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Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging
(fMRI) provide complementary noninvasive information of brain activity, and EEG/fMRI
fusion can achieve higher spatiotemporal resolution than each modality separately. This
focuses on independent component analysis (ICA)-based EEG/fMRI fusion. In order to
appreciate the issues, we ¯rst describe the potential and limitations of the developed fusion
approaches: fMRI-constrained EEG imaging, EEG-informed fMRI analysis, and symmetric
fusion. We then outline some newly developed hybrid fusion techniques using ICA and the
combination of data-/model-driven methods, with special mention of the spatiotemporal
EEG/fMRI fusion (STEFF). Finally, we discuss the current trend in methodological devel-
opment and the existing limitations for extrapolating neural dynamics.
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1. Introduction

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)

are separate preeminent techniques in their ability for noninvasive mapping of

brain process. Since the ¯rst study on data quality and patient safety (Ives et al.,

1993), the technology of simultaneous EEG/fMRI acquiring has matured (Laufs

et al., 2008). The EEG/fMRI fusion is a powerful approach not only to study the

neuronal changes in cognitive neuroscience, but also to study endogenous brain

oscillations during various mental states (Laufs et al., 2008). There are excellent
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recent reviews of the theory and applications of EEG/fMRI (Debener et al., 2006;

Vulliemoz et al., 2010a; Huster et al., 2012). However, an area we felt deserved in-

depth coverage was that of independent component analysis (ICA)-based EEG/

fMRI fusion.

EEG and fMRI measure di®erent attributes of brain activities. Scalp EEG

potentials are generated by populations of cortical pyramidal neurons, with e®ective

orientation perpendicular to the cortical surface (Niedermeyer & Da Silva, 2010).

Postsynaptic potentials lasting longer than action potentials are believed to be the

source of the EEG signals. Synchronous cortical activity over at least 6�10 cm2 of

gyral surface is necessary for events to be clearly detectable with scalp electrodes

(Tao et al., 2005). It is di±cult to relate the measurements on the scalp to the

underlying brain processes, partly due to the infolding and multi-laminar structure of

the cortex (Megevand et al., 2008). Some neuronal activity gives rise to a closed

electric ¯eld (e.g., stellate cells), which is invisible to scalp electrodes (Nunez &

Silberstein, 2000). Furthermore, due to volume conduction of the cerebrospinal °uid,

skull and scalp, EEG data collected from any point on the scalp may include activity

from multiple processes occurred within a large brain volume (Yao et al., 2004). The

transfer function from primary current to observed EEG, the lead ¯eld, imposes poor

spatial resolution but is instantaneous. Thus, EEG has high temporal resolution for

the underlying neuronal events.

fMRI measures blood oxygen level-dependent (BOLD) signal by detecting changes

in magnetic susceptibility of oxy- and deoxy-hemoglobin. The interpretation of fMRI

maps relies on the assumption that an increase of regional neuronal activity results in

an increase in metabolic demand, an excessive increase in perfusion, and a decreased

concentration of deoxygenated hemoglobin in local venous blood, and a subsequent

increase of BOLD signal (Buzsaki et al., 2007; Logothetis, 2008). The transformation

from neuronal activity to BOLD signal, described by the hemodynamic response

function (HRF), is low pass ¯lter. Like all hemodynamic-based modalities, fMRI

measures a surrogate signal re°ecting neuronal mass activity whose temporal re-

sponse is subject to both physical and biological constraints. Thus, BOLD signals

unfold at a di®erent time scale from the EEG (i.e., neuronal activity in �ms and

BOLD in �s) (Glover, 1999). Spatially, fMRI studies typically use voxels with a

volume of the order of 50mm3, and are well suited to the anatomic scale of the

hemodynamic changes (Logothetis, 2008) and have relatively higher spatial resolu-

tion than EEG.

With EEG and fMRI combination, the features within mental process that need to

be considered increased largely: neuroelectric, hemodynamic, endogenous, exoge-

nous, stable, dynamic atc. An important challenge of EEG/fMRI fusion is to identify

coupling and uncoupling between these features (Daunizeau et al., 2010). Experi-

mental work in monkeys showed that BOLD increases correlate better with increases

in local ¯eld potential (LFP) than with multiunit activity (Logothetis et al., 2001).

LFP is linked to pyramidal neurons that generates scalp EEG potentials (Nunez,

1995). Thus, neurovascular coupling is obscure even during spontaneous brain
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oscillations (Riera & Sumiyoshi, 2010). A recent study revealed that high- and

low-frequency EEG oscillations independently contributed to explaining BOLD

variance (Scheeringa et al., 2011). In contrast, some other studies have shown

uncoupling between modalities. The discordance may be associated with the distance

between the neuronal population whose electrical activity is generating the EEG

signal and the vascular tree, which provides the blood supply to these neurons

(Beisteiner et al., 1997). A number of physiological processes can cause hemodynamic

BOLD changes without EEG correlates (Arthurs & Boniface, 2003). Such examples

include neurotransmitter synthesis (Patel et al., 2004), glial cell metabolism (Laur-

itzen, 2005), and the maintenance of steady-state transmembrane potential (Kida

et al., 2001). This di®erential sensitivity to neuronal activity can also arise when

hemodynamic activity is caused by non-synchronized electrophysiological activity or

if the latter has a closed source con¯guration that is invisible to EEG.

