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Abstract: The brain exhibits temporally coherent networks (TCNs) involving numerous cortical and
sub-cortical regions both during the rest state and during the performance of cognitive tasks. TCNs
represent the interactions between different brain areas, and understanding such networks may facili-
tate electroencephalography (EEG) source estimation. We propose a new method for examining TCNs
using scalp EEG in conjunction with data obtained by functional magnetic resonance imaging (fMRI).
In this approach, termed NEtwork based SOurce Imaging (NESOI), multiple TCNs derived from fMRI
with independent component analysis (ICA) are used as the covariance priors of the EEG source
reconstruction using Parametric Empirical Bayesian (PEB). In contrast to previous applications of PEB
in EEG source imaging with smoothness or sparseness priors, TCNs play a fundamental role among
the priors used by NESOI. NESOI achieves an efficient integration of the high temporal resolution EEG
and TCN derived from the high spatial resolution fMRI. Using synthetic and real data, we directly
compared the performance of NESOI with other distributed source inversion methods, with and with-
out the use of fMRI priors. Our results indicated that NESOI is a potentially useful approach for EEG
source imaging. Hum Brain Mapp 00:000–000, 2010. VC 2010 Wiley-Liss, Inc.
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INTRODUCTION

Functional magnetic resonance imaging (fMRI) and elec-
troencephalography (EEG) are complementary imaging
techniques, due to their respective strengths and weak-
nesses in terms of spatial and temporal resolution. fMRI is

a measure of changes in the blood oxygen level-dependent
(BOLD) signal. Because this index is the product of a com-
plex convolution of brain activity, its temporal resolution
is relatively low. Following an impulse of activity, the
BOLD signal indexed by fMRI takes several seconds to
rise, and even longer to fall. EEG, in contrast, measures
neuronal electrical potentials that are generated by the
postsynaptic excitatory and inhibitory potentials of pyram-
idal cells that are positioned perpendicular to the cortical
surface. The temporal resolution of EEG is thus compara-
tively high, in the order of milliseconds. However, because
of the complex influence of the spatiotemporal characteris-
tics of skull volume conduction on the EEG signal, the
spatial resolution of this technique is relatively poor.
Therefore, integrating EEG and fMRI may provide a com-
bined imaging technique with a high level of dynamic
temporal information and high spatial resolution. Because
of the different physiological mechanisms for fMRI and
EEG, however, there is likely to be a disparity between the
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activated areas revealed by EEG and fMRI [Disbrow et al.,
2000]. As such, the development of techniques for success-
fully integrating EEG and fMRI is an important research
goal.

A large number of previous studies have proposed pos-
sible approaches for tackling the problems involved in
combining EEG and fMRI [Dale and Halgren, 2001; Gerloff
et al., 1996; Whittingstall et al., 2007]. One proposed
method is an ‘‘EEG-informed fMRI’’ algorithm [Bénar
et al., 2002; Goldman et al., 2002; Jacobs et al., 2008;
Scheeringa et al., 2009]. This method requires the precise
onset information of events or blocks and details of the
actual hemodynamic response function (HRF). Differences
between the actual HRF and the assumed HRF may
reduce the feasibility of this approach [Jacobs et al., 2008].
An alternative method, the ‘‘feature fusion’’ approach uses
independent component analysis (ICA) to simultaneously
analyze electromagnetic and hemodynamic data [Mantini
et al., 2009; Moosmann et al., 2008]. A spatial pattern
derived from fMRI can then be associated with a temporal
waveform of EEG according to a common feature. How-
ever, as EEG must be down-sampled to temporal resolu-
tion of fMRI, this method neglects a large amount of
temporal information in EEG. This considerable disparity
is an approximate 4-s delay between impulses of electric
neural activity and the corresponding BOLD change.
Because of the mismatch between the lower sampling rate
of fMRI compared to the high sampling rate of EEG, there
are not corresponding BOLD samples for most EEG sam-
ple points. A third approach is to use a Statistical Paramet-
ric Map (SPM) obtained from fMRI to improve EEG
source estimation. In this approach, SPM information can
be used either to constrain the spatial locations of the
likely sources of EEG [Dale et al., 2000; Liu et al., 1998], or
to initially seed dipoles within the active regions found in
the SPM for further dipole fittings [Ahlfors et al., 1999;
Auranen et al., 2009; Stancák et al., 2005]. Recently, fMRI
SPM information was introduced into a Parametric Empir-
ical Bayesian (PEB) framework for use in EEG source esti-
mation [Friston et al., 2002; Phillips et al., 2002, 2005]. In
practice, the hierarchical statistical model in PEB allows a
variety of fMRI information to be introduced as priors,
controlled by hyperparameters determined by scalp EEG
data [Sato et al., 2004; Trujillo-Barreto et al., 2004].

Recent studies have shown that PEB-based EEG source
imaging is a promising tool for reliable estimation of EEG
sources [Henson et al., 2009], because it can utilize various
priors from other modalities or assumptions. Both model-
driven and data-driven methods can be used to obtain pri-
ors from fMRI. However, a model-driven method such as
the general linear model (GLM) requires an actual HRF to
solve concrete problems. In contrast, a data-driven method
allows the user to neglect the exact form of the response
by relying upon an assumption of independence or ortho-
gonality. In recent years, ICA, a data-driven approach, has
been increasingly utilized to examine brain activation
[Beckmann et al., 2005; Calhoun et al., 2009; Chen and

Yao, 2004]. ICA is an intrinsically multivariate approach,
and ICA component provides a grouping of active brain
regions that share the same response pattern. Taken to-
gether, ICA components thus provide us with temporally
coherent networks (TCNs). fMRI has been used to identify
TCNs during a resting state (resting state networks), and
while participants perform cognitive tasks (task-related
networks). In addition, ICA can simultaneously extract
diverse functional networks while removing unexpected
modulation effects induced by head motion, cardiac pulsa-
tion or the respiration.

In this study, we sought establish a framework for using
multiple TCN patterns obtained by fMRI examination to
facilitate EEG imaging. Our framework utilized ICA to iden-
tify the multiple, widely distributed TCNs from fMRI. TCNs
are then used as covariance components of a PEB model for
EEG source imaging. We term this framework the NEtwork
based SOurce Imaging (NESOI) approach. The main differ-
ence between our method and previous PEB-based EEG
source estimations methods is the utilization of multiple
TCN priors instead of the various neuronal-anatomical
smoothness, functional activation, or sparseness constraints,
that are used in the Minimum Norm Model (MNM) [Tikho-
nov and Arsenin, 1977], LOw-Resolution electromagnetic to-
mography (LOR) [Pascual-Marqui, 2002], dynamic Statistical
Parametric Mapping (dSPM) [Dale et al., 2000] and the Mul-
tiple Sparse Prior model (MSP) [Friston et al., 2008]. The
NESOI approach aims to generate accurate solutions by
combining information of high temporal resolution from
EEG, and TCNs derived from information of high spatial re-
solution obtained by fMRI.

