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Seizures can occur spontaneously and in a recurrent manner, which defines epilepsy; or they can be induced in a normal brain

under a variety of conditions in most neuronal networks and species from flies to humans. Such universality raises the possi-

bility that invariant properties exist that characterize seizures under different physiological and pathological conditions. Here, we

analysed seizure dynamics mathematically and established a taxonomy of seizures based on first principles. For the predominant

seizure class we developed a generic model called Epileptor. As an experimental model system, we used ictal-like discharges

induced in vitro in mouse hippocampi. We show that only five state variables linked by integral-differential equations are

sufficient to describe the onset, time course and offset of ictal-like discharges as well as their recurrence. Two state variables are

responsible for generating rapid discharges (fast time scale), two for spike and wave events (intermediate time scale) and one

for the control of time course, including the alternation between ‘normal’ and ictal periods (slow time scale). We propose that

normal and ictal activities coexist: a separatrix acts as a barrier (or seizure threshold) between these states. Seizure onset is

reached upon the collision of normal brain trajectories with the separatrix. We show theoretically and experimentally how a

system can be pushed toward seizure under a wide variety of conditions. Within our experimental model, the onset and offset of

ictal-like discharges are well-defined mathematical events: a saddle-node and homoclinic bifurcation, respectively. These bifur-

cations necessitate a baseline shift at onset and a logarithmic scaling of interspike intervals at offset. These predictions were not

only confirmed in our in vitro experiments, but also for focal seizures recorded in different syndromes, brain regions and species

(humans and zebrafish). Finally, we identified several possible biophysical parameters contributing to the five state variables in

our model system. We show that these parameters apply to specific experimental conditions and propose that there exists a

wide array of possible biophysical mechanisms for seizure genesis, while preserving central invariant properties. Epileptor and

the seizure taxonomy will guide future modeling and translational research by identifying universal rules governing the initiation

and termination of seizures and predicting the conditions necessary for those transitions.
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Introduction
Epilepsy is characterized by the occurrence of spontaneous

seizures, which arise when large regions of the brain produce un-

controlled, synchronous neural activity. Partial-onset seizures form

the most common form of epilepsy, which is most likely to be

drug-resistant (Brodie et al., 2012). Epilepsy can exist by itself or

be associated to other neurological disorders including Alzheimer’s

disease (Friedman et al., 2012), autism (Robinson, 2012) and

Down’s syndrome (Arya et al., 2011). Despite the fact that so

many different pathologies, conditions and network reorganiza-

tions can result in partial epilepsy (Pitkanen and Sutula, 2002),

one observation is particularly striking: the electrophysiological sig-

nature of different seizures is remarkably similar from case to case,

even among primitive laboratory models. For example, different

seizure-onset patterns are common to different epileptogenic le-

sions (Perucca et al., 2013). Although seven seizure-onset patterns

can be distinguished, two major categories of activities are con-

sistently found: fast oscillations and spikes with or without waves

(Perucca et al., 2013).

Another striking property of seizures across species (from flies to

humans) is the possibility of triggering them in any ‘normal’ brain

using an array of inducing conditions. In humans, sleep depriv-

ation, stress, electroshock treatment or toxins can evoke seizures

(Luttges and McGaugh, 1967; Nakken et al., 2005; Jett, 2012). In

animals, electrical stimulation (kindling) or administration of vari-

ous chemical compounds is commonly used to trigger seizures

in vivo (Raol and Brooks-Kayal, 2012). A large variety of protocols

can be used in vitro to produce ictal-like events, including in

human slices (Huberfeld et al., 2011), demonstrating that even

small neuronal networks can be forced into a ‘seizure’ state.

Although the conditions needed to induce them may be very dif-

ferent, the electrophysiological signature of such seizures is re-

markably similar to those recorded in vivo, including the

presence of fast oscillations and spikes.

As seizures can occur under such diverse conditions, including in

‘normal’ networks, they belong to the dynamic repertoire of brain

activities, as do other types of oscillations (e.g. theta, gamma etc.).

Based on their apparent stereotypy, we hypothesize the existence

of dynamical properties that would be invariant in most spontan-

eous and evoked seizures across brain regions and species. The

notion of invariance is key to our approach. In non-linear dy-

namics, one form of invariance produces bifurcations, which are

transitions from one type of behaviour to another. The most gen-

eric type of bifurcations are local, which are invariant under trans-

formation and can often be described by canonical models

(typically differential equations). Canonical models define the min-

imal requirements necessary for a generic behaviour to arise (Hale

and Koçak, 1991; Kuznetsov, 1998).

In the first part of this article, we test our hypothesis of in-

variance in seizures. We use a simple in vitro model system and

systematically characterize transitions between normal and epi-

leptic states. From this characterization, we develop a taxonomy

of epileptic seizures. For one particularly prominent class of seiz-

ures, we derive the bifurcations at seizure onset and offset and

construct a set of differential equations for the complete seizure

like event (SLE), which defines our model for seizure evolution,

the ‘Epileptor’. This process of developing canonical models

based upon generic properties of a system has been successful

in describing dynamical phenomena such as ferromagnetism,

lasers and superconductivity in physics (Cross and Hohenberg,

1993) and neuronal discharge patterns (spiking and bursting) in

biology (Ermentrout and Terman, 2010). Their interest lies in

their abstract nature, as they do not depend upon a detailed

knowledge/identification of biophysical properties and still

enable the identification of general rules. In the second part of

this article, we test the rules derived from the Epileptor to ac-

count for seizure dynamics in other species and diverse brain

regions for different types of epilepsies in patients. Finally, pre-

dictions from Epileptor will be tested experimentally, particularly

exploring different pathways to seizure onset. Our results reveal

that seizures are a simple, conserved behaviour of brain net-

works that can be systematically classified through their onset

and offset bifurcations, suggesting that anti-seizure strategies

could involve altering dynamical properties rather than specific

pathways.

Materials and methods

Experimental procedures
All protocols were designed and approved according to INSERM and

international guidelines for experimental animal care and use.

Experiments were performed on intact hippocampal-septum prepar-

ations taken from FVB NG mice between postnatal Day 5 and 7 (day

of birth = Day 0). Animals were sacrificed by rapid decapitation and

brains were extracted and transferred to oxygenated (95% O2/5%

CO2) ice cold (4�C) artificial CSF containing: 126 mM NaCl; 3.5 mM

KCl; 2 mM CaCl2; 1.2 mM MgCl2; 25 mM NaHCO3; 1.2 mM

NaHPO4; and 10 mM D-glucose (pH 7.3). The two hemispheres

were separated and dissected to obtain hippocampal-septum prepar-

ations (Khalilov et al., 1997). They contained the hippocampal for-

mation, septum and parts of adjacent neocortical areas. Preparations

were transferred to a chamber with artificial CSF at room tempera-

ture. After at least 2 h incubation, preparations were transferred to

the recording chamber. The hippocampus and the still-connected

septum were placed into two chambers and perfused with different

media (Khalilov et al., 2003). To ensure a high level of oxygenation,

the preparation was perfused at 15 ml/min with artificial CSF warmed

to 33�C bubbled with CO2/O2 gas mixture. The pH was controlled

during each experiment. After a 30 min baseline recording in Mg2 + -

containing artificial CSF solution, the media was changed to one

without added Mg2 + in the chamber containing the hippocampus.

Under this condition, the extracellular concentration of Mg2 + does

not necessarily decrease to zero because there is minimal Mg2 + con-

tamination from other constituents of the artificial CSF, reaching up

to 0.08 mM (Mody et al., 1987). This very low residual level does not

prevent the genesis of epileptiform events. In other experiments, ex-

ternal [K + ] was increased by adding increments of 1 mM KCl to

artificial CSF. Mannitol was added in the same way in increments

of 10 mM. Extracellular recordings were performed using glass extra-

cellular electrodes filled with low Mg2 + artificial CSF placed in the

CA1 stratum oriens region. Field potentials were amplified with

isoDAM-8A differential amplifiers (World Precision Instruments),

which allows direct current (DC) recordings (low pass filter set to
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3 kHz), digitalized with DigiData1200 converter (Molecular Devices)

stored on the hard drive of the personal computer using PClamp 8.2

software (Molecular Devices).

Interneurons and pyramidal cells were blindly recorded or identi-

fied using infrared-differential interference contrast microscopy

through a �60 water immersion objective. Microelectrodes had a

resistance of 4–8 MV, and an internal solution of the following com-

position was used to record excitatory and inhibitory postsynaptic

currents: 135 mM Cs-gluconate; 2 mM MgCl2; 0.1 mM CaCl2;

1 mM EGTA; 2 mM MgATP; 0.5 mM Na4GTP; 10 mM HEPES; and

0.5% biocytin (pH 7.3; 270–280 mOsm). Access resistance was

monitored throughout the experiments (range 12–30 MV).

