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Concurrent EEG/fMRI recordings represent multiple, simultaneously active, regionally overlapping neuronal
mass responses. To address the problems caused by the overlapping nature of these responses, we propose a
parallel framework for Spatial–Temporal EEG/fMRI Fusion (STEFF). This technique adopts Independent
Component Analysis (ICA) to recover the time-course and spatial mapping components from EEG and fMRI
separately. These components are then linked concurrently in the spatial and temporal domain using an
Empirical Bayesian (EB) model. This approach enables information one modality to be utilized as priors for
the other and hence improves the spatial (for EEG) or temporal (for fMRI) resolution of the other modality.
Consequently, STEFF achieves flexible and sparse matching among EEG and fMRI components with common
neuronal substrates. Simulations under realistic noise conditions indicated that STEFF is a feasible and
physiologically reasonable hybrid approach for spatiotemporal mapping of cognitive processing in the
human brain.
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Introduction

Functional magnetic resonance imaging (fMRI) noninvasively
measures local hemodynamic changes associated with neuronal
activity. An unresolved issue in fMRI research is the limited temporal
resolution of the blood oxygenation level dependent (BOLD)
response. In contrast to the poor temporal resolution of fMRI,
electroencephalogram (EEG) measurements can instantaneously
record the electrophysiological signal produced by synaptic activity.
However, due to the ‘inverse problem’ inherent in EEG recording
(Helmholtz, 1853), the spatial location of the neural generators of
observed activity cannot be conclusively determined (Baillet et al.,
2001; Lei et al., 2009a). The fusion of these two complementary
noninvasive methods would allow for the combined high-resolution
spatial and temporal mapping of mental processes. Such a technique
could provide a more comprehensive understanding of the neural
correlates of perception and cognition (Ives et al., 1993; Dale and
Halgren, 2001; Debener et al., 2006; Ritter and Villringer, 2006).

Physiologically, simultaneous EEG/fMRI recordings constitute
volume-conducted and hemodynamically convolved signals from
neural events that are spatially and temporally ‘mixed’ across the
brain. That is, the observed data in both modalities represents
responses from multiple, simultaneously active, regionally over-
lapping neuronal populations (Baudena et al., 1995). Scalp EEG
recordings sample a spatially degraded map of neural activity, and a
temporal mixture of independent time-courses from large-scale
synchronous field potentials (Makeig et al., 2004). fMRI involves
several equivalent constraints, providing temporally degraded and
spatially mixed signals by measuring the neurovascular transforma-
tion of neural activity (Calhoun and Adali, 2006). Independent
component analysis (ICA) is potentially an ideal approach to address
this mixing problem and has been applied successfully to a variety of
problems in EEG (Makeig et al., 2004) and fMRI recording (McKeown
et al., 1998; Calhoun et al., 2001; Chen and Yao, 2004; Beckmann and
Smith, 2004).

EEG/fMRI fusion is typically based on the assumption that the
hemodynamic response is linearly related to local changes in neuronal
activity and, in particular, to local field potentials (Logothetis et al.,
2001). Large-scale synchronous field potentials underlie the electro-
physiological signal recorded by scalp EEG (Nunez, 1995). Conse-
quently, a method for integrating the two approaches may be
developed by determining the relation between the BOLD signals
measured by fMRI and the electrophysiological measures provided by
EEG, either in the spatial or temporal domain.

There are currently three broad potential approaches to EEG/fMRI
integration: (i) ‘symmetric fusion’, where a common generation
model is constructed to explain both the EEG and fMRI data
(Daunizeau et al., 2007; Deco et al., 2008; Valdes-Sosa et al., 2009);
(ii) ‘spatial constraint’, where spatial information from fMRI record-
ings is used for source reconstruction of the EEG data (Liu et al., 1998;
Dale et al., 2000; Trujillo-Barreto et al., 2001; Lei and Yao, 2009)
and (iii) ‘temporal prediction’, where the fMRI signal is modeled with
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data from certain EEG measures, convolved with a hemodynamic
response function (HRF; Martinez-Montes et al., 2004; Debener et al.,
2006; Eichele et al., 2008a; Moosmann et al., 2008).

In temporal prediction, various features of the EEG signal can be
used as measures of interest, such as alpha power (Goldman et al.,
2002) and P300 amplitude (Eichele et al., 2005; Warbrick et al., 2009)
among others. EEG data can be convolved with a canonical HRF, the
result of which can be used as a hemodynamic predictor in a general
linear model (GLM). This approach has been adopted in the study of
spontaneous brain rhythms (Goldman et al., 2002), epileptic
discharges (Laufs et al., 2008), and the inducing amplitude variation
in a cognitive task (Debener et al., 2006). For spatial constraint, in
order to extend the fMRI-constrained EEG inversion (Liu et al., 1998;
Dale et al., 2000), we recently proposed an EEG source reconstruction
method based on fMRI connectivity patterns. This technique, termed
‘network-based EEG source imaging’ (NESOI), uses multiple spatially
independent maps (or networks) derived from fMRI as covariance
priors for EEG source reconstruction (Lei and Yao, 2009).

The spatial constraint and temporal prediction approaches
described above do not consider EEG and fMRI data sets equivalently
or analyze them jointly. The goal of these methods is typically either
spatial localization or temporal dynamic reconstruction, in which one
modality is given privileged status as a prior for the other modality
(Valdes-Sosa et al., 2009). Thus, they are examples of asymmetrical
EEG/fMRI integrations. In contrast, symmetrical fusion does not
assign an a priori inferential preference to any given modality
(Trujillo-Barreto et al., 2001). The existing symmetrical fusion based
on a cascade of generation models may provide a deeper under-
standing of the neural mechanisms underlying mental processes of
interest (Daunizeau et al., 2007; Deco et al., 2008; Valdes-Sosa et al.,
2009). However, current generative model-driven symmetrical
methods employ highly detailed large-scale computational modeling
and require the explicit definition of the common neuronal substrates
that elicit both EEG and fMRI measurements. However, the lack of
precise knowledge about neural mechanisms has led to a reduced
scope for the application of these techniques.