METHODS

Parametric Empirical Bayesian Model

We used the following PEB model [Friston et al., 2008;
Lei and Yao, 2009; Mattout et al., 2006; Phillips et al., 2002,
2005] for EEG imaging:

Y ¼ Lhþ e1 e1eNð0;T;C1Þ
h ¼ 0þ e2 e2eNð0;T;C2Þ

(1)

where Y [ Rn3s is the EEG recording with n electrodes
and s samples. L [ Rn3d is the known lead-field matrix,
and y [ Rd3s is the unknown source dynamics for d
dipoles. N(lT,C) denotes a multivariate Gaussian distribu-
tion on a matrix, namely e � N(lT,C) , vec(e) � N(lT 3
C), with mean l and covariance T 3 C. vec denotes the
column-stacking operator, and 3 is the Kronecker tensor
product. The terms e1 and e2 represent random fluctuations
in sensor and source spaces, respectively. The temporal
correlations are denoted by T, which, for simplicity, is
assumed to be fixed and known. The spatial covariances
of e1 and e2 are mixtures of covariance components at each
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level. In sensor space, we assume C1 a21In to encode the
covariance of sensor noise, where In is the n-by-n identity
matrix. In source space, we express this in a covariance
component form:

C2 ¼
Xk
i¼1

ciVi; (2)

where c : [c1,c2,. . .,ck]
T is a vector of k non-negative

hyperparameters that control the relative contribution of
each covariance basis matrix, Vi. To ensure non-negativity
of the hyperparameters, we used a log-transform ci
exp(/i) and imposed a Gaussian hyperprior on /
[/1,/2,. . .,/k]

T as,

/eNðs;CÞ: (3)

In Eq. (2), the hyperparameters c are unknown, and the
components set, V ¼ {V1,V2, : : : ,Vk}, is assumed to be fixed
and known. Such a formulation is extremely flexible,
because a rich variety of candidate covariance bases can
be easily combined in such a PEB framework using Eq.
(2). We will briefly introduce some covariance constraints
in the following sections (see [Wipf and Nagarajan, 2009]
for a large number of other specific situations).

Empirical Priors

Once the lead-field and the form of spatial correlations
of the sensor noises are given, the model is determined by
the number and composition of the empirical priors
related to the sources. We will explore these priors and
the ensuing source space. The number of components
could range from one (such as V ¼ {I} in the classical min-
imum norm model; MNM), to hundreds. Each component
accounts for a certain compact spatial support [Friston
et al., 2008]. Harrison et al. [2007] considered a LORETA-
like [Pascual-Marqui, 2002] prior, LOR, with two covari-
ance components V ¼ {I, G} to model independent and
anatomic coherent sources, respectively, where

G ¼ expðrAÞ ¼ ½q1; q2; : : : qd� (4)

is the Green function of an adjacency matrix, A, and repre-
sents a spatial coherent prior. Matrix A with Aij [ [0,1] enc-
odes the neighboring relationships among nodes of the
cortical mesh in the source space [Harrison et al., 2007]. If
j is the adjacent node with link to i, then Aij 1; otherwise,
Aij 0. Here, the d mesh nodes are approximately uni-
formly distributed over the cortex surface. G is usually

approximated with the Taylor form as G � P8
i¼0

ri

i! A
i, which

ensures that only the first eight nearby neighbors are
maintained to enforce the priors with compact and sparse
supports on the cortical mesh nodes [Friston et al., 2008].

As a result, the ith column of G, qi, defines a subset of
neighboring nodes, weighted by their surface proximity to
their centre, the ith node. The smoothness parameter, r,
can be regarded as an auto-regression coefficient varying
between zero and one. This parameter is set to 0.6 in the
current study [Friston et al., 2008].

On the basis of uniform sampling from the columns of
the above coherence matrix, Friston et al. [2008] proposed
a multiple sparse prior (MSP) model to describe
activities in k patterns with the components as
V ¼ fq1qT1 ; q2qT2 ; : : : ; qkqTk g. In this framework, the conven-
tional minimum norm prior, V ¼ I, indicates that the sour-
ces are uncorrelated and widely distributed with equal
amplitude. MSP has been shown to be a much better prior
than MNM and LOR for EEG responses [Friston et al.,
2008; Henson et al., 2009].

In addition to the above anatomical priors, other priors
such as the functional activations derived from fMRI can
also be considered in EEG source imaging [Dale et al.,
2000; Liu et al., 1998; Phillips et al., 2002]. The dSPM
approach, for example, adopts the fMRI SPM result
obtained using a common GLM [Dale et al., 2000]. In
dSPM, the off-diagonal terms of the covariance compo-
nent, VdSPM in the source space, are set to 0.0, while the
diagonal terms of VdSPM corresponding to supra-threshold
nodes are assigned a weight of 1.0. Those to sub-threshold
nodes are assigned a weight of 0.1.

NEtworks SOurce Imaging

The priors of LOR and MSP are based on the relation of
anatomically spatially adjacent sources, where the neigh-
boring nodes are assumed to have similar neuronal activ-
ities. dSPM, in contrast, involves fMRI activation priors.
However, TCNs, which exist both during a resting state
and while performing a cognitive task, have not previ-
ously been utilized as priors for EEG imaging. TCNs can
involve cortical areas that are spatially distant. As thus,
they differ from relations between spatially adjacent
source information or local functional activation informa-
tion. Our system of temporally coherent NESOI is a natu-
ral extension of the above PEB framework, modified to
include TCNs derived from the BOLD signal as priors.

In the NESOI approach, the same PEB approach is used
for suited EEG/fMRI recordings on the same subject
within the same paradigm, regardless of whether the re-
cording are simultaneous or conducted at different times.
To obtain TCN priors, NESOI adopts ICA to group brain
areas that share response patterns [Beckmann et al., 2005;
Calhoun et al., 2009; Chen and Yao, 2004; Hyvärinen and
Oja, 1997]. The spatial ICA decomposition of fMRI is
implemented as:

x ¼ BS (5)

where x is an fMRI dataset. Columns represent the time
series for voxels. S is the spatial independent components
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(rows) representing spatial maps, and B is the time wave-
form information (columns) corresponding to the spatial
independent components (ICs). Each time waveform in B
corresponds to the time course of a specific row pattern in
S of the brain activities, and the spatial ICs in S express
the intensity distribution over all voxels. To measure the
relative contribution of a voxel in a particular IC, the in-
tensity values in each map (spatial component) are scaled
to z scores [D’Argembeau et al., 2005]. In EEG source
space, each node is assigned the z score of its nearest-
neighbor voxel. This process translates the k spatial ICs in
fMRI space into a matrix W [ Rd 3 k in EEG source space,
where d is the number of nodes and k is the number of
spatial ICs. Nodes with absolute z scores [3 are consid-
ered to be activated. Negative z scores indicate that the
BOLD signals are modulated oppositely to the IC wave-
form [McKeown et al., 1998]. Because all the activated
nodes in each IC would be expected to have similar tem-
poral dynamics, we consider each IC as a TCN. In the fol-
lowing steps, we denote the thresholded W with a matrix
U, where the element Uij is set to 1.0 if the absolute value
of Wij [3. Otherwise Uij is set to 0.0. Clearly, U is sparse
matrix with a small number of nonzero elements. A simple
way to construct a covariance component from the ith IC
is to assign the diagonal terms with values from the ith
column of U, and the other terms with zero. As such, to
consider the local coherence in source space, NESOI takes
the covariance component Vi as:

Vi ¼ 1

ni

Xd
j¼1

Ujiqjq
T
j (6)

where ni ¼
Pd
j¼1

Uji is the number of activated nodes in ith

IC, and qj is the jth column of the Green function matrix
in (4).

Obviously, the composition of each component encodes
a functional connectivity prior deployment of source activ-
ity, which is different from the neuronal-anatomical infor-
mation utilized in other methods including the LOR
approach detailed above. The component with nonzero
off-diagonal terms in Eq. (6) could model locally correlated
sources. To guarantee a sufficient sampling of the source
space, the source space outside the subspace generated by
TCNs is sampled as multiple sparse priors in the same
way as MSP [Friston et al., 2008]. The nodes outside the
TCN-defined subspace in each hemisphere are uniformly
sampled to form right, q

right
j and left, qleftj hemispheric com-

ponents. These homologs are added to form a bilateral
component, qbothj q

right
j 1qleftj , which models correlated

sources in the two hemispheres. Finally, all these covari-
ance components are input into the PEB model.

In summary, for NESOI, the priors are consisted of two
parts: TCNs, as introduced in this work, and multiple
sparse priors, as proposed by Friston et al. [2008]. The
number of TCNs is the same as the effective number of

ICs. This number is 20 in this study, as shown in the fol-
lowing section. For the sparse priors, the number of MSPs
is 64 per hemisphere in the NESOI approach, and 128 or
256 in MSP per hemisphere as noted below. Moreover, the
number of sparse priors can be automatically selected
with the model optimization procedure described in the
next section. To ensure that NESOI was comparable with
MSP, we fixed this parameter to a significantly smaller
value (64) than that (128 or 256) used by Friston et al.
[2008] in MSP. This meant that the total number of priors
in NESOI (3 � 64 þ 20) was smaller than that in MSP (3 �
128 or 3 � 256).

Restricted Maximum Likelihood Solution

On the basis of the above TCNs induced by spatial ICA,
the EEG imaging approach can be realized by combining
fMRI related functional networks. The systems of (1)–(3)
can be simultaneously solved by minimizing the following
restricted maximum likelihood (ReML) objective function:

F ¼ � 1

2
aðY� LhÞTðY� LhÞ � 1

2
hTC�1

2 h

� n

2
lna� n

2
ln C�1

2

�� ��þ n

2
ln aLTLþ C�1

2

�� ��

� 1

2
ð/� sÞTC�1ð/� sÞ � 1

2
ln C�1
�� ��þ 1

2
ln R�1
�� ��þ const

(7)

where const denotes constant,
P

is the conditional covari-
ance of the hyperparameters, C1 a21In, C2, /, s, and C are
the same as those in Eqs. (2–3) [see Friston et al., 2007 for
a detailed description]. F (free energy) accounts for both
model fit and complexity, and is a Laplace approximation
of the model evidence [Wipf and Nagarajan, 2009].

The contribution of each covariance component to the
underlying source dynamics is unknown a priori, and is
estimated from the data. We performed this estimation
with the ReML algorithm of the academic software pack-
age SPM, a freely available MATLAB toolbox on the web
(http://www.fil.ion.ucl.ac.uk/spm/). Briefly, ReML algo-
rithm is used to estimate the hyperparameters that repre-
sent the relevance of fMRI TCNs, yielding an estimation of
the model evidence, F, and the distribution of cortical
sources:

g ¼ aXLTY (8)

where X (aLT L 1 C�1
2 )21. Furthermore, the conditional

density y � N(g,X) of the sources can be calculated if
desired.

In this study, for comparison we also calculated MNM,
LOR, dSPM, and MSP with ReML. Hence, we can obtain
the model evidence of these methods in parallel. We found
that the only differences among them were the covariance
components of C2 [Lei et al., 2009a]. For MSP, the number
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of sparse priors (64, 128, or 256) was selected according to
the maximal model evidence F [Friston et al., 2008]. It
should be noted that the probabilistic model of (1)–(3) and
its ReML inversion have been previously implemented in
many different variants of EEG source reconstruction [see
e.g., Friston et al., 2008; Henson et al., 2009; Mattout et al.,
2006; Phillips et al., 2005]. We have omitted the detailed
derivation.

NEtwork SOurce Imaging Procedure

The complete procedure of NESOI is illustrated in Fig-
ure 1. The approach will be briefly explained in the fol-

lowing section. A detailed implementation of a tested
dataset is described in Section ‘‘Real Data Test.’’

Establishment of forward head model (Green dashed
border area in Fig. 1)

A high-density canonical cortical mesh was extracted
from the subject’s structural MRI images. A lead-field ma-
trix was computed for the canonical mesh according to co-
registered electrode locations using a three-sphere head
model and routines from Fieldtrip software (http://field-
trip.fcdonders.nl/download.php). The co-registration and
forward model was implemented with SPM8 (http://

Figure 1.

Schematic representation of NESOI. The raw EEG data is processed for artifact-rejection and

the amplitude and/or other features of interest are extracted. The corresponding fMRI data are

pre-processed and separated into spatially independent components. The structural MRI is seg-

mented to provide a forward model for EEG imaging. The intensity of the neural electric sources

and the hyperparameters are iteratively estimated by NESOI. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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www.fil.ion.ucl.ac.uk/spm). This procedure provided a
lead-field matrix L [ Rn�d coupling d cortical sources to n
EEG electrodes, where each source has a unique location
in the standard anatomical space of Talairach and Tour-
noux [1988].

Extraction of temporally coherent networks (Blue
dotted border area in Fig. 1)

All functional images were realigned to the first func-
tional image and time series of each slice were interpo-
lated according to the acquisition time of the reference
slice. Images were then spatially normalized to a standard
EPI template. In total, k ICs (with waveforms and spatial
maps) are estimated using the deflation approach of Fas-
tICA (http://www.cis.hut.fi/projects/ica/fastica/). Covar-
iance components for EEG source imaging were
constructed by the activated nodes of each IC using
Eq. (6).

Preprocessing of EEG recordings (Red dash dotted

border area in Fig. 1)

After artifact correction, EEG data is down-sampled and
band-pass filtered. Temporal ICA is used for rejecting of
the ballistocardiographic artifact and the residual MRI
imaging artifact from the filtered EEG recordings if they
are simultaneously recorded. Preprocessed EEG data are
then utilized in the following source localization.

Estimation of EEG sources

ReML is used to estimate covariance hyperparameters at
the source levels with covariance components derived
from TCNs. Once these hyperparameters have been opti-
mized, the posterior mean and covariance of the sources
are then calculated with Eq. (8).

SIMULATION STUDY

In this section, we use simulated data to compare
NESOI with other methods, giving an evaluation of the
performance of the NESOI approach. We show the results
in terms of four comparative metrics: localization error,
temporal accuracy, explained variance, and model evi-
dence. This section consists of four sub-sections: an EEG
forward model (including priors on the sources), simu-
lated EEG data, evaluation metrics, and results.

Forward Model

The forward model in this simulation is derived from a
high-density canonical cortical mesh. These meshes were
obtained by warping a template mesh to the T1-weighted
structural anatomy of an individual subject, as described
in [Mattout et al., 2007]. This warping is the inverse of the

transformation derived for the spatial normalization of the
subject’s structural MRI image. The calculation is a fully
automated procedure established for other imaging modal-
ities [Henson et al., 2009]. The template mesh is generated
by Fieldtrip, and was extracted from a structural MRI of a
neurotypical male. The wrapping procedure furnished a
high-density mesh with 33,001 vertices, which was uni-
formly distributed on the gray–white matter interface.
Considering the computational load, the high-density cort-
ical surface was then down-sampled to 6,557 vertices.
Each vertex node is assumed to have one dipole, oriented
perpendicular to the surface. The sensors were registered
to the scalp surface, and the lead-field matrix was calcu-
lated with SPM8 (http://www.fil.ion.ucl.ac.uk/spm). In
this work, the utilized individual subject was from the sin-
gle subject of the ‘‘multi-modal face study’’ (available at
http://www.fil.ucl.ac.uk/spm), whose data are further an-
alyzed in Section ‘‘Multi-modal Face Study.’’

Simulated EEG Data

Using the real EEG data from the ‘‘multi-modal face
study,’’ we performed a singular value decomposition in
sensor space to identify its principal time courses over
time window of 800 ms (821 time bins with sampling rate
of 1024 Hz), starting 200 ms before the presentation of a
stimulus. We kept the first five singular vectors, Ty

5�821

and deployed them over five distributed sources or five
TCNs. For each simulation, the five TCN sources in source
space, Sy

6557�5, were randomly sampled from columns of
the ‘‘6,557 � 20’’ Z-score matrix W, which was generated
using the method described in the above section ‘‘NEt-
works SOurce Imaging (NESOI)" from the fMRI spatial
ICA result of the ‘‘multi-modal face study’’ (see Fig. 7).
The assumed sources were projected through the lead-
fields to the sensor space as the simulated EEG signals by
the transformation LSyTy. Temporal smoothed Gaussian
noise was scaled to one-tenth of the L1-norm of the simu-
lated signal. This provided a signal-to-noise ratio of � 10.
The signal and noise were then mixed to generate simu-
lated data. An example of this procedure is shown in Fig-
ure 2. The procedure was repeated 256 times to give the
average and standard deviation of the estimation metrics
described in the following sub-section.

Evaluation Metrics

The performance of the estimation was evaluated using
localization error (LE), temporal accuracy (TA), explained
variance (EV), and model evidence (ME). LE is defined as
the mean geodesic distance between the assumed most
active dipole over time bins and the estimated dipole with
the largest conditional expectation over the same time
bins; TA is defined as the squared correlation (i.e., the
coefficient of determination) between the true time course
of the assumed most active dipole and the conditional
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Figure 2.

Schematic illustration of the construction of synthetic data.

Upper left panel: five active sources distributed over nodes on

the inflated cortical mesh (different colors). Lower left panel:

the dynamics of these five sources derived from principal com-

ponent decomposition of a real EEG recording. The color of the

time course encodes the corresponding spatial support in the

upper left panel. Lower middle panel: synthetic signals in sensor

space obtained by projecting the signal in source space through

the lead-field matrix. Upper right panel: smoothed Gaussian

noise. Lower right panel: simulated data generated by adding the

smoothed Gaussian noise to the synthetic signal. Waveforms are

shown between 100 ms before and 400 ms after stimulus onset.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 3.

Mean value and standard deviation of the four evaluation metrics for the five methods: MNM,

LOR, dSPM, MSP, and NESOI, respectively. Upper panels: Localization error (left) and temporal

accuracy (right); lower panels: Explained variance (left) and model evidence (right). [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]



estimate used in assessing LE; EV is the fitted part of the
data over all electrodes and time bins; ME is defined as
the log of the marginal likelihood, and is approximated by
F in Eq. (7).

Results

This procedure generated 256 synthetic datasets. Five
inversions (MNM, LOR, dSPM, MSP, and NESOI) were
implemented for each dataset. For dSPM and NESOI, the
same five spatial priors were utilized (five columns in the
activated matrix U derived from W). However, dSPM inte-
grates all the priors into a single covariance component,
whereas NESOI regards them as five components defined
by Eq. (6).

Comparisons of five methods

In this section, to evaluate the methods in a situation
that only part of the spatial priors derived from fMRI are
the true source positions, Sy, of EEG, we assumed that
among the five spatial priors, five columns in U, only
three were consistent with those in Sy (i.e., that 60% of the
priors were accurate, while the other two [40%], were the
wrong priors). We implemented MNM, LOR, dSPM, MSP,
and NESOI for 256 synthetic datasets. The results of the
statistical analysis are shown in Figure 3.

Figure 3 (top left panel) illustrates that the estimations
of the five approaches were stable with LE of less than 50
mm and TA larger than 50%. Moreover, despite the dis-
tinct features of the different approaches, NESOI consis-
tently performed best in all four metrics.

Utilizing a partial concordance prior (60%), NESOI
located the sources with mean spatial error of 20.28 mm.
dSPM produced a mean error of 30.58 mm. These errors
are both much smaller than those produced by the other
‘‘mono-modality’’ methods, that is, MNM, LOR, and MSP,
where only EEG information is used. MSP showed better
performance than MNM and LOR, in line with previous
studies [Friston et al., 2008; Henson et al., 2009]. Similarly,
in terms of TA, the five approaches performed in the fol-
lowing order: NESOI>dSPM>LOR>MNM>MSP. Differ-
ences between the later four were small. In terms of EV,
the differences among the five methods were distinct. In
Figure 3 (bottom left panel), a relatively low proportion of
the variance was explained by MNM, LOR, and dSPM
(32.62%, 32.52%, and 75.23%, respectively). This may be
because the source estimation was conducted upon all
time bins. dSPM performed better than LOR and MNM in
EV, but was highly unstable with standard deviation of
24.08%. In contrast, both MSP and NESOI explained
almost all of the variances, explaining 96.54% and 96.84%
of the variance, respectively. The variability of results
from these methods over 256 realizations was also much
smaller than the other three approaches.

Model evidence takes into account both data fit and
model complexity [Friston et al., 2008]. In essence, it can

be intuitively interpreted as an overall measure of the pre-
vious three metrics combined. Figure 3 (bottom right
panel) shows very little difference in model evidence for
the five approaches. However, setting aside the large base-
line, the model evidence of NESOI (1655.92) was greater
than the other four approaches (MNM: 1592.79, LOR:
1593.16, dSPM: 1608.97, MSP: 1640.70). This may be
because NESOI is more flexible, integrating the benefits of
both MSP and dSPM. In addition, LOR (1593.16) produced
a better ME than MNM (1592.79), in accord with previous
studies [Friston et al., 2008; Henson et al., 2009].

Comparison of dSPM and NESOI

Both dSPM and NESOI utilize functional information
from fMRI recording. We sought to conduct a detailed
comparison between the two techniques. In general,
NESOI employs TCNs extracted by ICA, whereas dSPM
utilizes SPM activation information extracted using the
GLM. ICA and GLM are two different approaches for
dealing with the spatial information from fMRI recording,
which may influence corresponding EEG source localiza-
tions. However, the comparison between ICA and SPM
was not the primary concern of our simulation, and we
assumed that both dSPM and NESOI are based on the
same priors. Thus, in this article we focus on possible dif-
ferences due to the different construction of the prior
matrices.

To reveal the quantitative differences between the dSPM
and NESOI approaches more clearly, we designed six sit-
uations to mimic different levels of concordance/discord-
ance between the EEG source space and the fMRI spatial
priors. In the following implementation, all spatial priors
were randomly sampled from U. The number of valid pri-
ors taken from the true source space, Sy, however, were
different. The simulations were also repeated 256 times,
and the mean and standard deviation were obtained.

P0: perfect discordance. None of the five priors were
from the spatial patterns in Sy, that is, all priors were
inaccurate;

P1–P4: mixed concordance. One to four of the spatial
priors were from Sy, that is, 20–80% of the priors were
accurate for P1 to P4, respectively;

P5: perfect concordance. All the five priors were from
Sy.

The results of the statistical analysis are shown in Figure
4.

Figure 4 shows that the estimation performances of
dSPM and NESOI increased steadily as the proportions of
valid priors increased. Meanwhile, in all cases NESOI
exhibited better performance than dSPM, especially for
LA, EV, and ME. This difference may be due to the fact
that NESOI assigns different hyperparameters for different
priors. Thus, it may automatically prune redundant spatial
priors, dSPM, in contrast, does not consider the possible
difference among those priors, using the same weight for
all priors.
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Figure 4.

Mean value and standard deviation of evaluation metrics for

dSPM and NESOI in different levels of concordance between

EEG and fMRI. Upper panels: localization error (left) and tempo-

ral accuracy (right). Lower panels: explained variance (left) and

model evidence (right). The number of valid priors varies from

zero (P0) to five (P5), corresponding complete discordance or

complete concordance between EEG and fMRI. [Color figure

can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 5.

Mean value and standard deviation of evaluation metrics of NESOI. The number of valid priors is

fixed at three, and the number of invalid priors is varied from 0 to 15. Upper panels: localization

error (left) and temporal accuracy (right). Lower panels: explained variance (left) and model evi-

dence (right). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]



Robustness of NESOI

In realistic conditions, typically only part of TCNs
extracted from fMRI using ICA are related to the EEG sig-
nal. To investigate the effect of invalid priors on NESOI, in
this simulation we assumed that the number of valid pri-
ors was fixed to three, while the number of invalid priors
varied. The results of the statistical analysis of 256 runs
are shown in Figure 5.

Figure 5 shows that the influences of invalid priors can
be ignored, because the performance of NESOI did not
noticeably decrease as the number of invalid priors
increased from zero to 15. Such robustness of NESOI may
be due to the utilization of ReML to automatically select
the reference priors. A study by Phillips et al. confirmed
that the ReML solution was not measurably influenced by
inaccurate priors, when accurate and inaccurate location
priors were used simultaneously [Phillips et al., 2005]. Fur-
thermore, using Monte-Carlo simulations, similar results
were also derived by Mattout et al. [2006]. The role of
TCNs introduced in this work is similar to the location
priors used in these previous studies, and NESOI is
actually an extension of PEB framework by combing TCN
priors. As such, NESOI shares the high robustness of PEB.
This is particularly important for practical data, where the
reliability of priors is typically not clear.

REAL DATA TEST

We used real data to further evaluate NESOI, in view of
explained variance and model evidence. Two different
datasets were used in this study. Dataset 1 was from a
multimodal study on face perception and dataset 2 was
collected from ac patient suffering from epilepsy.

Multi-Modal Face Study

This dataset contains EEG and fMRI data from the same
subject within the same paradigm, allowing a comparison
between normal face images and scrambled face stimuli
(for a detailed description of the paradigm, see [Henson
et al., 2003] and http://www.fil.ion.ucl.ac.uk/spm, where
the dataset can be downloaded).

fMRI/EEG acquisition and forward head model

EEG and fMRI were acquired separately in this study. A
T1-weighted structural MRI was acquired on a 1.5 T Sie-
mens Sonata via an MDEFT sequence with resolution of 1
mm3. An EEG forward head model was established with
the approach described in Section ‘‘Forward Model" by
matching the T1-weighted structural anatomy of the sub-
ject to the template. The T2-weighted fMRI data was
acquired using a Trajectory-Based Reconstruction (TBR)
gradient-echo EPI sequence. There were 32 slices of 3 � 3
� 3 mm3 pixels, which were acquired in a sequential de-
scending order with a TR of 2.88 s. EEG data were

acquired with a 128-sensor Active Two System with a
sampling rate of 1024 Hz. Two electrodes on the left and
right earlobe, as well as two other electrodes were used to
measure HEOG and VEOG.

Preprocessing of EEG

The preprocessing of the EEG data included a re-refer-
encing to the average [Yao, 2001; Yao et al., 2005], and arti-
fact rejection. Artifacts were defined as time-points that
exceeded an absolute threshold of 120 lV (these were
found primarily in the VEOG). Eighty of the 344 trials
were rejected due to artifacts in total. The differential ERP
between faces and scrambled faces were then baseline-cor-
rected from �200 ms to 0 ms. The resulting ERP and its
spatial distribution are shown in Figure 6. The ERPs exhib-
ited an activity peak at 170 ms following stimulus onset,
in accord with a face specific ‘‘N170’’ [Henson et al., 2003].

Separation of temporally coherent networks

SPM8 was used for pre-processing of fMRI data. Func-
tional image time series data were first corrected for differ-
ences in slice acquisition times, then detrended, realigned
with T1 volumes and warped into standard Talairach ana-
tomical space. After dimension reduction using principal
component analysis (PCA), 20 ICs with waveforms and
spatial maps were estimated for the fMRI dataset using
the deflation approach of the FastICA algorithm. The
intensities of each spatial IC map were transformed to z
scores. Those voxels with absolute z scores >3 were con-
sidered to be IC activated voxels. Some spatial maps in
the 20 ICs are shown in Figure 7.

All 20 ICs were used in EEG source imaging, but Figure
7 only includes the ICs that are likely to be linked with
brain function. The focally activated areas in the upper
panels are likely to be related to face perception. IC2
exhibited a focal region around the right occipito-temporal
area (BA 19/22/39). IC12 showed a cluster around the left
superior temporal pole region (BA 38). IC14 involved two
bilateral pairs of the temporal fusiform gyrus and frontal
rectal gyrus (BA 37/11). IC19 encompassed the left supe-
rior temporal gyrus (BA 42). The lower panels show com-
ponents that resemble several resting state networks. IC8
involved the bilateral transverse temporal gyrus (BA 41/
42), which areas widely considered to represent the audi-
tory cortex. IC9 showed clusters of activity consisting of
the prefrontal (BA 11), anterior cingulate (BA 32), posterior
cingulate (BA 23/31), inferior temporal gyrus (BA 20/37),
and superior parietal regions (BA 7). This pattern of brain
regions is known as the default-mode network, as
described by Raichle et al. [2001]. IC13 showed activity in
the posterior cingulate 86-28-83208238 (BA 23/31) regions,
including the ventral anterior cingulate cortex (BA 33).
These areas appear to be part of the default-mode network
shown in IC9. IC16 encompassed part of the extrastriate
visual cortex in the occipital lobe (BA 18/19). These TCNs
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are highly correlated with the subject’s state. As such, this
information may be helpful for further EEG imaging.
Other ICs did not have a clear relation with physiology,
but may reflect various artifacts or noises and they are not
listed in Figure 7. However, all 20 ICs (TCNs) were uti-

lized in NESOI within a time window from 50 to 300 ms,
because ReML can automatically select meaningful compo-
nents and discard unrelated ones [Mattout et al., 2006; Phi-
lips et al., 2005]. The following results also confirmed this
benefit of ReML.

Figure 6.

Differential ERPs for faces and scrambled faces. (a) Waveform of the ERPs, with a dashed rectangle

depicting the actual time interval for analyzing. The scalp measurements exhibited a peak at 170 ms

after stimulus onset. The signal masked by the green rectangle was used as a baseline. (b) Topogra-

phies of the differential ERPs at 100 ms, 150 ms, 200 ms, and 250 ms after stimulus onset. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 7.

Temporally coherent networks of face perception revealed by ICs. Sagittal, coronal, and axial views

of the spatial map are listed for each component. These are scaled to z scores and shown in a max-

imum intensity projection format. Yellow to black represent z values ranging from 3.0 to max.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

r Network EEG Source Imaging r

r 11 r



Model comparison

Having extracted TCNs, we then compared the five
models of the previous section using the differential ERPs
between faces and scrambled faces. The results are shown
in Figure 8. These images showed 512 dipoles, with the
greatest activity occurring at 170 ms.

Both in terms of explained variance and model evi-
dence, NESOI performed substantially better than any of
the other models. Meanwhile, the results confirmed that
the spatially coherent model (LOR) outperformed the clas-
sical minimum norm (MNM), although this performance
difference was relatively small. The reconstructed profile
of MNM was substantially more superficial and dispersed.
The activations revealed by MNM were mainly located in
the bilateral inferior and middle temporal gyrus (BA 17/
18). LOR exhibited an additional activated area in the infe-
rior temporal gyrus (BA 37) that was not shown by MNM.
Two activated areas located in the right fusiform gyrus
and medial frontal area were revealed by dSPM. This
result is consistent with the fMRI SPM result shown in the
right panel of Figure 9. However, it is difficult to relate
these sources to the negative area in the left occipital
region (see topography at 200 ms after stimulus onset in
Fig. 6b). With 256 components per hemisphere (i.e., 768 ¼
3 � 256 components in all), MSP revealed activity in bilat-
eral middle and superior temporal gyrus (BA 21/38). The
results of the MSP inversion are partially consistent with
MNM and LOR, but the deep and frontal sources (BA 21/
38) were revealed more clearly. The sources estimated by
NESOI (Fig. 8d) were similar to the results of dSPM,
which shown two strongly activated areas in the right
temporal lobe and a medial frontal area (Talairach coordi-
nates: 12, 34, �16 mm). The time course in the right tem-
poral lobe exhibited an activity peak at 170 ms, suggesting
that this region may be related to the N170. Two activated
areas in the right temporal lobe were located in the right
fusiform gyrus of the temporal lobe with Talairach coordi-
nates (34, �48, �13 mm) and in the right superior tempo-
ral gyrus with Talairach coordinates (62, �31, 12 mm),
respectively. These N170 related regions are consistent
with the profile reported in a previous study of brain acti-
vation measured in a group of eighteen subjects using
fMRI SPM [Henson et al., 2003]. A weak source in the left
fusiform gyrus was found by NESOI, shown in Figure 8d
(indicated by arrow). This area may be a source account-
ing for the negative left occipital potential. dSPM did not
reveal activation in this area. In summary, compared with
the other four methods, NESOI indicated much stronger
activations in the right fusiform gyrus and medial frontal
area, and a weak source in left fusiform. These results are
consistent with both the scalp potential map (Fig. 6b) and
the following fMRI SPM result (Fig. 9 right panel).

The left panel of Figure 9 shows four ICs that were auto-
matically selected based on the estimated hyperparameter
for each IC, to further examine the NESOI procedure. The
networks related to IC2, 14, 16, and 19 were supported by
the EEG data. These networks showed relatively larger

hyperparameters. As such, these networks are likely to be
relevant to the different physiological procedures of faces
versus scrambled faces. The fMRI SPM of the same subject
is also shown in the right panel of Figure 9. Among these
four ICs, IC14 involves a bilateral activation in the frontal
gyrus (BA 11), close to the positive active cluster indicated
by SPM. IC2 contains a region that is overlapped by a nega-
tively active area from the SPM analysis. Because it uses the
priors of SPM, dSPM produced very similar results to the
SPM analysis. For NESOI (Fig. 8d), although the main find-
ings were the same as the fMRI SPM result (Fig. 9 right
panel), they were not entirely the same as the pattern indi-
cated by ICs 16 and 19. This suggests that the integration of
EEG and fMRI does indeed provide mutually complemen-
tary information [Shmuel et al., 2006].

Regions Involved in Epileptic Discharges

Study protocol and patient

A 10-year-old right-handed male patient with epilepsy
participated in an EEG-fMRI study in the epilepsy clinic of
the West China Hospital of Neurology, Sichuan University.
Informed consent was obtained before the patient under-
went a clinical brain structural MRI and a 24-h video EEG.
A diagnosis was established according to the scheme pub-
lished by the International League against Epilepsy in 2001
[Engel, 2001]. This patient experienced a seizure at 9 years
of age, and was treated with sodium valproate. He was
diagnosed as suffering from complex partial seizures, and
secondary generalized tonic-clonic seizures. Twenty-four-
hour VEEG revealed ictal discharges in the bilateral tempo-
ral and frontal lobes. A clinical structural MRI of the brain
revealed an anatomical abnormality, with an enlarged cis-
terna magna. Interictal EEG revealed bilaterally paroxysmal
spike waves and spike-slow-waves over the fronto-tempo-
ral parietal and occipital regions [Luo et al., 2010].

EEG and fMRI were simultaneously recorded for 4 min.
The patient was instructed to simply lie inside the scanner
with eyes closed. He was also required to keep awake dur-
ing the experiment. No visual or auditory stimuli were
presented at any time during the functional scanning.

MRI/fMRI acquisition and forward head model

Functional images were acquired with a 3T MRI scanner
(EXCITE, GE Milwaukee, USA) using means of T2*-
weighted echo planar imaging free induction decay sequen-
ces with the following parameters: echo time (TE) of 30 ms;
matrix size of 64 � 64; field of view (FOV) of 240 mm � 240
mm; in-plane voxel size of 3 � 3 mm2; flip angle of 90�; slice
thickness of 5 mm; and no gap. Functional volumes con-
sisted of 30 bicommissural slices, which were acquired with
a volume repeat time (TR) of 2 s. A total of 205 volumes
were acquired, and the first five volumes were discarded to
ensure steady-state longitudinal magnetization. Subse-
quently, a high-resolution T1-weighted structural volume
was acquired via a 3D spoiled gradient recalled (SPGR)
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Figure 8.

Model comparison among MNM, LOR, dSPM, MSP, and NESOI. (a) Explained variance; (b) Model

evidence; (c) Maximum intensity projections of the spatial activities of face perception obtained

by MNM, LOR, dSPM, and MSP; (d) The spatial profile and time course obtained by NESOI.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 9.

Spatial components that were automatically selected by NESOI and the fMRI SPM result for the

same subject. Left panel: Hyperparameter ci estimated for each TCN. IC2, IC14, IC16, and IC19

were selected with support from EEG data having relatively larger hyperparameters. Right panel:

SPM statistical result of the same subject within the same paradigm. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]



sequence with the following parameters: thickness of 1 mm
(no gap); TR of 8.5 ms; TE of 3.4 ms; FOV of 240 mm � 240
mm; flip angle of 12�; and a matrix of 512 � 512. The high-
resolution T1-weighted structural volume provided an ana-

tomical reference for the functional scan and the forward
model of EEG imaging. The forward head model is estab-
lished with the same method described by matching the T1-
weighted structural anatomy of the patient to the template.

Figure 10.

Raw EEG and artifact-removed EEG. (a) 1 s raw EEG data collected during simultaneous EEG/

fMRI, (b) the same traces after band-pass filtering and image artifact attenuation using AAS.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 11.

Epileptic discharges recorded on the scalp in an MR scanner. (a) Waveform of the discharge. The

dashed rectangle signal contained the clinic typical IEDs that were selected by a clinical expert

and the signal masked by the green rectangle is used as a baseline. (b) Topographies of the dis-

charges at 177.6 s, 177.7 s, 177.8 s, and 177.9 s during the acquisition of the functional images.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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EEG acquisition and preprocess

An MR-compatible Mizar 40 system (EBNeuro, Florence,
Italy) was used for EEG recordings with 32 electrodes. All
electrodes were ring-type sintered nonmagnetic Ag/AgCl
electrodes, placed on the scalp according to the interna-
tional 10/20 system. An additional electrode was dedi-
cated to the electrocardiogram (ECG). Two other
electrodes were positioned over the subject’s earlobes,
with their average used as a reference. The impedance of
each electrode was maintained below 5 kX using electrode
paste. Data were collected with a sampling rate of 4096
Hz, and band-pass filtering from 0.016 to 250 Hz was
applied.

The BE-MRI Toolbox (Galileo New Technology, Flor-
ence, Italy) was used for offline correction of the MRI
imaging artifact. This software implements the adaptive
artifact subtraction (AAS) method, in which the MRI imag-
ing artifact waveforms are segmented, averaged, and itera-
tively subtracted from the EEG signals [Allen et al., 2000].
Subsequently, data were down-sampled to 1 kHz and digi-
tally filtered within the 1–50 Hz frequency band using a
Chebyshev II-type filter with 40 dB attenuation and zero-
phase distortion. After visually checking for movement
artifacts and noisy electrodes from the data, a method
based on temporal ICA was used to reject the ballistocar-
diographic (BCG) artifact and the residual imaging artifact
from the filtered EEG recordings [Mantini et al., 2009]. Fig-
ure 10 illustrates the EEG signal before and after artifact
correction.

The EEG data was analyzed by an experienced neuro-
physiologist. This expert selected a suitable typical electrode
and used the raw EEG data to identify interictal epileptic
discharges (IEDs) and mark the times of IED. Bipolar
recordings (Fig. 11a) revealed a typical IED between 177.7 s
and 177.8 s. With the topographies (Fig. 11b), the potential
of the left hemisphere increased from 177.6 s, reached a
maximum at 177.7 s and returned to normal at 177.8 s. In
the right hemisphere, a positive potential appeared at 177.6
s, then turned to a negative potential at 177.7 s. The poten-
tial eventually returned to � 0.

Separation of temporally coherent networks

TCNs were extracted with the same method described
in Section ‘‘Model Comparison.’’ Figure 12 shows TCNs
that we considered likely to be linked with known brain
networks.

The SPM evidence shown in the right panel of Figure 14
suggests that the focally activated areas in the upper panels
may be related to epilepsy. IC1 exhibited a focally activated
region around the left temporal region, which is at least
partially compatible with the positive peaks in the EEG to-
pography at 177.7 s (Fig. 11b). The components illustrated
in the lower panels reveal several fundamental TCNs. IC10
showed a cluster of activity, consisting of the posterior cin-
gulate (BA 23/31) and the superior parietal (BA 7) regions,

both of which are considered to be part of the default-mode
network [Raichle et al., 2001]. IC14 implicated the superior
temporal (BA 22), insular, and postcentral cortices (BA 1/2),
which represent the auditory cortex. IC16 encompasses part
of the striate and parastriate regions (BA 17/18) belonging
to the visual cortex. IC18 shows the pre- and post-central
gyri (BA 1/2/3/4) correlated with the motor and sensory
networks. Other ICs that we considered to correspond to
noise and artifacts are not shown in Figure 12. The results
revealed that most of the obtained TCNs were highly corre-
lated with the patient’s state. As such, they may be helpful
in facilitating EEG imaging.

Model comparison

The sources of discharges estimated by MNM, LOR,
dSPM, MSP, and NESOI are shown in Figure 13. These
images show the 512 dipoles exhibiting the greatest activ-
ity during the spike discharge.

Figure 13a,b shows that NESOI has the best performance
among the five models in view of explained variance and
model evidence. The MNM and LOR localized sources in
similar areas, although the reconstructed profiles of MNM
were more superficial. dSPM localized sources in bilateral
frontal and left temporal lobes. These sources are consist-
ent with the SPM result shown in the right panel of the
following Figure 14. However, the sources accounting for
the negative peak in right hemisphere of Figure 11b were
not indicated by LOR, MNM, or dSPM. In MSP, 128 com-
ponents per hemisphere selected by log-evidence were
evenly sampled from the coherence matrix in (4). The
maximum intensity projections indicated some dispersed
activated regions using the MSP and NESOI approaches.
Specifically, MSP revealed bilateral pairs of fusiform gyrus
and inferior frontal gyrus activity, in conjunction with a
ventral prefrontal source. In contrast, NESOI revealed
three focally activated areas, corresponding to the bilateral
frontal and temporal lobes. The results of the NESOI
approach are in accord with the topography in Figure 11b,
and are largely consistent with the EEG-informed GLM
using IEDs as regressors (see right panel, Fig. 14). Impor-
tantly, the results revealed a right temporal source that
was missed by dSPM, but retrieved by NESOI. Right tem-
poral lobe activity does not appear in any network
extracted from fMRI (see Fig. 12), meaning that the fMRI
priors utilize in NESOI did not involve information about
this area. This is entirely different from the case of the
data from the ‘‘multi-modal face study,’’ where ICA
retrieved all the source priors. When the fMRI spatial pat-
terns provide only part of the prior information required
by NESOI, the multiple sparse priors evenly sampled from
the residual source space may supplement the missed pri-
ors. This allows NESOI to reconstruct sources missed by
fMRI. Though the right temporal lobe source identified by
NESOI is not revealed by fMRI measurements, it is com-
patible with the IED revealed by the scalp EEG over the
right temporal lobe (see topographies at 177.6 s and 177.7
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Figure 12.

Resting state networks from a patient with epilepsy. The sagittal, coronal, and axial views of the

spatial map are shown. They are scaled to z scores and shown in maximum intensity projection

format. Yellow to black represent the range of z values from 3.0 to max. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 13.

Model comparison between MNM, LOR, dSPM, MSP, and NESOI models. (a) Explained variance;

(b) Model evidence; (c) Maximum intensity projections of the spatial activities of epileptic dis-

charges obtained by MNM, LOR, dSPM, and MSP; (d) The spatial profile and time course

obtained by NESOI. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]



s in Fig. 11b). Further check the sign of source reveals that
the directions of dipoles in the two hemispheres are
reversed (the detailed figures omitted), they may indicate
an activation and contralateral inhibition pattern, which is
consistent with the topography at 177.7 s (Fig. 11b). The
other four methods, in contrast, did not detect strong acti-
vation in the right temporal lobe.

The hyperparameters estimated with NESOI are shown
in the left panel of Figure 14, and the EEG-informed fMRI
SPM statistical results for this patient are shown in the
right panel. For EEG-informed fMRI, the canonical HRF
was convolved with IED time pulse function as a regressor
of interest in the SPM design matrices. Six parameters for
spatial realignment were included to model the linear and
non-linear effects of head motion. Design matrices and
data were high-pass filtered with a cutoff of 128 s. The
specifically activated areas were calculated using statistical
t-tests with five contiguous voxels above an absolute t
value of 3.14 (P < 0.001, uncorrected). Networks related to
IC1, IC7, IC16, and IC20 were in accord with the EEG data
showing larger hyperparameters, indicating that these net-
works may be relevant to the patient’s epileptic dis-
charges. IC7 involved the bilateral inferior frontal gyrus
(BA 11), largely consistent with the areas of positive acti-
vation indicated in the fMRI SPM result. IC1 indicated a
region close to the negatively active area revealed by the
fMRI SPM result.

DISCUSSION

To investigate the relationship between the scalp surface
electrical features and the fMRI spatial maps, in this study

we developed a completely data-driven approach, NESOI,
combining high-resolution spatial information from fMRI
recording, with high-resolution temporal information from
EEG recording, in an effort to increase the accuracy of
source estimation methods. Our NESOI approach uses
ICA to identify multiple, widely distributed temporally
coherent networks from fMRI data. Networks are then
used as covariance components of PEB for EEG imaging.
The major novel feature of this approach is the utilization
of multiple temporally coherent priors and the automatic
selection of fMRI brain networks supported by EEG.

A large number of algorithms based on neuronal-ana-
tomical priors have been previously reported. These
approaches have used spatially based priors derived from
MRI spatial information [Phillips et al., 2002], an assump-
tion that neighboring nodes exhibit similar neuronal activ-
ity [Friston et al., 2008; Pascual-Marqui, 2002], or activation
priors derived from fMRI statistical analysis [Dale et al.,
2000; Daunizeau et al., 2005; Liu et al., 1998]. In our new
NESOI approach, temporally coherent networks in the
brain, including networks found during a resting state and
those active during cognitive tasks, were utilized in EEG
source imaging. This current comparative study indicated
that this novel method can produce physiologically reason-
able results. The main benefits of the NESOI approach over
other techniques are related to two basic features of the
method. First, NESOI uses ICA to extract temporally coher-
ent network priors from fMRI. Previous investigations
have confirmed that for fMRI data, ICA processes a signifi-
cant advantage over the widely used GLM approach,
because it does not require a priori specification of activa-
tion waveforms, and can identify similar loci of task-

Figure 14.

Spatial components automatically selected by NESOI and the fMRI SPM from the same subject.

Left panel: Hyperparameter ci estimated for each TCN. IC1, IC7, IC16, and IC20 are selected

with support from EEG data, having relatively larger hyperparameters. Right panel: EEG-informed

SPM result of the same patient. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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related activation [Calhoun et al., 2009]. Therefore, NESOI
can use more flexible spatial priors than its closest competi-
tor, dSPM, which is based on the GLM model. This advant-
age is illustrated by the results of the ‘‘multi-modal face
study’’ that we used as a test case. For this data set, analy-
sis with the prior IC14 revealed activation in bilateral fusi-
form gyri (see Fig. 7). NESOI indicated symmetric sources
in these areas. In contrast, SPM revealed no source in the
left fusiform gyrus (Fig. 9 right panel), meaning that dSPM
also neglected this source. Second, NESOI adopts PEB anal-
ysis to estimate source parameters as well as their spatial
covariances, meaning that both multiple sparse priors and
fMRI functional networks are utilized. The framework in
the NESOI approach can adapt to different levels of con-
cordance between EEG and fMRI. In addition to the simu-
lation results (Figs. 2–4), applying the NESOI approach to
data from a patient suffering from epilepsy also confirmed
the potential of our method. The results revealed that
NESOI was able to retrieve activations in the right tempo-
ral lobe that were not found in fMRI recording. Future
research using intracranial EEG would be useful for further
evaluating the utility of this novel method and assessing
its validity [Ebersole et al., 1996].

Previous research has reported that ReML can automati-
cally select the reference priors. Phillips et al. [2005]
affirmed that when accurate and inaccurate location priors
were used simultaneously, the solution was not obviously
influenced by the inaccurate information. Except for the
use of temporally coherent networks as priors, the PEB
frameworks used in the NESOI approach are the same as
those used in Phillips et al. [2005]. The comparison of the
NESOI method with four other inversion schemes in a se-
ries of simulation studies further confirms that the effects
of inaccurate priors on source estimation using NESOI are
negligible, provided accurate priors are also provided (see
Fig. 4). Friston et al. [2008] showed that a Laplace approxi-
mation to the posterior of the hyperparameters makes it
possible to quickly and efficiently invert models with mul-
tiple priors. In all of these methods, the Automatic Rele-
vance Determination (ARD) is an essential component. In
fact, ReML can be used to optimally determine the mar-
ginal likelihood or evidence. This is useful for model selec-
tion, because the hyperpriors can force the conditional
variance of hyperparameters to approach zero when their
conditional mean is zero. In short, ReML can be used to
estimate the hyperparameters that control mixtures of co-
variance components in a source space that generates the
data. If there are redundant functional network priors,
ReML will automatically switch them off or suppress them
to provide a forward model with the greatest evidence or
marginal likelihood. The NESOI, MSP, and LOR methods
all are examples of ARD, referring to a general phenom-
enon in hierarchical Bayesian models where maximizing
evidence enables the pruning away of unnecessary model
components [see Neal, 1996]. Though some previous em-
pirical reports [Friston et al., 2008; Henson et al., 2009] and
the current results indicate that the Laplace approximation

of the model evidence F can be very informative in prac-
tice, it should be noted that the current approximation
could potentially distort the results of the model selection.
The Laplace approximation, however, can be ameliorated
by combining the Laplace and mean-field approximations
[Wipf and Nagarajan, 2009].

To infer TCNs from the fMRI time series for PEB based
EEG source imaging, most previous studies have applied
a region-of-interest (ROI) cross-correlation analysis
approach [Hampson et al., 2004], where the spatial pat-
terns of similar fluctuations are estimated by correlation
analysis against a reference time course derived from a
seeded voxel. The networks extracted by this method can
also be used in the NESOI method. However, the result is
ROI dependent. In the current study, we adopted the
much simpler and more convenient ICA approach to
extract these networks. Generally, each component corre-
sponds to a certain functional brain network. These com-
ponent-determined networks may provide valuable
complementary information useful for EEG source local-
ization. It has been established that the IC component
selection is the primary problem for the application of ICA
to fMRI analysis. For our new method, all TCNs are used
as priors and included in ReML inversion. When there is
displacement between a BOLD activation networks and an
electrophysiological source, a nearby deactivation network
may bias electrical activity estimates. However, it should
be noted that we have never observed such a case in prac-
tice. Including TCNs with clear physiological meaning
could potentially ameliorate this possible problem.

Any attempt at combining information of EEG and fMRI
inevitably encounters the problem that EEG and fMRI
measurements may be due to different physiological proc-
esses. fMRI measures changes in blood oxygen level,
which is simultaneously affected by blood volume, flow
rate, and the oxygen content of the blood. The various fac-
tors that contribute to the BOLD signal can be directly or
indirectly related to the metabolism of brain cells and,
thus, neural activity. The currents generating EEG, on the
other hand, are dependent on ionic activity. These electro-
physiological signals are produced when neuronal activity
causes alterations in the flow of ions into and out of neu-
rons. Currents are roughly synchronous with and propor-
tional to activity. In addition, the current is fundamentally
a vector, but its divergence is a scalar. Therefore, it is pos-
sible to describe EEG sources using an equivalent charge
model [Lei et al., 2009b; Xu et al., 2008; Yao, 1996] or by
an equivalent dipole model, as we have adopted in the
current study. Several previous studies have shown that
the BOLD signal and neural activity are correlated. More-
over, it has been shown that if the frequency of the neural
activity is fixed, the BOLD signal is roughly linearly pro-
portional to the neural activity [Heeger et al., 2000; Shmuel
et al., 2006]. The BOLD signal has also been shown to be
proportional to local field potentials [Shmuel et al., 2006].
As the current sources (and local field potentials) would
expect to be proportional to neural activity, it is reasonable
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to expect the sources of the EEG signal to be proportional
to the BOLD signal. This is the basis of the logic behind
our inverse scheme, in which the modes of TCN obtained
from fMRI recording are added as variance of current den-
sity to ensure that the variance of the EEG imaging solu-
tion is proportional to the BOLD signal. Dipoles with
same variance can have different mean values, and their
direction can be very different from each other. It should
be noted, however, that variances only control the possibil-
ity that a dipole will be an active source.

CONCLUSION

The results of the current study revealed that our novel
NESOI approach was able to produce a realistic solution
by combining the high temporal resolution of EEG and the
high spatial resolution of fMRI. We successfully used the
resulting hyperparameters to indicate which spatial pat-
terns were supported by EEG data. Task-related tempo-
rally coherent networks can be automatically selected
according to these hyperparameters at the same time [Lei
et al., 2010]. Moreover, this method is immune to the tem-
poral dissimilar modalities of EEG and fMRI. The current
findings provide a helpful framework for our future
research, which will focus on the relationship between en-
dogenous brain oscillations and related networks.
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