Experiments were discarded if series resistance increased by more

than 20%. Cell attached recordings were first performed to record

the firing activity of the recorded cells. For voltage clamp experi-

ments, cells were kept at �60 mV or + 10 mV for the analysis of

glutamatergic or gamma aminobutyric acid (GABA)-ergic spontan-

eous postsynaptic currents, respectively. These currents were sensitive

to D-APV/NBQX [D-2-amino-5-phosphonovalerate/2,3-dihydroxy-6-

nitro-7-sulfamoyl-benzo(F)quinoxaline] and bicuculline, antagonists

of NMDA/AMPA (N-methyl-D-aspartate/�-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid) and GABAA receptors respectively.

Some cells were recorded in current clamp to monitor membrane

voltage. In these experiments, the Cs-gluconate-based solution was

replaced by a K-gluconate-based solution. All data were acquired

using an analog-digital converter (Digidata 1322B, Molecular

Devices) and analysed using Clampfit (Molecular Devices) or

Matlab (Mathworks)-based software. During recordings, all neurons

were passively filled with biocytin for post hoc morphological iden-

tification (Quilichini et al., 2012).

Recordings of changes in the extracellular [K + ] were performed

with double-barreled K + -sensitive and reference microelectrodes

manufactured and calibrated as described previously (Heinemann

et al., 1992). In brief, electrodes were pulled from double-barrelled

theta glass. The reference barrel was filled with 154 mM NaCl

solution, the ion sensitive barrel with potassium ionophore I

cocktail A60031 (Fluka) and 100 mM KCl. Ion-sensitive microelec-

trodes with a sensitivity of �8 mV/mM of [K + ] were used for

experiments.

Glass oxygen microelectrodes (OX-10, Unisense) were calibrated

and then placed at a 75–100-mm depth into the CA1 stratum oriens

region of the hippocampus close to the field electrode. The data were

then aquired synchronously with the local field potential.

Changes in NADH (or FAD) fluorescence in hippocampal prepar-

ations were monitored using a 330�40 nm (450�40 nm) band pass

excitation filter and 420 nm (520 nm) long pass filter for emission

(OmegaOptical). The light source was the Intensilight C-HGFI illumin-

ator (Nikon Instruments Europe B.V.) equipped with a mercury arc

lamp. Hippocampi were epi-illuminated and imaged through a Nikon

upright microscope (FN1, Eclipse) with �4/0.10 Nikon Plan objective

(Nikon Instruments Europe B.V.). Images were acquired using a linear,

cooled 12-bit charge-coupled device camera (Sensicam, PCOAG) with

a 640 � 480 digital spatial resolution. Because of a low level of fluor-

escence emission for the fluorophores, NADH and FAD images were

acquired every 600 ms as 8 � 8 binned images. The exposure time was

adjusted to obtain a fluorescence intensity between 2000 and 3000

optical intensity levels. Images were stored in a computer as 12 bit files

(effective spatial resolution of 80� ). The recording sites were ex-

tracted in three to five regions of interest using ImageJ software (de-

veloped by Wayne Rasband, National Institutes of Health). Data were

expressed as the percentage changes in fluorescence over a baseline

[(�F / F) � 100%].

Data analysis

Noise

Physiological recordings contain many types of noise, but for the pur-

pose of the paper we concentrate on the random activity produced by

uncorrelated synaptic events, or ‘synaptic noise’, which is the activity

we modulate by adding KCl to the septum above. We measured sev-

eral characteristics of this noise, comparing the levels just before an

event (pre-ictal, 1–60 s) with the baseline levels (interictal, 460 s).

Both current clamp (mV) and voltage clamp (pA) recordings provide

similar data for noise analysis, though only in the former can cellular

depolarization be assessed.

Raw data

Amplitude distributions were fit to a Gaussian curve. Power spectral

density was obtained using the ‘pwelch’ method in Matlab with

10 000 samples and 100 overlap. Noise colour was tested by fitting

the Power spectral density4 10 Hz to the equation: Power spectral

density = A/frequency^k (Destexhe et al., 2003), with typical values

of k� 1–2.5 for neural noise activity. The White test was used to

determine whether noise increased as seizures approached, i.e. testing

for heteroskedasticity (White, 1980). Cross correlations of the signals

were used to assess whether there was any non-random autocorrel-

ation. Noise intensity was measured as the second moment of the

patch clamp data about the median amplitude (Stacey et al., 2009),

summed over 0.1 s. Total variance in the pre/interictal periods was the

average variance of local field potential of all 0.1 s bins.

Spike time data

In this analysis and elsewhere, ‘spikes’ refer to population transients.

For noise analysis, the detected spikes referred to detected afferent

signals that produced post-synaptic potentials. Raw data were band-

pass filtered (0.5–20 Hz, bidirectional elliptic), passed through a peak

detector and spikes identified by manually assigning a threshold. These

values were chosen manually to maximize automated detection of

post-synaptic potentials based upon visual inspection of 2-s segments.

The time between all successive spikes (interspike interval) was fitted

to the lognormal distribution to assess whether it the spikes occurred

as a Poisson process.

Statistics

Mann Whitney U and t-tests were performed to compare pre- versus

interictal data: raw voltage, spike time, noise intensity and local field

potential voltage.

Interspike interval scaling
All species tested (human, mouse, rat and zebrafish) were analysed in

identical fashion. The spikes detected in this analysis refer to the epi-

leptic ‘spike and slow wave’ activity seen on traditional EEG or local

field potential recordings. The recorded voltage was first bandpassed

(4–100 Hz, bidirectional elliptic) and peaks/troughs of epileptic spikes

identified using the ‘findpeaks’ function (Matlab, Mathworks) and

manual thresholding. The parameters were chosen manually to maxi-

mize automated detection of epileptic spikes (filtering out slow wave)

based upon visual inspection of 10 s segments of recording. A trained

clinical epileptologist manually determined those parameters, as well as

seizure start and end times by visual analysis of every seizure. The

relationship between the interspike intervals and time until the end

of the seizure was evaluated by equation fitting. For this relationship,

the interspike interval was the latency (s) between consecutive spikes,

2212 | Brain 2014: 137; 2210–2230 V. K. Jirsa et al.
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and the time was the duration from the first spike in the pair to the

end of the seizure (s). All times were positive numbers. Data were fit

to several equations using a least-squares fit algorithm in the ‘cftool’

(Matlab, Mathworks). Suitability of logarithmic scaling was assessed by

comparing summed squared error, adjusted R2, and qualitative fea-

tures among the different models (Supplementary material). For visu-

alization purposes, the plots of these data were oriented the same way

as the EEG data (Fig. 6). Thus, the x-axis for the interspike interval

plots is reversed with the lowest numbers (end of the seizure) at the

far right. The first interspike interval in a seizure occurs at the far left,

with an x-value equal to the total duration of the seizure.

Human recordings
Human seizures were recorded using standard clinical procedures for

intracranial monitoring, and the patients consented to a data sharing

agreement as approved by the local ethical committee. Data were

recorded using a standard 128-channel clinical acquisition system:

XLTek, Inc.: 0.1 Hz high pass filter, 100 Hz low pass filter, 512 Hz

sampling rate (Worrell et al., 2008). As is typical for such recordings,

the data are recorded with alternating current coupling, which re-

moves any DC component. The data were de-identified, posted and

downloaded from the International EEG Database (http://www.ieeg.

org). All clinical data for each patient shown is available from the IEEG

database. Studies used and clinical data are listed in Supplementary

Table 1.

Zebrafish recordings
Hyperthemia-induced seizure-like events were kindly provided by Dr S.

Baraban. The experimental procedure is described in (Hunt et al.,

2012).

Low Ca2 + recordings
Seizure-like events recorded when lowering extracellular Ca2 + were

kindly provided by Dr. J. R. Jefferys and Dr. Jiruska Premysl. The ex-

perimental procedure is described in Jiruska et al. (2010).

Results

Basic building blocks of seizure
dynamics
As we searched for invariant features in seizure dynamics, any

experimental model system may be used. Here, we analysed

SLEs recorded in the intact immature hippocampus of mice

in vitro, as this preparation is easily amenable to experimentation.

When placed in continuous epileptogenic conditions, the prepar-

ation produces spontaneous recurrent SLEs (Fig. 1, unfiltered

record). In Fig. 2A, we show one such typical spontaneous SLE

(0.01 Hz high-pass filter). As observed in many types of seizure

(Perucca et al., 2013), SLEs are characterized by a beginning

(onset), various sequences of fast discharges and spike and wave

events (SWEs), and an end (offset). Here, we consider fast dis-

charges and SWEs as basic building blocks of SLEs, i.e. their tem-

poral arrangement, embedding and amplitude can vary indefinitely

without affecting the generality of the results. Similar dynamic

patterns were found in a zebrafish model of hyperthermia-induced

seizure (Fig. 2B) and in human patients with epilepsy (Fig. 2C and

Supplementary Table 1).