In contrast to the generative model-driven fusion which exploits
models of the chain of events leading to observed measurements,
data-driven fusion is based on measuring mutual dependence
between the two modalities (Valdes-Sosa et al., 2009). In this
approach, original EEG/fMRI data are typically first decomposed
into components, then matched to each other (Calhoun et al., 2009).
Blind source separation has been used to address themixing problems
Fig. 1. Illustration of the unified framework for simultaneous EEG/fMRI analysis. EEG and fM
each modality. Finally, EEG and fMRI independent components are matched using STEFF.
of EEG/fMRI using parallel ICA (Eichele et al., 2008a) and joint ICA
(Moosmann et al., 2008). Eichele et al. (2008a) performed integration
with simple pair-wise matching of across-trial modulation. In a study
by Moosmann et al. (2008), the components linking both modalities
were estimated using decomposition of the joint data space. The key
strength of data-driven fusion is its ability to remove noise from the
data, generate priors and provide group inferences that can serve as
constraints for model-driven methods. Hence data-driven techniques
are helpful in localizing the generators of EEG phenomena and
informing models of interaction among levels of cortical hierarchies
(Garrido et al., 2007). Furthermore, data-driven approaches may
provide a solution to the problems faced by neurovascular transfor-
mation function estimation. This may clarify the relationship between
the electrophysiology of neuronal systems and their slower hemody-
namics in terms of their individual forwardmodels (Deco et al., 2009).

Methodological and conceptual developments in the field of
multimodal integration are ongoing, and the need for a more flexible
model is one of the outstanding challenges for EEG/fMRI integration
(Eichele et al., 2009). In the current study, we adopted a hybrid
approach, where data-driven blind source separation (group ICA) was
cascaded with an EEG forward model and a neurovascular transfor-
mation convolution model for neural source estimation and hemo-
dynamic response function reconstruction. We term this approach
Spatial-Temporal EEG/fMRI Fusion (STEFF). STEFF is not based on a
common generative model, but employs constraints and predictions
in an unmixed space. In STEFF, two asymmetric fusion methods,
spatial constraint and temporal prediction, are implemented in
parallel. Information from one modality is used to generate priors
for the other modality and the matching between components is
estimated using variational Bayesian inference. Here we present the
details of the STEFF approach and the results from simulated data
under realistic noise conditions.

Method

As the first step of the STEFF approach, we subject EEG and fMRI
data to modality-specific preprocessing to allow for later group
inferences (e.g., spatial normalization of individual fMRI volumes,
ICA-based artifact removal of EEG; see Fig. 1 for schematic overview).
Principal component analysis (PCA) is then adopted to compress the
data on single subject level. Single subject data are concatenated in an
aggregate set. Temporal ICA (tICA) and spatial ICA (sICA) are
performed on EEG and fMRI data, respectively, and subject-specific
RI data first undergo modality-specific preprocessing. Group ICA is then implemented in
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maps and time-courses are reconstructed by back-projecting the
independent components. Finally, components are averaged over
subjects and matched across modalities by STEFF. The details of these
procedures are listed below.

The above steps for real data can be implemented inMATLAB (www.
mathworks.com) with the academic freeware toolboxes EEGLAB
(http://sccn.ucsd.edu/eeglab), GIFT (http://icatb.sourceforge.org),
and SPM8 (http://www.fil.ion.ucl.ac.uk/spm). In our computer simu-
lation, the code for data generation and visualization, and the simulated
data used here were collected in a customized STEFF toolbox which is
available from the authors upon request.

Data preprocessing

Under real conditions, data transformations are necessary to
remove data with low repetition to increase the signal-to-noise ratio.
For fMRI data, the implemented steps typically include transforming
individual anatomy to a standardized space, correcting head motion
related image offsets, and temporal filtering. These pre-processing
steps can be implemented using SPM8. For the EEG data, these steps
correspond to correcting for gradient and cardiobalistogram artifacts
(Allen et al., 2000; Niazy et al., 2005), band-pass filtering and re-
referencing (Yao, 2001; Yao et al., 2005). A MATLAB-based toolbox for
this purpose is available in EEGLAB. In the current study, we used
simulation to evaluate the performance of STEFF, avoiding these
preprocessing steps.

Group ICA

The group EEG/fMRI decomposition includes a group temporal
independent components analysis (tICA) of EEG data and group
spatially independent components analysis (sICA) of fMRI data. A
comprehensive description of group ICA can be found in Calhoun et al.
(2001), and its implementation for real data are publicly available in
GIFT software (GIFT, 2008). The main points are summarized as
follows: data from all subjects are combined into a single data matrix
after dimension reduction. The resulting data matrix is decomposed
into N components. In order to determine the number of components,
dimension estimation is performed using the minimum description
length criteria (Li et al., 2007). Single subject independent compo-
nents and mixing matrices are then computed using back-
reconstruction.

For a single subject, the independent component matrix contains
the N components (sIC in fMRI and tIC in EEG) and the mixing matrix
consists of fMRI time-courses (or EEG topographies) corresponding to
the N components. The results of the above procedures formed the
basis of parallel fusion of EEG and fMRI, as shown in Fig. 2.

For each modality, the resulting components are subjected to
random effects analyses. Common independent components (ICs)
among the subjects are inspected and identified for the following
subsequent parallel fusion. For the ith fMRI sIC of the first subject, we
calculate the correlation coefficients (CC) between the ith fMRI time-
course and that of all the components from all other subjects. For each
component, if more than half the subjects' maximum CCs are higher
than 0.8, this component is retained and averaged across these
subjects as a group component. The corresponding components in
these subjects are then discarded in the calculation of the next group
components. For the first subject, this calculation is executed from
i=1 to N and the corresponding group components are discarded.
The calculation is then executed for the remaining components for the
remaining subjects. The averaged time-courses (group components)
are filtered with a 128-second high-pass Butterworth digital filter and
normalized to unit variance. These grand averaged time-courses are
adopted as the BOLD signals from sIC active areas for HRF estimation.
For each EEG tIC, similar steps are taken, and the final group averaged
topographies serve as scalp EEG recordings for EEG source imaging.
For the following STEFF procedure, as shown in Fig. 2, the components
adopted are group averaged fMRI sICs, their time-courses, group
averaged EEG tICs, and the corresponding topographies.

STEFF

After acquiring the group maps and time-courses for both EEG
and fMRI, STEFF provides constraint and prediction integration in
parallel, in an unmixed IC space (Fig. 2). For ‘fMRI-constrained EEG
imaging’, to find the voxel-wise description of the topography of an
EEG tIC, fMRI sIC patterns are typically employed as the covariance
priors for EEG source distribution. For ‘EEG-informed HRF estima-
tion’, the trial-by-trial dynamics (single trial quantification in Fig. 2)
extracted from EEG tIC act as the prediction information and form
the design matrix for fMRI HRF estimation. Both of these approaches
are described below.

fMRI-constrained EEG imaging (left dashed area in Fig. 2)
For the group averaged topography of each EEG tIC, Ye, we employ

an Empirical Bayesian (EB) model (Phillips et al., 2005; Friston et al.,
2006) for its underlying source distribution,

Ye = XeΦe + E1e E1eeN 0;C1eð Þ
Φe = 0 + E2e E2eeN 0;C2eð Þ; ð1Þ

where Ye∈Rn×1 is one of the p tIC EEG topographies with n channels.
Xe∈Rn×d is the known lead-field matrix calculated for the selected
head model, and Φe∈Rd×1 is the unknown distribution of d dipoles. N
(μC) denotes a multivariate Gaussian distribution with mean μ and
covariance C. The terms E1e and E2e represent random fluctuations in
channel and source spaces, respectively. These spatial covariances E1e
and E2e are mixtures of covariance components at the corresponding
levels. At the sensor space level, we assume C1e=α−1In to encode the
covariance of sensor noise, where In is an n×n identity matrix. At the
source space level, we express C2e as the covariance components,

C2e =
Xk
i=1

γiVi; ð2Þ

where γ≡[γ1, γ2,…, γk]T is a vector of k non-negative hyperparameters
that control the relative contribution of each covariance basis matrix,
Vi. The Green function, G=2exp(A), models anatomic coherent
sources and is a function of an adjacency matrix, A, with Aij∈[0,1]
encoding the neighboring relationships among nodes of the cortical
mesh defining the solution space (Harrison et al., 2007). The jth
column of the Green function matrix G is qj, encoding neighboring
patches weighted by their surface proximity (Friston et al., 2008).

STEFF employs two different kinds of covariance matrices, i.e.,

Vif g = V f
i

n o
[ Ve

i

� �
; ð3Þ

where V i
f encodes the prior coherence pattern information derived

from fMRI (Lei and Yao, 2009) and Vi
e encodes multiple sparse priors

(Friston et al., 2008) that are sparsely sampled from a subspace of EEG
source space that does not contribute to fMRI measurements. The
intensity values in each fMRI sIC are scaled to z scores. Voxels with
absolute z scores of N3 are considered to show activation. Negative z
scores indicate that the BOLD signals are modulated oppositely to the
IC waveform (McKeown et al., 1998). A node in the EEG source space
is assigned according to the z score of its nearest-neighbor fMRI voxel
after spatial registration. All the activated nodes (absolute z scoresN3)
in each IC show similar temporal dynamics of the BOLD signal, thus
we assume they have similar properties for EEG signal generation. The
simplest way to construct a covariance component from an IC is to
assign the diagonal terms by 1.0 if the corresponding node is
activated, and assign the other terms by 0.0. STEFF takes into account
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Fig. 2. STEFF employs fMRI constraints and EEG predictions in parallel for information integration in the unmixed space. FMRI sIC patterns (the bottom left panel) are employed as
covariance priors (constraints) for EEG source distribution to find the voxel-wise description of the electrophysiological responses (left dashed area) of the topography of an EEG tIC
(top left panel). The trial-by-trial dynamics (‘single trial quantification’ in the top right panel) extracted from EEG tIC time-courses (top center panel) are utilized to form the design
matrix of the fMRI time-course (bottom right panel) of each fMRI sIC to estimate (predict) the hemodynamic response function (right dashed area), and then to reconstruct its neural
fluctuation. ★: independent component.
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the local coherence in source space and introduces the covariance
component Vi

f as,

V f
i =

1
ni

X
jaW ið Þ qjq

T
j ; ð4Þ

whereW(i) is a set of activated nodes for ith sIC, ni is the cardinality of
W(i), and qj is the jth column of the Green function matrix G.