As the underlying mechanisms of EEG and fMRI do not wholly overlap, the

methods of integration exhibit great diversity: spatial constraint versus temporal

prediction, asymmetric versus symmetric fusion, and data- versus model-driven

fusion (Trujillo-Barreto et al., 2001; Daunizeau et al., 2007; Valdes-Sosa et al.,

2009a). Independent component analysis does not require prior hypotheses about the

connection of interest; hence, it is attractive for the exploration of the complementary

advantage of EEG and fMRI. As a °exible framework is mandatory in data fusion, a

systematic review on ICA-based approaches is helpful to understand the potential

and limitations of the current methods. We begin with a classi¯cation of the di®erent

methods into a few categories and discuss them one by one. Then a new technique is

introduced: the spatial-temporal EEG/fMRI fusion (STEFF). Finally, we discuss

current trends in methodological development and identify the scienti¯c questions in

EEG/fMRI fusion.

2. EEG/fMRI Integration

There are currently three broad potential approaches to the EEG/fMRI integration

(Eichele et al., 2005; Daunizeau et al., 2010; Laufs, 2012): (i) fMRI-constrained EEG

imaging, where spatial information from fMRI signal is used for source reconstruction

of the EEG signal (Liu et al., 1998; Dale et al., 2000; Lei et al., 2011c, 2012); (ii) EEG-

informed fMRI analysis, where the fMRI signal is modeled with features from EEG

convolved with a HRF (Martinez-Montes et al., 2004; Debener et al., 2005; Eichele

et al., 2008b); and (iii) EEG/fMRI symmetric fusion, where a common generation

model is constructed to explain both the EEG and fMRI data (Trujillo-Barreto et al.,

2001; Daunizeau et al., 2007; Deco et al., 2008; Valdes-Sosa et al., 2009a).

2.1. fMRI-constrained EEG imaging

This technique uses spatial information from fMRI for source reconstruction of the

EEG. First, the volume conductor for EEG imaging should be constructed; various

models have been introduced in literature (Dale & Sereno, 1993; Henson et al., 2009).
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The simplest model is a sphere that yields analytical solutions (Yao, 2000) while

others give a more accurate description of individual head and brain morphology

(Dale & Sereno, 1993; Hagler et al., 2009). Obtaining an accurate tessellation of the

cortical surface via segmenting MRI is not a trivial problem. A practical implication

is the employment of inverse-normalized canonical mesh (Ashburner & Friston,

2005). In this scheme, a cortical mesh is created from an MRI of a template brain and

is transformed into a standard stereotactic space (Talairach & Tournoux, 1988). This

template mesh is warped to match an individual's MRI using the inverse transfor-

mation of spatial normalization procedures (Ashburner & Friston, 2005). The gen-

erated canonical mesh provides a one-to-one mapping between the individual's source

space and the template space, facilitating group analyses (Litvak & Friston, 2008)

and incorporation of spatial priors (Henson et al., 2010; Lei et al., 2011c). The

improved performances of the canonical mesh have been evaluated in simulation and

real data tests (Mattout et al., 2007; Henson et al., 2009).

There are usually two models for source structure: equivalent current dipole and

distributed source (Baillet et al., 2001). The dipole is a convenient representation for

coherent activation of a large number of pyramidal cells, possible extending over a

few square centimeters of activated cortex. The equivalent current dipole model

estimates the localization and orientation of one or a few equivalent dipoles gener-

ating a given scalp map as recorded by EEG electrodes. In contrast, distributed

source model estimates the activity of each point in a solution space. This model is

suited for extended sources but require further assumptions to relieve the ill-posed

problem (Helmholtz, 1853; Yao, 1996). Both the equivalent dipole model and dis-

tributed source model have their own advantages. Recently, we proposed a Gaussian

source model (GSM) to integrate them both (Lei et al., 2009a). GSM is based on the

parallel array of pyramidal neuron and the propagate property of cortical activity.

The GSM can °exibly imitate the equivalent dipole and distributed source model by

adopting extreme supporting range parameters of the Gaussian function. Sources

with di®erent spatial extension can be recovered through adaptive adjustments of the

scale. Meanwhile, Friston et al. (2008) introduced an alternative inversion to auto-

matically select either a sparse or distributed model depending on the data. Both

models are integrations of previous extreme source models, and are physiologically

reasonable for EEG source reconstruction. Notice there are vast source models based

on multiple penalties; these models can also integrate the virtue of previous extreme

source models (Valdes-Sosa et al., 2009b; Wipf & Nagarajan, 2009).

Previous studies use fMRI activation to constrain the spatial locations of EEG

source (Liu et al., 1998; Dale et al., 2000; Phillips et al., 2002; Liu et al., 2009) or

initialize the dipole seeds (Stancak et al., 2005; Auranen et al., 2009). This has

undesirable consequences when fMRI was considered the \truth" for spatial infor-

mation (Dale et al., 2000), since the relative importance of EEG and fMRI is not

evaluated (Gonzalez Andino et al., 2001). A Bayesian framework may relax the direct

correspondence between modalities (Henson et al., 2010). In the Bayesian framework,

the posterior probability of a hypothesis is inferred from the probability of priors and
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experimental observations (Lei et al., 2009b; Quiros et al., 2010). This provides us

with the ability to probabilistically incorporate di®erent spatial patterns from the

fMRI. The ