example, 
be taken as the inverse covariance matrix for the measurements, i.e: 

Eq. 62:  ( )( )
1

1 KN
T

k k
kKN

Φ Φ Φ Φ
+

=

⎡ ⎤
= − −⎢ ⎥
⎣ ⎦

∑C  

where the subscript “k” may index time or any other form of repeated measurements for the 
data. Note that in the case of MEG, C must be non-singular. In the case of EEG, C must be of 
rank , with its null eigenvector equal to a vector of ones (accounting for the ( 1EN − )
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reference constant). If the data so happens to be insufficient, i.e. , or the data 
happens to be almost deterministic, resulting in a low rank matrix C, then the method will 
not have exact, zero error localization. 

KN N≤ E

 
Eq. 62 corresponds to a single example illustrating the “adaptive” character of this 

family of methods. Any data dependent matrix C can be used, such as, for example, the 
squared inverse covariance matrix for the measurements. 

 
Rigorously speaking, this method is not linear because the transformation depends 

on the data on which imaging is being carried out. 
 

9. Conclusions 
 
In Pascual-Marqui (1995, 1999, and 2002), the following arguments were used for 

selecting the best discrete, 3D distributed, linear tomography: 
1. The aim of functional imaging is localization. Therefore, the best tomography is the one 
with minimum localization error. 
2. In a linear tomography, the localization properties can be determined by using point-test 
sources, based on the principles of linearity and superposition. 
3. If a linear tomography is incapable of zero error localization to point-test sources that are 
active one at a time, then the tomography will certainly be incapable of zero error 
localization to two or more simultaneously active sources. 

 
Here we present a general family of linear imaging methods with exact, zero error 

localization to point-test sources. 
 
We show that one particular member of this family, sLORETA (Pascual-Marqui 2002) 

has no localization bias in the presence of measurement noise and biological noise. 
 
We introduce a new particular member of this family, denoted eLORETA. This is a 

genuine inverse solution and not merely a linear imaging method. We show that it has 
exact, zero error localization in the presence of measurement and structured biological 
noise. We derive and construct the method using two different approaches, and give 
practical algorithms for its estimation. 

 
We present a general family of quasi-linear imaging methods that are data-dependent 

(adaptive). We also show that they are endowed with the exact, zero error localization 
property. 

 
These results are expected to be of value to the EEG/MEG neuroimaging community. 
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