For the remaining source space outside the subspace generated by
fMRI sIC, multiple sparse priors (Friston et al., 2008) are employed:

Ve
i = qjq

T
j ; ð5Þ

where qj is evenly sampled from the remaining subspace. In light of its
location, this approach can denote right hemisphere components as
qj
right, and left ones as qj

left. Furthermore, homologues are added to
form a bilateral component, qj

both=qj
right + qj

left, which models
correlated sources in the two hemispheres.

In summary, the spatial priors for STEFF consist of two parts: fMRI
sIC and multiple sparse priors (Friston et al., 2008). The effective
number of fMRI sICs is automatically selected using an EB model
optimization procedure (described in Section 2.4). After the optimi-
zation convergence, the conditional source estimate Φ ̂

e
is the

Maximum a Posteriori (MAP) estimate, or equivalently, the weighted
minimum norm, the Tikhonov solution, and is given by:

Φ̂e = αC2eX
T
e αXeC2eX

T
e + In

� �−1
Ye: ð6Þ

The obtained hyperparameter γi encodes the link between W(i)
(the ith fMRI sIC) and Ye (the topography of an EEG tIC).

EEG-informed HRF estimation (right dashed area in Fig. 2)
Many features of EEG data can be used as measures for each trial. A

simple approach uses peak-to-peak amplitude differences of the tIC
temporal course (Debener et al., 2005). A more sophisticated
approach may employ machine learning to identify task-discriminat-
ing information (Goldman et al., 2009; Lei et al., 2009b). We propose a
convenient approach for obtaining trial-to-trial EEG amplitude
variances. Using singular value decomposition on the single trial



Fig. 3. Head model: 2452 voxels within a concentric three-sphere head model with 128
electrodes on the upper surface. The two holes in source slice are ‘white matter.’
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image of each EEG tIC (Nt× te, number of trials times number of time
points for a single trial; the top center panel in Fig. 2), the left singular
vector, corresponding to the largest singular value, is defined as the
single trial quantification (top right panel in Fig. 2).

We employ EB (or robust Bayesian GLM, cf. Marrelec and Benali,
2001) for the time-course of an fMRI sIC, Yf, again for estimation of the
hemodynamic response

Yf = XfΦf + E1f E1feN 0;C1fð Þ
Φf = 0 + E2f E2feN 0;C2fð Þ; ð7Þ

where Yf∈Rn×1 is one time-course of the p fMRI sICs with n volumes
(or time points), and Φf∈Rd×1 is the unknown HRF for each time-
course (d= lm, l: order of the convolution model; m: number of
stimulus functions). The covariance of E1f is C1f=α-1In and E2f is C2f as
described below. Xf∈Rn×d is the design matrix, consisting of the
lagged stimulus function matrix Xs. Given that [x1, x2, …, xn]T, the ηth
column of Xs, is an event time-course, then Xf is

Xf =

: : : x1 0 0 0 : : :
: : : x2 x1 0 0 : : :
: : : v v O 0 : : :
: : : xl xl−1

: : : x1 : : :
: : : v v v v : : :
: : : xn xn−1

: : : xn− l + 1
: : :

2
6666664

3
7777775
; ð8Þ

i.e., the (η−1)l + 1th to the ηlth columns of Xf contain the lagged ηth
column of Xs. Xs consists of two kinds of stimulus functions (Eichele et
al., 2008a):

Xs = Xf
s X

e
s

h i
: ð9Þ

The first stimulus function Xs
f encodes invariant evoked responses

to target stimuli; the additional functions Xs
e encodes the ‘single trial

quantification’ of the EEG tIC, where the single trial quantifications are
first de-correlated using Schmidt-Gram orthogonalization from the
nonspecific hemodynamic response to stimulus onsets, ensuring the
specificity of inferences from the electrophysiological predictors.

The Φf in eq. (7) is assumed to fulfill a ‘sparse restriction’ that the
number of stimulus vectors (i.e., columns in Xs) involved in Yf
generation should be as few as possible. This is realized by associating
a hyperparameter γi (i=1, 2, …, m) with each HRF in Φf:

C2f =
Xm
i=1

γiVi; ð10Þ

where Vi=diag([0,…,0, Q-1,0,…,0]) is a d×d diagonal matrix whose
diagonal elements are the inverse of the square matrix Q (l× l matrix
defined in eq. (11)) for its ith element and 0 (l× l matrix of zeros) for
others. In this way the relevance of each stimulus function can be
determined separately via the optimization of the hyperparameter γi,
and the irrelevant links between EEG tICs and the fMRI time-course
will be effectively switched off. Q is the l× l concentration matrix of
the Gaussian prior, chosen as the discrete second order differentiation
matrix (Marrelec and Benali, 2001):

Q =

5 −4 1 0 : : : 0
−4 6 −4 1 0
1 −4 6 −4 1 0
0 1 −4 6 −4 1 0 v

O O O O O O O
v 0 1 −4 6 −4 1 0

0 1 −4 6 −4 1
0 1 −4 6 −4

0 : : : 0 1 −4 5

2
6666666666664

3
7777777777775

: ð11Þ

Q is a smooth constraint introduced to temporally regularize the
problem. As stated by Marrelec et al. (2001), this approach has the
advantage of not introducing bias into the estimation, since the
constraints imposed are clearly derived from physiological require-
ments. Here, ‘smooth’ constraints for HRF and ‘sparse’ constraints
between different stimulus functions are simultaneously imposed
upon STEFF.

Omitting the second equation for the HRF constraint, the EB model
in eq. (7) would be identical to the GLM (Friston et al., 1995) with a
deconvolution method. This model has recently been applied to
estimating the shape of the alpha band response function (de Munck
et al., 2007).