Time-evolving phenomena can be formalized with differential

equations and state variables, which describe the fundamental dy-

namics of the system. State variables are the smallest possible

subset of system variables that can represent the entire state of

the system at a given point in time (Supplementary material). They

are not unique and often difficult to relate to directly measurable

biological/biophysical variables. These variables can be plotted in

the space spanned by the state variables (the ‘state space’) to

demonstrate the characteristic ‘flow’, which determines how the

trajectories evolve. In dynamic system theory, time scale separ-

ation allows the grouping of state variables into subsets acting

on the same time scale (Haken, 1983) that can be considered as

the building blocks of a dynamic system. For SLEs, the two build-

ing blocks, fast discharges and SWEs operate on different time

scales (fast and slow, respectively). We will refer to each building

block as an ‘ensemble’. Fast discharges necessitate a first ensemble

with at least two state variables (x1, y1) due to their oscillatory

nature (Hale and Koçak, 1991). SWEs comprise large amplitude

spikes followed by long lasting wave components reminiscent of a

large class of systems collectively termed excitable systems (Gerstner

and Kistler, 2002), which necessitate a second ensemble with two

state variables (x2, y2). Our goal is now to write the differential

equations of ensembles 1 and 2 that account for SLE genesis,

time course and recurrence in our experimental conditions.

Epileptor: a dynamic multiscale model
of seizures with five state variables
By themselves, the two sets of differential equations for (x1, y1) and

(x2, y2) can neither generate the time-evolving event that is a SLE

nor its recurrence. At least one additional state variable, z, acting on

a very slow time scale (slower than that of SWEs), is necessary to

capture the time course of the alternating sequence of SLEs. This

slow state variable z guides the entire system, not only between

SLEs, but also throughout the SLE time course. At the same time the

dynamics of z depends on the states of the other state variables (x1,

y1) and (x2, y2). We call z the slow permittivity variable, as it de-

scribes the systemic effects that dictate how close the system is to

the seizure threshold. As we will show later, z likely includes a large

number of extracellular processes that occur on an ultraslow time

scale and presumably influence the likelihood of seizure occurrence.

In order to build the model, we used the special case where the

system is placed in continuous epileptogenic conditions. In subse-

quent sections, we shall demonstrate that z can in fact cover gen-

eral cases, including clinically relevant situations.

All three sets of state variables, z, (x1, y1) and (x2, y2), depend

upon each other, indicating that the differential equations

describing their time evolution are coupled. The analysis of our

data set of SLEs revealed that fast discharges are either not pre-

sent during the SWE (Fig. 2A) or only present during the wave

and not the spike (Fig. 2A). This property defines a directional

link between (x1, y1) and (x2, y2) that we capture via a bidirec-

tional coupling f1(x1, x2) and f2(x1, x2). It is important to note

that fast discharges must not be mistaken for high frequency
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oscillations, which often override spikes at seizure onset (Bragin

et al., 2002). High frequency oscillations are related to epilepto-

genic networks (Jacobs et al., 2009), but are not completely

specific to epilepsy (Blanco et al., 2011) and are not necessarily

causally linked to seizure genesis (Quilichini et al., 2012). Rather,

the fast discharges described by (x1, y1) are analogous to the low

voltage fast activity that is still an active area of basic research

(Jiruska et al., 2013) and has great value in localizing focal seiz-

ures (Zakaria et al., 2012).

At some distance before and after seizures, the brain appears to

operate ‘normally’ and expresses its rich dynamic repertoire of

diverse brain states, which may vary greatly in different models

and species. The ictal state, however, represents a clear departure

from the normal baseline behaviour. The transitions from this

normal state to a seizure and back constitute two bifurcations.

The invariance of the bifurcations at seizure onset and offset is

a manifestation of this nonlinear coupling. By identifying all pos-

sible bifurcation combinations we will now develop a taxonomy of

SLEs and then discuss the most prominent class.

Taxonomy of seizure-like events
The changes of dynamics at SLE onset and offset have certain

characteristic features such as variations of amplitude and fre-

quency of the discharges, which produce distinct flow changes

in state space and are the bifurcations we seek to identify. In

the mathematical literature, the mode of operation characterized

by the alternation of a silent phase of near-equilibrium point ac-

tivity and an active phase of rapid discharges is called bursting

(Ermentrout and Terman, 2010). The first classification of bursters

was proposed by Rinzel (1987) and systematically extended,

among others, by Izhikevich (2000). Different classes of bursters

correspond to the different transitions between the silent and

active phase of the burst cycle. It turns out that there are only

four types of bifurcations of equilibria (fixed points at seizure

onset) and four types of bifurcations of oscillations (planar limit

cycles at seizure offset) resulting in 16 classes in total (Izhikevich,

2000; Ermentrout and Terman, 2010). This mathematical classifi-

cation is the basis of our proposed taxonomy of SLEs. Note that

Figure 1 Experimental model of spontaneous SLEs. (A) When placed in persistent epileptogenic conditions, SLEs are generated at regular

intervals in the isolated mouse whole hippocampus at postnatal Day 6 in vitro. Direct current recordings show a DC shift at SLE onset,

which reverses after SLE offset. (B–D) Correspond to insets b–d in A.

2214 | Brain 2014: 137; 2210–2230 V. K. Jirsa et al.
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Figure 2 Seizure patterns conserved across species and brain regions. All displayed recordings were obtained in alternating current mode,

thus filtering very slow variations of the field potential. (A) SLE recorded in mouse whole hippocampus displaying a typical sequence of

tonic and tonic-clonic patterns. Two generic patterns can be distinguished: fast discharges (#) and large spike and wave events (*). Note

that fast discharges can be embedded in the wave (*#). (B) Hyperthermia-induced SLE recorded in vivo in zebrafish display similar

patterns, with fast discharges shown in panel I and SWE in panel II. (C) Spontaneous seizure recorded in an epileptic patient

(Supplementary Table 1) displaying a fast discharge followed by the occurrence of spike and wave events. Note that in all three species,

there is a slowing down of the activity when reaching seizure offset.

On the nature of seizure dynamics Brain 2014: 137; 2210–2230 | 2215
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theoretically more complicated behaviours may exist, but are sig-

nificantly less probable to be encountered in nature (Izhikevich,

2000). The 16 different classes are summarized in Table 1, where

we follow the naming scheme of Izhikevich (2000), in which each

class is labelled according to the type of bifurcation of equilibria/

bifurcation of limit cycle. The four bifurcations of equilibria are

saddle-node (fold), saddle-node on invariant circle, supercritical

Hopf and subcritical Hopf bifurcation. The four bifurcations of

limit cycles are saddle-node on invariant circle, saddle-homoclinic,

supercritical Hopf and fold cycle.

Detailed descriptions of the various bifurcation types and their

normal forms (canonical models) can be found in Kuznetsov

(1998). Note that normal forms classify local bifurcations around

equilibria in state space, whereas global bifurcations involving

‘larger’ invariant sets such as periodic orbits are significantly

more complicated. To aid in the classification of seizure types in

the framework of a taxonomy of SLEs, the scaling properties of the

seizure onset/offset bifurcations are listed as bifurcation of equilib-

rium in Table 2 and as bifurcation of oscillations in Table 3. As the

bifurcation point of seizure onset/offset is approached through the

slow change of the permittivity z, the discharges change their

behaviour. If � ¼ z� zcrit denotes the distance to the bifurcation

point zcrit, then the changes in the discharges will scale with � in

ways that are characteristic for each bifurcation type. The fre-

quency and amplitude of discharges may be either constant and

independent of � (denoted by ‘Fixed’ in Tables 2 and 3), com-

pletely arbitrary (‘Arbitrary’) or scale from zero following a square

root or logarithmic behaviour [‘Zero (
ffiffiffi
�
p

)’, ‘Zero (ln�)’]. Each bi-

furcation may also be distinguished through the number of states

that can coexist for the same permittivity value (‘Bistable’ and

‘Monostable’). In the following, we use the taxonomy of SLEs in

Table 1 to characterize the time course and recurrence of the SLEs

in our experimental conditions.

Saddle-node bifurcation at seizure onset
In the experiment, the onset of SLEs is characterized by the abrupt

appearance of fast discharges (Fig. 2A). As these do not scale up

from zero amplitude or frequency, this transition is limited to

either a subcritical Hopf or a saddle-node bifurcation (Table 2).

A saddle-node bifurcation requires a baseline shift of the measured

time-dependent variable, whereas a subcritical Hopf bifurcation

results in a transition centered on the baseline and does not

have a baseline shift. DC shifts from the baseline field potential

occurred systematically in our experimental data (Figs 1, 5B and

7B), ruling out the subcritical Hopf bifurcation.

Homoclinic bifurcation at seizure offset
As SLEs progress towards offset, there is a DC shift back to base-

line (Figs 1, 5B and 7B). Only the fold limit cycle and the homo-

clinic bifurcations show a DC shift at the bifurcation point

(indicated by ‘Bistability’ in Table 3), although secondary bifurca-

tions can be introduced to mimick this behaviour (Izhikevich,

2000). The fold limit cycle bifurcation maintains a constant fre-

quency towards the seizure offset, which was not found in the

majority of our experiments. The predominant candidate at seizure

offset is thus the homoclinic bifurcation, which, amongst others,

predicts that the interspike intervals scale logarithmically as seizure

offset approaches. The prediction of a logarithmic scaling will be

validated experimentally in the following section.

The Epileptor
In conjunction, the saddle-node (or fold) bifurcation at seizure

onset and the homoclinic bifurcation at seizure offset define the

predominant class of an SLE, the fold/homoclinic class, also called

square wave burster (Ermentrout and Terman, 2010). Given the

Table 1 A taxonomy of seizure-like events

Bifurcations SNIC Saddle homoclinic Supercritical Hopf Fold limit cycle

Saddle-node Fold/circle Fold/homoclinic Fold/Hopf Fold/fold cycle

SNIC Circle/circle Circle/homoclinic Circle/Hopf Circle/fold cycle

Supercritical Hopf Hopf/circle Hopf/homoclinic Hopf/Hopf Hopf/fold cycle

Subcritical Hopf SubHopf/circle SubHopf/homoclinic SubHopf/Hopf SubHopf/fold cycle

Based on the classification scheme of codimension-1 planar bursters (Izhikevich, 2000). The rows identify bifurcations of equilibria and the columns bifurcations of
oscillations (more specifically, planar limit cycles). SNIC = saddle-node on invariant cycle.

Table 2 Properties of oscillatory onset bifurcations

Bifurcation of equilibrium Behaviour Frequency Amplitude

Saddle-node Bistable Fixed Fixed

SNIC Monostable Zero (
ffiffiffi
�
p

) Fixed

Supercritical Hopf Monostable Fixed Zero (
ffiffiffi
�
p

)

Subcritical Hopf Bistable Fixed Arbitrary

The four types of bifurcation of equilibrium identify the rows. The column

Behaviour indicates if bistability between the oscillatory and equilibrium state is
possible, or if the system remains fixed in one state (monostable). The columns
Frequency and Amplitude indicate how the onset oscillation scales after the bi-
furcation of the equilibrium. Here the parameter � represents the distance to the
bifurcation point. SNIC = saddle-node on invariant cycle.

Table 3 Properties of oscillatory offset bifurcations

Bifurcation of oscillations Behaviour Frequency Amplitude

SNIC Monostable Zero (
ffiffiffi
�
p

) Fixed

Supercritical Hopf Monostable Fixed Zero (
ffiffiffi
�
p

)

Fold Limit cycle Bistable Fixed Arbitrary

Saddle homoclinic Bistable Zero (ln�) Fixed

The four types of bifurcation of oscillations identify the rows. The column

Behaviour indicates if bistability between the oscillatory and equilibrium state is
possible. The columns Frequency and Amplitude indicate how the offset oscillation
scales before the bifurcation to the equilibrium. Here the parameter � represents
the distance to the bifurcation point. SNIC = saddle-node on invariant cycle.
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constraints imposed by the nature of the bifurcations and the links

between the five state variables z, (x1, y1) and (x2, y2), we can

now develop the full mathematical model of the SLE, which we

call the Epileptor. There are standard models of square wave bur-

sters, which we consider here as a starting point for model devel-

opment. Typically these models relate to neural discharges on time

scales from 10 ms to seconds and are based on some ionic current

mechanisms producing slow negative feedback in models of elec-

trical activity in pancreatic beta-cells and respiratory rhythms

within the pre-Bötzinger complex (Ermentrout and Terman,

2010). The slow variable of these standard models, however,

acts on a different time scale than considered for SLEs, which

suggests that the involved biophysical mechanisms may not be

the same (see our later discussion on the likely candidate biophys-

ical mechanisms of the permittivity variable). Still, the standard

models of square wave bursters provide mathematical guidance

in the development of the Epileptor model. For zero coupling be-

tween the two ensembles, we adapt the mathematical form of the

standard model in Hindmarsh and Rose (1984) for ensemble 1

with (x1, y1) and the mathematical form of an excitable system

with a saddle node on invariant circle bifurcation for ensemble 2

with (x2, y2) as shown by Roy et al. (2011). Then the following

modifications are introduced: a linear inhibitory coupling from en-

semble 2 to 1 and a low-pass filtered excitatory coupling from

ensemble 1 to 2 to generate the SWE and interictal spikes; the

negative feedback coupling of the permittivity z to the ensemble 2

to bias the preictal spikes towards SLE onset; and changes of the

non-linearities of the original standard models to guarantee the

structural stability of the bifurcations. Structural stability was

tested computationally for all used parameters. The final param-

eter values were chosen to fit the Epileptor against the experimen-

tal data, where the sum of the two ensemble x-variables, x1 + x2,

was matched visually against the electrographic signatures of a

SLE. Although each of the state variables may reflect a diversity

of biophysical variables, we found that plotting x1 + x2 as a func-

tion of time bore striking resemblance with the field potential. The

complete system of the Epileptor equations reads then as follows:

_x1 ¼ y1 � f1ðx1,x2Þ � zþ Irest1

_y1 ¼ y0 � 5x2
1 � y1

_z ¼
1

�0
ð4ðx1 � x0Þ � zÞ

_x2 ¼ �y2 þ x2 � x3
2 þ Irest2 þ 0:002gðx1Þ � 0:3ðz� 3:5Þ

_y2 ¼
1

�2
ð�y2 þ f2ðx1,x2ÞÞ

where

gðx1Þ ¼

Zt

t0

e��ðt��Þx1ð�Þd�

f1ðx1,x2Þ ¼
x3

1 � 3x2
1 if x150

ðx2 � 0:6ðz� 4Þ2Þx1 if x1 � 0

�

f2ðx1,x2Þ ¼
0 if x25� 0:25

6ðx2 þ 0:25Þ if x2 � �0:25

�

and x0 = �1.6; y0 = 1; �0 = 2857; �1 = 1; �2 = 10; Irest1 = 3.1;

Irest2 = 0.45; � = 0.01. Here the state variables x1 and y1 comprise

the first subsystem responsible for fast oscillations and x2 and y2

the second subsystem involved in spike wave events. The slow

permittivity variable is z. The characteristic time scales are �0 of

the permittivity variable, �1 of ensemble 1 and �2 of ensemble 2,

where the time scale hierarchy is �0� �2� �1. The time constant

of �1 does not appear in the equations explicitly as it is equal to 1,

hence we omitted it for simplicity. Note that the integral

coupling function g(x1) can be rewritten as an ordinary differen-

tial equation, which then technically introduces a sixth state vari-

able (Supplementary material). The initial conditions for the

numerical simulation are x1 = 0; y1 = �5; z = 3; x2 = 0; y2 = 0.

Noise is introduced into each equation as linear additive

Gaussian white noise with zero mean and a variance of 0.025

for the first subsystem and 0.25 for the second subsystem. For

the solution of the stochastic equations we employ the Euler-

Maruyama method.

Dynamics of the Epileptor
In Epileptor, ‘normal’ brain function and seizures occupy two

different regions of state space, being isolated from one another

by a divergent flow acting as a barrier (Fig. 3). This barrier be-

tween the two states establishes bistability and is known as the

separatrix, which in this case essentially describes the seizure

threshold (Frohlich et al., 2010; Kramer et al., 2012). We show

the bifurcations of seizure onset (Fig. 3, rows Ia and Ib) and

seizure offset (Fig. 3, rows IIa and IIb) as cartoons of six potential

landscapes (rows Ia and IIa) and six vector fields (rows Ib and

IIb). The potential landscapes metaphorically illustrate the transi-

tions between seizure and non-seizure states for changing values

of permittivity z and the vector fields show the corresponding

flows in the two-dimensional state space of the Epileptor’s en-

semble 1. In rows Ia and IIa, two minima are separated by a

potential well. The left minimum is the normal state, the right

minimum is the seizure state. As the permittivity variable

changes, the potential landscape changes and one minimum be-

comes a maximum resulting in a transition from one state to the

other. The flows in state space show the same behaviour (Ib and

IIb). Here we plot trajectories for various initial conditions, where

the arrows indicate the direction of the flow and circles indicate

the equilibrium points (fixed points). A stable fixed point attracts

trajectories in its neighborhood (full circle), whereas unstable

fixed points deflect the trajectories (empty circle). A so-called

saddle point is a fixed point with a stable and unstable direction

(empty circle). In the first figure of Ib (from left to right) a saddle

point separates the state space in two regions with a stable fixed

point to its left and a stable limit cycle to its right. As the per-

mittivity is changed towards seizure onset the separatrix moves

closer to the stable fixed point (middle figure, row Ib) until the

separatrix collides with the stable fixed point and the two dis-

appear (right figure, row Ib) via a saddle-node bifurcation. Row

IIb shows the corresponding scenario for seizure offset: as the

permittivity changes, the separatrix moves towards the limit cycle

(middle figure) until separatrix and limit cycle collide and annihi-

late each other (right figure). This event is called the homoclinic

bifurcation and leaves the system with only the stable fixed point.

A bifurcation diagram captures the hitherto described dynamics
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more quantitatively in Fig. 4, which has been generated using

analytical calculation of fixed points and numerical continuation.

Fig. 5A traces out time series from simulations of the Epileptor

model. Note the presence of SWEs before seizure onset, even far

from it. The presence of more interictal spikes (and even fast

oscillations) reflects that the Epileptor is getting close to the

separatrix. The experimental/clinical analogy would be that net-

work excitability increases and generates spikes and/or oscilla-

tions. These activities have their own dynamics; they can take

various shapes (reflecting the diversity of interictal/preictal

states) as the system moves close or away from the separatrix.

This concept of getting close to the separatrix and away from it

without reaching the bifurcation point is analogous to the ‘pre-

ictal state’ that has been theorized for many years (Stacey et al.,

2011a) and may have been identified in a recent clinical trial

(Cook et al., 2013).

Because the Epileptor was constructed on the basis of an ex-

perimental model of SLEs (an immature hippocampus placed in

continuous epileptogenic conditions in vitro), we first tested the

generality of its predictions in other brain regions and species, and

then explored the concept of the separatrix to understand how

seizure onset can be reached in more realistic conditions.

Figure 3 Caricatures of the flows in state space of ensemble 1 as the slow permittivity variable z changes. Rows Ia and IIa indicate

metaphorically the bistability of the ‘normal’ (left minimum, Ia) and seizure (right minimum, IIa) state, as well as its loss. Note that ‘normal’

brain trajectories are displayed as a fixed point for the sake of illustration (it does not reflect the diversity of possible trajectories). Rows Ib

and IIb show the corresponding flows in state space. As the permittivity z decreases (from left to right), rows Ia and Ib show how the

interictal state loses its stability and the transition occurs towards the ictal state (seizure onset) via a saddle-node bifurcation. Rows IIa and

IIb show the equivalent situation for increasing values of z and the homoclinic bifurcation leading to seizure offset.
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Figure 5 Slow permittivity state variable and seizure topology. (A, left) Seizure generated by the Epileptor with five state variables.

Seizure onset, time course and offset are controlled by the permittivity state variable evolving slowly in time (red). Note that the SLE occurs

with a rapid and large shift of the potential. Right, the seizure trajectory (expressed in terms of �x1 + x2) is approximated in a 3D space

defined by the first state variables (X = �x1 and Y = x2) and by the slow permittivity variable (Z = z). Note that the values of the z-variable

have been shifted upwards for plotting purposes. (B, left), simultaneous recording in the hippocampus of a SLE in low Mg2 + conditions in

DC mode, O2 levels in the preparation (yellow) and NADH levels (red), which indirectly reflect ATP use. Note the large DC shift during the

SLE, as predicted by Epileptor. The time course of oxygen and NADH is similar to that of the slow permittivity variable. Right, the 3D

representation of a seizure in a delayed space (X and Y), with Z the extracellular potassium concentration measured simultaneously

(Supplementary Fig. 8) is very similar to that obtained by the Epileptor in A.

Figure 4 Bifurcation diagram of the Epileptor. (A) The set of fixed points form curves, where the solid line indicates the stable fixed point.

A branch of limit cycles terminates at the homoclinic bifurcation point (HB), whereas the fixed points lose stability via saddle-node

bifurcations (SN). The system displays bistability between the left saddle-node bifurcation point (SN) and the homoclinic bifurcation point

(HB). (B) The projection of the Epileptor trajectory is plotted onto the bifurcation diagram.
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Validating model predictions:
bifurcations and invariance
The Epileptor model makes two important predictions about seiz-

ure onset and offset in the seizure class fold/homoclinic (Table 1)

that we can validate directly: (i) seizure onset can only occur in the

presence of a DC shift of the field potential; and (ii) the interspike

intervals show a logarithmic scaling approaching seizure offset.

Presence of a direct current shift at sei-
zure onset
We used the presence of a DC shift at seizure onset and its re-

versal after seizure offset in our experimental model to identify the

onset and offset bifurcations (Fig. 1). This DC shift is smaller

(�0.26 � 0.08 mV, n = 15 SLEs from five hippocampi, P5 0.01)

and shorter lasting (1–3 min) than that found in spreading depres-

sion (Somjen, 2001). Like most clinical and experimental EEG,

seizures are recorded in alternating current mode, thus filtering

any slow variations of the field potential (Fig. 2). The DC shift

at onset of a partial spontaneous seizure, is actually well known

in several species including baboons (Pumain et al., 1985) and

humans (Ikeda et al., 1999; Vanhatalo et al., 2003), though it is

under-recognized clinically because clinical electrodes are poor at

recording DC (Tallgren et al., 2005; Stacey et al., 2012) and seiz-

ures are rarely recorded with DC coupling. To the best of our

knowledge, we are not aware of published spontaneous focal

seizures recorded in DC mode without a DC shift.

Logarithmic scaling of interspike
intervals approaching seizure offset
The presence of a homoclinic bifurcation at seizure offset imposes

a logarithmic scaling of interspike intervals. Introducing noise in

Epileptor enabled us to generate numerous SLEs and verify that

SLE offsets in the Epileptor show the logarithmic scaling of homo-

clinic bifurcations (Supplementary Fig. 1). In all SLEs recorded in

our experimental conditions in vitro (n = 16 hippocampi), the

interspike intervals exhibited a logarithmic scaling at seizure

offset (Fig. 6A and B), verifying the prediction that seizure offset

corresponds to a homoclinic bifurcation. We then tested the inter-

spike intervals in each of the first 24 patients with identifiable

seizures in the International EEG database (www.ieeg.org). This

arbitrary sample includes several different seizure types and brain

regions (Supplementary Table 1). We verified logarithmic scaling in

20 (83%) of the patients (Supplementary material), the majority of

which had remarkably similar dynamics despite their clinical dispa-

rities (Fig. 6B, Supplementary Fig. 2 and Supplementary Table 1).

Similar findings, which appear visually as spikes slowing down near

the end of seizures, were recently identified in live human record-

ings on multiple spatial scales from EEG down to multiunits

(Kramer et al., 2012). The same property was found in other

species, such as zebrafish (Fig. 6B and C, Supplementary Fig. 9),

and is apparent also in flies [see Fig. 2C in Zhang et al. (2002)].

These invariant scaling laws argue strongly in favour that a homo-

clinic bifurcation at offset is an invariant property of focal seizures.

Seizure topology
The Epileptor model allows us to unravel the topology and trajec-

tories of seizures in the state space defined by the five state vari-

ables. Since five-dimensional representations are not practicable,

we used a tri-dimensional representation for illustration, plotting

x1, x2 and z as a function of time. The resulting topology corres-

ponds to spirals on a cone (Fig. 5A). Although �x1 + x2 bears

analogy with the field potential, the precise biophysical equivalent

of the z variable is unknown and will be likely complex. One of its

distinguishing features is its slow time-dependent evolution.

Several biophysical parameters are known to evolve slowly in

time during seizures, including extracellular ions (Heinemann

et al., 1986) and oxygen (Suh et al., 2006). We measured extra-

cellular [K + ] during SLEs and plotted it as the z variable; the top-

ology of experimental SLEs were remarkably similar to the

theoretical one (Fig. 5B). As the measurement of a slow variable

was not available in the humans and zebrafish, we constructed the

trajectories in a space of delayed state variables, which approxi-

mates the original state space (Takens, 1981) and allows unfolding

the resulting trajectories for illustration of the flow topology. Even

though the trajectory lines are distorted and difficult to read, they

still unveil the basic phases of the seizures, showing clear simila-

rities between the Epileptor and SLEs (Supplementary Fig. 3).

Validating model predictions: how
seizures start
Seizures can occur with regularity in some patients, as for cata-

menial epilepsy (Penovich and Helmers, 2008) or during the sleep-

wake cycle (Karafin et al., 2010), in keeping with the possibility

that ultra-slow systemic effects, analogous to the slow permittivity

variable, can push the system periodically to seizure onset.

However, seizures arise, most of the time, without obvious

causes or predictive factors. In such instances, we propose that

brain trajectories are close to the separatrix, and the closer the

‘normal’ brain state is to the separatrix, the easier it will be to

have a seizure. Linked to the distance to the separatrix (i.e. prox-

imity to seizure threshold) is the build-up of preictal spiking in the

Epileptor (Fig. 7C), which is analogous to physiological fluctuations

around baseline such as increased preictal spiking (Huberfeld

et al., 2011), other preictal waveforms (Stacey et al., 2011a) or

predictive features in the EEG (Cook et al., 2013). However, these

fluctuations are quite variable, do not inevitably progress to a

seizure (Cook et al., 2013), and are still dominated by the

normal baseline activity. Thus, these excursions have not yet

crossed the separatrix and provide evidence that (i) the system

is close to threshold; and (ii) there are many potential trajectories

from the ‘normal’ state to the ‘seizure’ state. The stereotypical

appearance of a seizure despite the numerous trajectories leading

into it provides further evidence that it is a distinct state of the

system. In the Epileptor, it is possible to know the distance from

the separatrix (bifurcation diagram in Fig. 4), and force the system

pass its threshold. We shall explore two possibilities for provoking

seizures and validate them experimentally: large external stimula-

tion, as well as timely internal noise.
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Figure 6 Homoclinic bifurcation at seizure offset in various species. (A) In a mouse hippocampus, interspike intervals display logarithmic

scaling typical of a homoclinic bifurcation. The last spike of the seizure is used as our reference time point (red squares mark seizure

durations). After accounting for uncertainty in seizure onset time and clonic firing at seizure termination, log scaling fit the data better than

other potential models (Supplementary Fig. 9A). The interspike interval from this reference displays a logarithmic scaling, which char-

acterizes a homoclinic bifurcation in the three species. Red line: a log equation fit to the last seven datapoints (t5 10) and extrapolated.

(B) Summary of all measures performed in mice hippocampi (n = 16), zebrafish (n = 2) and human (n = 24). Logarithmic scaling is

preserved in all species. Note the similarity between the different human subjects, who had a wide array of epilepsy pathologies

(Supplementary Table 1). The slope difference relates to differences in seizure duration in the various conditions. (C) Logarithmic scaling in

zebrafish. (D) In human, we show independent seizures simultaneously recorded in the right and left hemisphere with different dynamics,

both showing log scaling. Inset: corrected equation fit (red) ignores fast spiking between clonic bursts in the last 30 s of seizure. LSS = Left

somatosensory cortex; RIT = Right inferior temporal lobe.
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Triggering seizures with electrical
stimulation
The most straightforward method to produce an excursion of

brain trajectories toward the separatrix is to manipulate the

system directly. In Epileptor, this can be simply done by adding

current, which moves the system towards the separatrix and trig-

gers a SLE before its expected time of occurrence (Fig. 7A, traces

d and e). Electrical stimulations consistently trigger seizures in

humans: following electroconvulsive shocks in any ‘normal’ brain

(Walker, 2011) and following cortical stimulation during presurgi-

cal evaluation of epileptic patients (Valentin et al., 2005). Another

prediction, which is not as well described clinically, is that there is

a refractory period after an SLE offset in which the same ‘kick’

cannot produce a seizure (Fig. 7A, traces b and c). The system will

be refractory outside of the interval of bistability (Fig. 4). To test

both predictions experimentally, we isolated the whole mouse

hippocampus and the septum connected to it (Fig. 7B). We

placed the hippocampus in one chamber and the septum in an-

other, but maintained the physical connection between them.

Each chamber could be perfused with different solutions without

exchange between both compartments (Supplementary Fig. 4).

Bathing the hippocampus in low Mg2 + artificial CSF resulted in

recurrent SLEs with a typical DC shift (Fig. 7B). The concentration

of Mg2 + was then raised (0.4–0.6 mM) to prevent the occurrence

of spontaneous SLEs. Hippocampal circuits were thus maintained

close to the separatrix, i.e. the z variable does not drive the system

to the separatrix but maintains it in its vicinity. A train of electrical

stimuli (10 s, 10 Hz, 170–230mA) applied to the septum triggered

a SLE in the hippocampus (Fig. 7B). After SLE offset, the same

trains failed to elicit SLEs until at least 10 min had passed (n = 3

independent experiments), demonstrating a refractory period.

Synaptic noise as a physiological seizure
trigger
In non-linear dynamics, noise enables a system to explore its state

space (Deco et al., 2011) and in computational models has been

shown to initiate and spread epileptiform activity (Suffczynski

et al., 2006; Stacey et al., 2011b). Introducing noise in the

Epileptor gave rise to different SLE patterns, still keeping the gen-

eric features of fast discharges and SWEs as basic building blocks

of activity, but organized differently (Supplementary Fig. 5). This

shows that seizures can be organized differently in terms of dis-

charge patterns, while keeping the same invariant features. Next,

we varied the distance to the saddle-node bifurcation systematic-

ally in the Epileptor and investigated its sensitivity to noise (Fig.

7C). Introducing noise made the Epileptor generate interictal

spikes and reach seizure onset before expected from the bifurca-

tion diagram, thus generating a SLE. In other words, although the

system was at some distance from the bifurcation point, while

both normal and seizure states coexisted, noise made the system

explore its surroundings in state space until it passed the separa-

trix. The number of interictal spikes was directly related to the

distance to the bifurcation (Fig. 7C) reflecting the slow

transformations occurring in network dynamics as the system

approaches the seizure (Trevelyan et al., 2007).

Noise was also able to evoke SLEs in the experimental prepar-

ation. We found a systematic increase of spontaneous synaptic

noise received by neurons before SLE onset when hippocampi

were placed in continuous epileptogenic conditions

(Supplementary Fig. 6). To demonstrate causality, we used the

dual-chamber as above, with the hippocampus maintained in con-

ditions that did not enable the genesis of spontaneous SLEs.

Raising external [K + ] in the septum chamber increased the firing

activity of septal neurons, thus sending more synaptic activity in

their target hippocampal cells (Supplementary Fig. 7). The septum

could thus be used as a generator sending synaptic noise to the

hippocampus. When reaching a critical value, synaptic noise was

sufficient to trigger SLEs in the hippocampus (Fig. 7D and

Supplementary Table 2).

Increasing synaptic noise is not the only way to pass the thresh-

old. The conceptual framework provided by Epileptor enables

exploring other putative mechanisms. For example, change in

osmolarity can occur in several clinical situations and is associated

with increased seizure susceptibility, as it alters synaptic transmis-

sion, cell volume, and ephaptic communication (Andrew, 1991).

Using hippocampi maintained in subthreshold conditions, we

found that changing the osmolarity in the hippocampal chamber

also generated SLEs (Fig. 7D and Supplementary Table 2).

Importantly, there was no noise increase before SLEs, demonstrat-

ing that the seizure onset was approached via a different route.

However, changes in noise and osmolarity were synergistic, pro-

ducing SLEs when subthreshold levels of each were applied sim-

ultaneously (Fig. 7D). In such a two-state non-epileptic/epileptic

system, there are thus multiple ways or combinations to reach

seizure onset, such as, but not limited to, stimulation, noise in-

crease and change in osmolarity. Clinically, this prediction means

that there are many different paths to reach seizure onset.

Biophysical correlates of Epileptor state
variables
The state variables in the Epileptor, although abstract, are the key

to quantifying seizure dynamics. Recognizing biological processes

that have similar behaviours is technically very challenging, but

helps understand the underlying processes that comprise a seizure.

We now present a strategy to identify these processes experimen-

tally, acknowledging that their identification may only apply to the

intact immature mouse hippocampus in low Mg2 + .

Slow permittivity variable
In Epileptor, the key property of the permittivity variable z is its

evolution on a slow time scale. Several biophysical parameters are

known to change slowly during or preceding seizures, including

extracellular levels of ions (Heinemann et al., 1986), oxygen (Suh

et al., 2006) and metabolism (Zhao et al., 2011). We thus mea-

sured the levels of extracellular [K + ] (Bazhenov et al., 2008;

Frohlich et al., 2008), oxygen and intracellular NADH/FAD +,

which reflects the activity of energy metabolism in hippocampi

placed in epileptogenic conditions. The return to baseline of
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Figure 7 Different paths to seizure onset. (A) Stimulations (red stars, traces b, c, d and e) given to Epileptor between two SLEs (trace a

shows Epileptor regular behaviour) either failed to trigger a SLE (traces b and c) or generated one before expected (traces d and e). This

predicts the presence of a refractory period occurring right after SLE offset and that the system can be pushed toward SLE onset.

(B) Experimental verification. Top: The whole hippocampus and the septum connected to each other were placed in two different

chambers (inset). After generating a series of SLEs in the hippocampus in low Mg2 + conditions, the extracellular concentration of

Mg2 + was raised to 0.4 mM, which maintained the hippocampus below the SLE threshold. The septum was bathed with normal
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[K + ], pO2, and NADH/FAD + corresponded to the initiation of the

next bifurcation, as predicted by the Epileptor (Fig. 5B and

Supplementary Fig. 8). We did not identify a biophysical variable

changing during the interictal period, i.e. a variable that would

drive the system to seizure threshold. However, [K + ], pO2, and

NADH/FAD + appear to contribute to SLE time course and offset

(but not its initiation), with a time evolution compatible with z

during SLEs. It is interesting to note that seizures recorded

in vivo in cats (Moody et al., 1974) and awake baboons

(Pumain et al., 1985) are characterized by the same time-depend-

ent evolution of extracellular [K + ].

Cells recapitulate state variable
behaviour
The Epileptor predicts that the fast subsystem composed of en-

semble 1 with variables (x1, y1) should be active during SWEs with

the fast oscillations occurring only during the wave part of the

event. As experimental data suggests that glutamatergic and

GABAergic cells are important for fast discharges and SWEs, re-

spectively (Isomura et al., 2008), we predicted that GABAergic

cells would be more active during SWEs than during fast dis-

charges, whilst glutamatergic cells would display a reverse pattern

of activity. Hence we associate the involvement of glutamatergic

and GABAergic activity with the faster variable x1 and slower vari-

able x2, respectively. These hypotheses were tested experimentally

in hippocampi placed in continuous epileptogenic conditions.

Consistent with the prediction, GABAergic neurons recorded in

the cell attached configuration fired action potentials during

SWEs, stopped firing during the fast discharge, and resumed

firing when SWEs re-occurred during SLEs (Fig. 8A). Current

clamp recordings revealed that they stopped firing during the

fast discharge because they entered into depolarization block

(Fig. 8B). Single cell recordings provide only a partial picture of

the activity of GABA neurons. If GABA neurons are more active

during SWEs than fast discharges, we predicted that the

GABAergic synaptic drive (produced by GABA neuron firing)

received by hippocampal neurons should be predominant during

SWEs. In keeping with this prediction, whole cell recordings re-

vealed that hippocampal neurons received a strong barrage of

synaptic GABAergic currents before SLE onset, which was largely

reduced during the fast discharge (Fig. 8C). The GABAergic drive

recovered upon recurrence of SWEs, only during the spike com-

ponent, but not during the fast oscillation embedded in the wave

as predicted. Conversely, hippocampal neurons received a barrage

of high frequency glutamatergic inputs synchronized with the fast

discharge in the field (Fig. 8D), in keeping with the predicted be-

haviour of pyramidal cells. It is important to note that the presence

of strong glutamatergic currents during the spike component of

SWEs indicates that pyramidal cells also contribute to (x2, y2),

which is why the biophysical correlate of the Epileptor is more

complex than the simple interpretation of ensembles 1 and 2 as

excitatory and inhibitory cells.

The previous results show that it is possible to construct hypoth-

esis-driven search of the biophysical variables contributing to the

state variable, which may be specific to experimental conditions

(as demonstrated hereafter), and in the clinic, to any specific

patient.

Seizures: conserved dynamics from
many trajectories
It is important to stress here again that the Epileptor model does

not impose constraints upon the nature of the biological variables;

only upon their dynamics and respective relationships. This means

that multiple parameter configurations can theoretically give rise

to the same system behaviours. For instance, work in the guinea

pig brain suggests that the fast discharges therein are produced by

inhibitory interneurons, rather than by pyramidal cells (Gnatkovsky

et al., 2008). This concept, that there are many functional biolo-

gical pathways that produce the same outcome, was developed

and verified experimentally in simple neuronal networks (Marder

and Taylor, 2011) and is present in human biology as well (Beall,

2007). This issue is particularly relevant both clinically and experi-

mentally, as numerous anatomical, molecular, electrophysiological

and functional modifications have been described in different

types of epilepsies, experimental models and species; without

clear consensus emerging about major contributing parameters.

Hence the possible correlates of the five state variables in the

low Mg2 + model of SLEs in the intact hippocampus may be

only valid for these very specific experimental conditions. To illus-

trate this key concept, we used a drastic situation, analysing SLEs

Figure 7 Continued
artificial CSF. Bottom: A stimulating electrode was placed in the septum to stimulate axons projecting to the hippocampus. The stimulation

generated a small DC shift followed by a SLE. The same train applied after seizure offset failed to evoke a SLE. After waiting 410 min,

stimuli of equal magnitude produced a SLE (not shown). (C) Top: noise was progressively increased in Epileptor until seizure onset was

reached leading to the prediction that synaptic noise is sufficient to drive the system to the bifurcation. Note that the number of spikes

before seizure onset scales with the distance to the bifurcation. (D) Experimental validation. The hippocampus (H) was placed in sub-

threshold conditions as in B. Top: a hippocampal neuron was recorded in voltage clamp mode at + 10 mV to measure GABAergic currents.

The extracellular concentration of K + was raised by 5 mM in the septum (S), leading to increased cell firing there, which correlated with an

increase in synaptic activity received by the neuron. This led to the occurrence of a SLE. The septum was then returned to normal artificial

CSF conditions. Changing osmolarity in the hippocampus with 50 mM mannitol was sufficient to induce a SLE without increasing synaptic

noise (Supplementary Table 2). Bottom: Both procedures were synergistic. Raising [K + ] by 2 mM in the septum or adding 10 mM mannitol

were not sufficient to trigger a SLE by themselves. When they were both combined, a SLE could be evoked, demonstrating that multiple

different trajectories can lead to seizure onset. aCSF = artificial CSF; LFP = local field potential; stim = stimulation; TU = arbitrary time units;

VC = voltage clamp.
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Figure 8 Possible physiological correlates of ensembles 1 and 2 of Epileptor. Cell attached recording A and whole cell current clamp

recording B of two stratum oriens interneurons in the CA1 region during a SLE. (A) The GABA neuron fired at SLE onset during the large

spike and wave (1), stopped during the fast oscillation (2) and resumed firing when spike and wave reappeared (3). Note that during the

late spike and wave event (3), the GABA neuron stops firing during the wave when the fast oscillation occurs. (B) The current clamp

recording shows that the cell stops firing as it enters into depolarization block. (C) Whole cell recording in voltage clamp mode of

GABAergic currents. Note the presence of large GABAergic inputs during the large spike and wave before SLE onset (1), their loss during

the fast oscillation (2), and their re-occurrence during the late part of the SLE (3). Note that GABAergic currents are absent during the fast

oscillation of the late spike and wave complex (3). (D) Whole cell voltage clamp recording of synaptic glutamatergic currents received by a

GABA neuron during a SLE. Note that the cell receives strong glutamatergic inputs during all phases of the SLE, including spikes (1 and 3)

and fast oscillations (2). Note the remarkable synchrony between the glutamatergic currents and the field during the fast oscillation (2).
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recorded in the absence of Ca2 + , a condition that abolishes neuro-

transmitter release (Jiruska et al., 2010). In these conditions, the

scheme proposed above with pyramidal cells/GABA neurons and

intact neurotransmission cannot apply. Yet, SLEs, in low Ca2 + ,

were also characterized by a strong DC shift, and an offset still

characterized by a homoclinic bifurcation with logarithmic scaling

(Supplementary Fig. 9). Interestingly, seizures recorded in awake

baboons are similarly characterized by a large decrease in extra-

cellular Ca2 + compatible with a lack of neurotransmission (Pumain

et al., 1985). Hence, even in the absence of neurotransmission,

SLEs still maintain their invariant features, further supporting the

generic nature of our findings.

Discussion
We have identified several invariant features of seizures that are

preserved across different species, models, and brain regions.

Invariant features serve as constraints to define landmarks in

high-dimensional parameter spaces, allowing the researcher to de-

scribe inherent features that are independent of specific param-

eters. Here we used the scaling behaviour of frequency and

amplitude during seizure onset and offset to identify the specific

bifurcations underlying these transitions between brain states. This

approach allows a systematic characterization of SLEs into a tax-

onomy of 16 classes. Based on the analyses of our experimental

data, we identified the predominant class of SLEs as the seizure

onset/offset pair ‘fold/homoclinic bifurcation’ and modeled its dy-

namics through the Epileptor model.

Where does the Epileptor stand in the model literature? Models

can be broadly separated in ‘analogies’ and ‘biophysical’. Scaling

laws are often used to characterize system properties as a whole

by making analogies to models from physics, such as coupled

mechanical pendula (Osorio et al., 2010) or sand piles (Bak and

Paczuski, 1995). Such analogies allow for some intuition of a func-

tional mechanism and demonstrate the existence of certain gen-

eral system properties, including multistability (Lopes da Silva

et al., 1994, 2003a; Shu et al., 2003; Teramae and Fukai, 2007;

Milton, 2010), bifurcations (Lopes da Silva et al., 2003b), and

delayed recurrent loops (Foss et al., 1996; Foss and Milton,

2000). But analogies do not predict which multistable states or

which bifurcations are present in a given neuroscience system.

More importantly, they do not generate a time series that specif-

ically models the data. On the other extreme, biophysical models

are derived from commonly accepted microscopic neuron models,

such as the Hodgkin-Huxley equations and/or biophysical prin-

ciples and laws, e.g. Nernst equation of electrochemical equilib-

rium, conservation of mass and/or energy, or mean fields (Deco

et al., 2008), leading to neural population or ‘mass’ models

(Wilson and Cowan, 1972; Nunez, 1974; Freeman, 1975; Jansen

and Rit, 1995; Brunel and Wang, 2003; Stefanescu and Jirsa,

2008). Many of these models find applications in epilepsy

(Wendling et al., 2002; Breakspear et al., 2006; Kramer et al.,

2012; Wang et al., 2012). In these models, parameters have a

biophysical meaning and can often be independently measured,

allowing for experimental validation. But the biophysical parameter

space is vast and many parameter configurations can give rise to

the same system behaviours (Marder and Taylor, 2011). Our ap-

proach has been to identify invariant landmarks in the parameter

space obtained from the experimental data. These landmarks are

the bifurcations that unambiguously define how a system qualita-

tively changes its behaviour. The taxonomy of SLEs assembles

these invariant dynamic elements of seizure evolution in one

framework that can be used to guide interpretation of experimen-

tal results or as a map for choosing parameters in biophysical

models. It is remarkable that the vast majority of seizures in pa-

tients corresponded to the class of the bifurcation pair saddle-

node/homoclinic. Though our findings are consistent across all

data sets, species and brain regions we studied, other seizure

types will likely exist. Indeed, seizures in four patients did not

display homoclinic bifurcations at seizure offset because their

interspike intervals remained essentially constant throughout the

seizure (Supplementary Table 1). This behaviour is unusual for

seizures, but is potentially consistent with the fold/Hopf and

fold/fold classes (assuming the saddle-node (fold) bifurcation

holds for seizure onset) in the SLE taxonomy (Table 1). Another

distinction is made regarding absence seizures. Previous mathem-

atical models of absence epilepsy have predicted seizure onsets in

which there is no warning or ‘slow process’ (Lopes da Silva et al.,

2003a; Breakspear et al., 2006) and the ictal state is entered

through a Hopf bifurcation with a continuously evolving poly-

spike pattern (Marten et al., 2009; Rodrigues et al., 2009).

Absence seizures are characterized by spike and wave discharges

resembling the time scales observed for SWEs of the Epileptor,

which are slow compared to the fast discharges in non-absence

seizures.

One of the most intriguing predictions is that seizure onset, time

course and offset are controlled by a slow permittivity variable.

This concept, that focal seizures inherently are influenced by slow

processes that govern when they are likely to occur, emphasizes

the important role of extracellular effects for discharges of neur-

onal populations. In our experimental model, the levels of

extracellular [K + ], oxygen and ATP consumption show the same

time-dependent changes as the permittivity variable during seiz-

ures. Such correlation does not imply causality, and many other

parameters may also display slowly evolving modifications, e.g.

release of molecules, synaptic vesicle depletion, phosphorylation

processes etc. The varying release of neuromodulators-neurotrans-

mitters during biological cycles (circadian, sleep/wake), alterations

in glucose/O2 supply etc. could fit the dynamic constraints of this

slow permittivity variable. They may constitute key biomarkers for

seizure prediction and may be investigated as such. As some of

these parameters may not give rise to an electrophysiological sig-

nature, specific sensors (e.g. glucose, ATP and adenosine) would

be needed to measure them. It is important to note that if some

variables may push the system toward the bifurcation, many

others oppose this movement (collectively referred to as protect-

ive/anti-seizure mechanisms), e.g. peptides (such as vasoactive in-

testinal polypeptide), activation of adenosine A1 receptors etc.

From the Epileptor standpoint, the balance between slowly

acting pro- and anti-seizure mechanisms are exactly what consti-

tutes the slow permittivity variable. A challenge for future devel-

opment will be the bridging of different spatiotemporal scales,

such as the levels of single neuron and neural population dynamics
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using mean field techniques (Deco et al., 2008). Given the

heterogeneity of neuronal behaviour during seizure initiation

(Truccolo et al., 2011), we anticipate a complex interplay

among groups of neurons that present different types of spiking

patterns, probably with fast and slower time scales as encountered

in the two Epileptor ensembles. Furthermore, environmental ef-

fects and electrotonic couplings will likely play a prominent role

in light of our results in absence of synaptic transmission (see

Cressman et al., 2009 for biophysical candidate mechanisms).

Understanding which sets of parameters control seizure time

course (for example with optogenetics to control the activity of

specific cell types) will be crucial to design the best strategies to

stop focal-onset seizures as soon as they start with closed-loop

systems (Krook-Magnuson et al., 2013; Paz et al., 2013).

The concept of a slow permittivity variable may provide alter-

nate (but non-exclusive) explanations to long-standing debates.

For example, whether or not interictal spikes are causally related

to seizure genesis remains unclear. A study using tissue slices

obtained from epileptic patients showed that a build-up of large

pre-ictal spikes preceded seizure-like events when slices were

placed in continuous epileptogenic conditions (Huberfeld et al.,

2011). The transition was slow (30 min) and required the activa-

tion of NMDA receptors. Rather than driving seizures, we propose

that the occurrence of pre-ictal spikes may just reflect the modi-

fications occurring within the network on a slow time scale. In

other words, as the slow permittivity drives the system close to

the bifurcation, the conditions for generating such pre-ictal spikes

are met. Hence, interictal spikes may just signify a specific position

of the system in its state space. In keeping with this view, interictal

spikes show complex dynamics in the days preceding the first

spontaneous seizure when networks undergo complex reorganiza-

tions in vivo (El-Hassar et al., 2007; Chauviere et al., 2012), and

they tend to disappear over time when slices are bathed in con-

tinuous epileptogenic conditions (Trevelyan et al., 2007). This pro-

posal does not rule out the possibility for interictal spikes to act as

a driving force toward the bifurcation, but is not part of the

Epileptor mechanisms.

Nearly every brain region can be driven out of the ‘healthy’

subspace to produce seizures, depending upon the severity and

the widespread diffusion of the process leading to the seizure. In a

‘healthy’ brain, the trajectories of brain activities are far from the

seizure threshold, and need strong external interventions (like an

electroconvulsive shock) to reach seizure state. In pathological

conditions, we propose that the reorganization of the underlying

circuits move normal brain trajectories closer to the separatrix

(which corresponds to how much the seizure threshold has been

lowered), increasing the likelihood for seizure occurrence. Many

factors can potentially move the system in such a way, which

would explain why network reorganizations are often brain

region-, model-, time- and epilepsy type-dependent (Pitkanen

and Sutula, 2002). Hence, there are a large number of possible

combinations, all leading to the same functional outcome: bringing

normal brain trajectories in the vicinity of the separatrix. A recent

clinical trial, in which patients with epilepsy were recorded con-

tinuously over several months, found potential evidence of brain

approaching the separatrix (Cook et al., 2013). In this study, sev-

eral patients had unique, characteristic changes in their EEG before

seizures that could be identified by an automated algorithm. In

these patients, the algorithm was quite sensitive in predicting on-

coming seizures; however, there were many ‘false alarms’ in which

a seizure did not occur. The Epileptor predicts that these changes

may not have been failures of the algorithm, but rather a reflec-

tion of the system approaching the bifurcation.

We performed the experimental analysis of seizure dynamics on

data from single regions, mostly the hippocampus. However, seiz-

ures often involve large networks of networks, with initiation and

propagation zones (Bartolomei et al., 2008). Epileptor may serve as a

building block of coupled dynamical models to study the network

mechanisms of seizure propagation over larger brain regions.

Because seizure propagation is the most detrimental factor to the

patient’s quality of life, the identification of potential invariances in

seizure propagation would be particularly beneficial in the clinic.

We conclude that seizures belong to the possible repertoire of

brain activities. They can occur under stringent conditions in the

‘normal’ brain, but their probability of occurrence is increased as

the underlying reorganizations bring the system close to the bifur-

cation. This may explain why so many different pathological con-

ditions (e.g. Alzheimer’s disease, stroke, autism, brain trauma etc.)

are also associated with seizures, yet seizures generally have con-

served dynamics that are recognizable to clinicians regardless of

pathology. Their invariance from flies to rodents to humans clearly

argues that seizures are a universal behaviour of neural systems.
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