Variational Bayesian inference

The ‘fMRI-constrained EEG imaging’ in eq. (1) and ‘EEG-informed
HRF estimation’ in eq. (7) both adopt the same EB model. Hence both
problems are solved using the same variational Bayesian inference. To
ensure γi is non-negative, a hyperprior to the hyperparameters is
introduced using a log-transform γi=exp(ϕi) and a Gaussian
hyperprior on ϕ=[ϕ1, ϕ2, …,ϕk]T as p(ϕ)=N(τ, Γ) (Friston et al.,
2006). The generative model is then given by Q={X, V}, and
maximizing the model-evidence, p(Y|Q), is equivalent to maximizing

ln p Y jQð Þ = ln
R
p Y;Φ jQð ÞdΦ≈F; ð12Þ

where F is the variational “free-energy” and is equal to

F = − 1
2
α Y−XΦð ÞT Y − XΦð Þ− 1

2
ΦTC−1

2 Φ − n
2
lnα − n

2
ln jC−1

2 j

+
n
2
ln jαXTX + C−1

2 j − 1
2

/−τð ÞTG−1 / − τð Þ− 1
2
ln jG−1 j

+
1
2
ln jΣ−1 j + const; ð13Þ

where const denotes a constant, Σ is the conditional covariance of the
hyperparameters (see Friston et al., 2006, for details). F can be
maximized using a standard variational scheme such as Expectation
Maximization (EM) to furnish a tightly bound approximation to the
log-evidence (Friston et al., 2008;Wipf and Nagarajan, 2009; Lei et al.,
2009b), which also yields sparse matching of the ‘common substrate’
of neuronal activity.

Simulation

Our simulation involved the creation of sources, whose activity
across the observation time window were reflected in the trial-by-



Table 1
Parameters in simulation.

EEG fMRI

Sampling frequency: 100 Hz Sampling frequency:
0.5 Hz (TR=2 s)

Number of time samples: te=41 Number of time samples: tf=240
Number of sensors: n=128 Size of simulated HRF: l=17
Gain matrix G: 3 spheres head model
with analytic solution Sphere radii:
[0.87 0.89 1]

HRF function: Gamma function
with different onset time

Noise E1e: Gaussian IID Noise E1f: Gaussian IID
Signal-to-noise ratio: SNREEG=1 Signal-to-noise ratio: SNRfMRI=0.1

Number of trials: Nt=60.
Number of dipoles/voxels: n=2452.
Number of common sources: 4.
Number of modality specific source: 1.
Number of dipoles per source (S1–S6): [48 100 90 64 32 30].
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trial modulation of two-dimensional fMRI spatial maps of 70×70
voxels with a field of view (FOV) of 200×200 mm2 and a Z-axis of
18 mm. The repeat time (TR) of fMRI was 2 s. The size l of the
Fig. 4. Simulated sources of neuronal activity in simultaneous EEG/fMRI recordings. Column
eight key features are illustrated: for EEG, the features include scalp potential distribution (1
activity, the features are single trial amplitude (4th row) and spatial distribution maps (5th
(7th row) and BOLD signals (8th row). Axes are the same for all columns and are show
recordings.
simulated HRF was set to 17, corresponding to a 32 s (16×2 s) time
window. Simultaneously, the EEG forward model was based on a
concentric three-sphere head model with 128 electrodes placed on
the upper hemisphere according to a pseudo 10–20 electrode setup
(Fig. 3). The orientations of the EEG sources were fixed, and the lead-
fields (Xe) for all sources were calculated analytically (Yao et al.,
2004). The two ‘whitematter’ holes were assumed to be blind for both
EEG and fMRI. The event-related potentials (ERPs) consisted of 41
time points. The temporal sampling rate in an MR scanner is typically
around 1 kHz, so that the current simulation corresponded to a
400 ms epoch after being down-sampled to 100 Hz. Other parameters
are listed in Table 1.

In Fig. 4, the fifth row shows the assumed six analogously
neurophysiological sources. From left to right: ‘vision area’ S1, ‘default
mode networks’ S2, ‘auditory cortex’ S3, ‘sensory networks’ S4, ‘left
cognition area’ S5 and ‘right cognition area’ S6. These areas were
different in trial amplitudes across 60 trials (4th row). Trial
amplitudes are functions with fast and slow dynamics induced by a
stimulation paradigm: S1 is an increasing amplitude; S2 is a product of
two sine waves with f1=1/120 Hz and f2=1/24 Hz; S3 shows a
s from left to right are the sources 1–6 and their linear mixture (7th column). In total,
st row), single trial images (2nd row) and ERP transient responses (3rd row). For neural
row). For fMRI, the features are the spatial distribution (6th row), region-specific HRFs
n on the leftmost plots. The rightmost panels are the simulated combined EEG/fMRI



Table 2
EMD of source location and CC of HRF estimation for the five sources: S1, S2, S3, S4 and
S5 (and average over all sources).

Method Source 1 Source 2 Source 3 Source 4 Source 5 Average

EMD between estimated and true source location (mm)
MNE 0.1892 0.1628 0.1219 0.2164 1.0767 0.3534
LORETA 0.3931 0.1342 0.1395 0.2041 0.8575 0.3457
MSP 0.1591 0.2172 0.1601 0.1884 0.7471 0.2944
fMRI-weighted
MNE

0.1397 0.0764 0.0266 0.0481 1.4127 0.3407

STEFF 0.2315 0.0398 0.0393 0.0250 0.3709 0.1413

CCs between estimated HRF and true HRF (%)
ML 46.09 0.07 86.85 1.48 70.42 40.98
STEFF 99.17 97.6 99.83 92.85 94 96.69
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decreasing amplitude; S4 is the product of two sine waves with
f1=1/40 Hz and f2=1/480 Hz; S5 exhibits a fixed amplitude and S6
is the product of two sine waves with f1=1/60 Hz and f2=1/120 Hz.

These assumed active neural sources (green dashed areas in Fig. 4)
yield scalp distributions and time-courses of EEG (red-bordered areas
in Fig. 4), and time-courses of fMRI (blue-bordered areas in Fig. 4). S1–
S4 are common sources for EEG and fMRI, and S5 and S6 are blind to
EEG and fMRI, respectively. In total, eight key features are measured:
for EEG, these include scalp potential distribution (1st row), single
trial images (2nd row) and ERP transient responses (3rd row); for
neural activity, the features included the single trial amplitude (4th
row) and distribution maps (5th row); for fMRI, the features included
the spatial distribution (6th row), region-specific HRFs (7th row) and
BOLD signals (8th row). For EEG, single trial images (2nd row) were
generated by multiplying each ERP transient response (3rd row) with
the trial amplitude (4th row). Scalp potential distribution maps (1st
row) were generated by computing the forward problem of each
source pattern illustrated in the fifth row. For fMRI, BOLD signals were
computed from the convolutions between trial amplitudes (4th row)
and region-specific HRFs (7th row). The rightmost panels are
examples for simulated data, which are entries for the analysis
described below.

To demonstrate the feasibility of group ICA for various cases, only
four of the five potential sources for each modality were randomly
selected for each subject data set. Different Gaussian noise with
independent and identical distributions (IID) was added to each data
set. Here, we assumed a conservative signal-to-noise ratio (SNR) of
0.1 for fMRI and 1.0 for EEG. Such SNRs are consistent with typical
experimental data. The rightmost panels in Fig. 4 represent the noisy
data. Sixteen subject data-sets were simulated, corresponding to a
medium-sized group study.

In the analysis stage, datasets were first pre-whitened and reduced
using PCA. The dimensionality of the data (number of components)
was estimated using the minimum description length criteria tool
incorporated in the GIFT package, which attempts to minimizemutual
information between components (for details see Li et al., 2007). For
our implementation, the estimated number of components was five,
and ICA was performed using projection pursuit as implemented in
Fig. 5. The estimated independent components with four features for each source pattern:
distribution (3rd row) and the corresponding BOLD signals (4th row).
FastICA (Hyvarinen and Oja, 1997). Fig. 5 illustrates the result of group
ICA for each modality. Group averaged components were used as
input for the following STEFF analysis.

We compared STEFF to some other approaches in the estimations
of Φe and Φf. For comparing source imaging between different
approaches, we usedminimumnorm estimator (MNE) (Tikhonov and
Arsenin, 1977), LORETA (Pascual-Marqui et al., 1994), MSP (Friston
et al., 2008) and fMRI-weighted MNE (Liu et al., 1998).

For HRF estimation, the result of the STEFF analysis was compared
with the simple maximum likelihood approach (ML; Friston et al.,
1995; de Munck et al., 2007; Eichele et al., 2008b).

Spatial and temporal reconstruction results are detailed in Table 2.
Here, the Earth Mover's Distance (EMD; Rubner et al., 2000) was used
as the metric for image retrieval to evaluate the accuracy of the source
localization method. CC was utilized to evaluate the accuracy of HRF
estimation.

Fig. 6 shows the source localization results of the MNE, LORETA,
MSP, fMRI-weighted MNE and STEFF approaches. In terms of EMD,
STEFF performed substantially better than any of the other four
methods, with or without fMRI information. The results confirmed
that LORETA (0.3457) performed better than MNE (0.3534), although
this difference was marginal. In Fig. 6, the reconstructed profile of
EEG single trial images (1st row), scalp potential distribution (2nd row), fMRI spatial



Fig. 6. Source localization results from left to right, corresponding to the assumed EEG sources S1–S4 and S6. From top to bottom:MNE, LORETA,MSP, fMRI-weightedMNE, and STEFF
reconstructions. The maps are shown with threshold at the 1% quantile of the spatial distribution.
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MNE was more superficial and spatially dispersed, particularly for
sources S1 and S6. With 64 components per hemisphere (3×64=192
components in total), MSP reconstructs all five sources with bilateral
pairs of activity patterns. However, the support areas of this approach
are very local and sparse. For fMRI-weighted MNE, the weights are 1
and 0.1 for visible and invisible fMRI source locations (Liu et al., 1998).
The data are partly consistent with the true sources, but some
irrelevant spatial patterns (for example, the S1 and S6 in Fig. 6)
contaminated the results. The sources estimated by STEFF localized all
the activated areas at their true positions. Specifically, the four
activated areas in S2 were located at the correct positions only by
STEFF.

As for the accuracy of the estimation of the HRF, STEFF
reconstructed all the HRFs with an average CC of 96.69%, but for ML,
this score was reduced to 40.98%. The hyperparameters of STEFF
reflect the matching relationship between EEG and fMRI. Fig. 7
illustrates the spatial and temporal hyperparameters, where each
column shows the relative contribution of each element in the left
column to a component in the top row. The display of each column is
normalized with its maximum. Importantly, it can be seen that the
relative relation shown was accurate and sparse.

Discussion

In this work, we proposed a parallel approach to EEG/fMRI fusion,
aiming to estimate both the common neural substrate of the
responses measured by EEG and fMRI, and to identify modality-
specific responses that were blind to one another. Below we discuss
the technical details of STEFF, and outline potential future applications
of our method.
Group ICA in STEFF

Group ICA is implemented in the current framework, and then
group averaged components are employed for the concurrent EEG/
fMRI fusion. A number of previous studies have reported that group
ICA provides a straightforward and stringent solution for multi-
subject component estimation (Calhoun et al., 2001; Schmithorst and
Holland, 2004; Li et al., 2007). However, we must consider the
potential risk that group ICA may miss a cognitive component of
interest, producing misleading results.

Group ICA works well for sources that are spatially and temporally
coherent across subjects and will readily detect such sources if they
are present in approximately 10% of the sampled population
(Schmithorst and Holland, 2004). Group tICA performed on EEG
single trial time domain data is particularly suitable for detecting
components that represent or contribute to event-related potentials
visible in averaged data. Processes that are not time/phase-locked
within and across subjects, such as background rhythms and induced
activity are less appropriate. Correspondingly, for sICA on prepro-
cessed fMRI data, regional BOLD responses that overlap across
subjects can yield group-relevant components. Processes that occur
in a spatially variable way over time in the recording of a single
subject or that are principally spatially heterogeneous across subjects
cannot be captured by this approach.

However, the choice of input data to group ICA is arbitrary, in that
the original time or space domain data can be replaced with
information such as power spectra or time-frequency data. This is
particularly true when the fMRI correlates of EEG rhythms (Goldman
et al., 2002) or event-related synchronization and desynchronization
(Cheyne et al., 2008) are subject to study. Consequently, a useful



Fig. 7. The hyperparameters of STEFF reflect thematching relationships between EEG and fMRI. (a) The hyperparameters estimated in ‘fMRI-constrained EEG Imaging’ quantify the support from the EEG component (the top row) for each fMRI
spatial pattern (the left column). (b) The hyperparameters estimated in “EEG-informed HRF Estimation” quantify the support from the fMRI component (the top row) for each EEG temporal pattern (the left column).

1131
X
.Lei

et
al./

N
euroIm

age
52

(2010)
1123

–1134



Fig. 8. The virtues of STEFF. With ICA, the “neuronal activity” is decomposed into two
non-orthogonal sub-spaces: the red and blue columns contribute to the independent
component of EEG and fMRI, respectively. The intersection column III of the red and
blue columns defines the “common substrate” of neuronal activity. Conversely, the
column I (respectively II) denotes the subspace of neuronal activity detected by EEG (or
fMRI) that does not contribute to fMRI (or EEG) measurements. STEFF not only enables
flexible matching in the column III but also reconstructs neuronal activity in I and II.
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extension of the current framework would be the incorporation of
multiple EEG and MRI features from single trial data (Calhoun et al.,
2006) or to utilize other blind source separation methods (Langers,
2009). In any case, the STEFF framework appears to be useful for
examining these features.

STEFF, data-driven and model-driven fusion

Generally, data-driven fusion approaches such as joint ICA are
applied to data where specific hypotheses on spatial and temporal
relationships are lacking, or are ill-specified, such as situations where
traditional inference tests (Friston et al., 1995) are not justifiable or
are too insensitive because of conservative significance thresholds.
Simultaneous EEG/fMRI data adds additional problems to the analysis
because of the involvement of two multivariate spaces and many
necessary specifications. For example, there is an excessive degree of
complexity in determining which channels would be sensitive to
event-related function, which locations and latencies should be used
to derive the event-related dynamics, which regions in fMRI
activation would be expected, and which features should be utilized
as fMRI predictors. In joint ICA, associations between the EEG/ERP and
fMRI data are established during the decomposition process in a fused
space, which inherently develops the relationships to each other in a
more comprehensive fashion (Moosmann et al., 2008). In STEFF, since
the blind unmixing of tICA for EEG, and sICA for fMRI data are
complementary, all available EEG and fMRI data are used in the
estimations. Subsequently, back-reconstruction semi-automatically
produces maximally condensed components (the group averaged
temporal and spatial components of EEG and fMRI, as shown in Fig. 2),
and the EB model realizes flexible matching among the components.

Model-driven fusion is based on the formulation of an explicit
biophysical model that illustrates post-synaptic potentials to EEG on
one hand and BOLD signals on the other hand (Valdes-Sosa et al.,
2009). Recent advances in physiological investigations approaches
allow neuroscientists to develop sophisticated biophysical models for
EEG/fMRI fusion. Bioelectric and metabolic activity has been modeled
in neural populations based on dynamic causal models (Friston et al.,
2003; Kiebel et al., 2006). Inversion of these integrative dynamic
causal models might provide us with important insights into the
nature and structure of cerebral activity and promote our under-
standing of neural mechanisms underlying perception and cognition.
In STEFF, similar but less complicated models are involved: the EEG
forwardmodel and the BOLD convolution model. However, the model
parameters are estimated using condensed components rather than
channel-wise or voxel-wise EEG/fMRI data. Moreover, the results of
STEFFmay provide empirical constraints for hierarchical relationships
among different levels of cortices (Garrido et al., 2007). In addition,
STEFF provides a framework in which predictions from larger-scale
computational models of electrophysiological and hemodynamic
phenomena can be tested. For example, the approach may be used
to locate the components that jointly reflect high-frequency EEG and
low-frequency fMRI signals respectively (Deco et al., 2009).

STEFF is a hybrid approach, in which group ICA is used for
generating data-driven hypotheses and spatial and temporal priors,
which are then introduced to a model-driven approach (forward head
model and neurovascular coupling) based on the hypotheses. The
trial-to-trial modulations of EEG tICs are applied together to each fMRI
time-course of the sICs to estimate the HRF function. Correspondingly,
fMRI sICs are applied together to each EEG scalp topography of each
tIC, to reconstruct the EEG source pattern. Traditionally, approaches
for identifying shared neuronal sources that jointly express scalp
electrophysiological and hemodynamic features or identifying IC-
matching across modalities, were implemented with ‘EEG-informed
fMRI’ and ‘fMRI-constrained EEG’. Our proposed approach instead
estimates hyperparameters among various components of EEG and
fMRI within the parallel framework of STEFF.
Sparse mapping in different modalities

There are a variety of ways in which one can conceive the coupling
between electrophysiology and hemodynamic signals. Linear regres-
sion between fMRI and EEG is typically used in combination with ICA
to investigate links between modalities (e.g., Debener et al., 2005). In
searching for such one-to-onemappings it is assumed that a particular
EEG feature is related to a particular fMRI activity pattern. This
conception involves an oversimplification, neglecting that in principle
several fMRI patterns can affect several EEG signals.

In STEFF, we employ an EB model to link electrophysiology and
hemodynamic signals. In the spatial domain, multiple fMRI-sIC
patterns are input as priors for analyzing EEG topography. In the
temporal domain, multiple EEG-tIC trial amplitudes are input as
predictors for the fMRI time-course. This strategy enables sparse
many-to-many mappings of the common neuronal substrate and
temporal dynamic processes, which is more physiologically plausible
than previous methods (Baudena et al., 1995; Halgren et al., 1995;
Ritter and Villringer, 2006; Eichele et al., 2009).

Virtues of STEFF and its application

Currently accepted model-driven symmetrical fusion approaches
require highly detailed large-scale computational modeling and
explicit definitions of the common neuronal substrates generating
both EEG and fMRI responses (Daunizeau et al., 2007; Deco et al.,
2008; Valdes-Sosa et al., 2009). In consideration of this complexity,
many researchers have employed meta-analysis using highly distilled
data to examine convergent evidences. These analyses simply exhibit
the results achieved by EEG source imaging and EEG-informed fMRI
analysis (Esposito et al., 2005; Groening et al., 2009; Vulliemoz et al.,
2009). In contrast to the two approaches discussed above, in STEFFwe
employ constraint and prediction simultaneously in a reciprocal way
(Fig. 2). This method enjoys many advantages (illustrated in Fig. 8),
discussed below.

• For source imaging, we take fMRI sICs as priors (the bottom area of
column III in Fig. 8). This approach differs from other fMRI-
constrained EEG imagingmethod (Liu et al., 1998; Dale et al., 2000;
Liu et al., 2009) where fMRI activation is adopted equivalently. In
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STEFF, the different spatial patterns (sICs) are given different
weights by EB, thus the constraints are more flexible and realistic.

• For HRF estimation (the top area of column III in Fig. 8), apart from
estimating HRF through the maximum likelihood approach (de
Munck et al., 2007; Eichele et al., 2008b), the distinct advantage of
STEFF is that the estimation is region-specific, and the estimated
HRF is physiologically smoothed because of the adoption of a
smoothness constraint.

• In examining the link between EEG and fMRI (shown in column III
of Fig. 8), ‘fMRI-constrained EEG imaging’ enables multiple fMRI-
sIC maps to match an EEG topography, and ‘EEG-informed HRF
estimation’ enables multiple EEG-tIC trial amplitudes to match an
fMRI time-course. As a result, more robust and flexible mappings
are reconstructed as the common substrate of neuronal activity.
Noticeably, the mappings are sparse, and flexible in facing
mismatching situations of the spatial and temporal information.
Moreover, the approach produces results that cover both temporal
and spatial aspects of neuronal activity.

• Finally, subspaces (illustrated in columns I and II in Fig. 8) that are
visible for only one modality can be examined using the STEFF
approach. These areas are often omitted by other EEG/fMRI fusion
studies, because typically only convergent evidence is considered
of interest. However, these areas would be equally important for
understanding various cognitive processes.

Because of the advantages shown above, STEFF is likely to provide
important information furthering our understanding of various
cognitive processes. STEFF shows particular promise for disentangling
and visualizing the neural networks involved in processes where
spatially and temporally widespread neuronal networks are activated
(such as target detection in the auditory oddball task; Baudena et al.,
1995; Halgren et al., 1995; Calhoun et al., 2006; Tian and Yao, 2008).
Importantly, the definitions of events in STEFF can be very flexible,
allowing the study of such diverse phenomena as cardiac triggering or
interictal epileptic discharges (Marques et al., 2009). Thus, STEFF is a
potential tool in clinical settings. As a parallel framework, STEFF also
can be applied to resting-state data (Damoiseaux et al., 2006), where
spontaneous specific frequency band power may be adopted as a
regressor (single trial quantification in Fig. 2). In addition, based on
the simultaneous spatial and temporal reconstruction of neuronal
processes, this approach allows us to examine causal relations within
active networks.

In conclusion, as a parallel framework for simultaneous EEG/fMRI
recordings, STEFF not only provides a flexible tool for imaging the
sources from EEG using information from fMRI data and to reconstruct
the fMRI HRF using a design matrix from EEG data, but enables access
to single modality-specific features of data. This approach can be
applied to reveal common substrates between the two imaging
modalities with convergent evidence, and to extend these insights to
the blind areas of each modality. STEFF provides a mechanism for
amending the problems of ignorance in ICA, the poor temporal
resolution of fMRI and the poor spatial resolution of EEG. Techniques
that are insufficient on their own can thus be used together efficiently
to reveal a more complete dynamic picture of the complex brain-state
fluctuations underlying cognitive and perceptual processes.
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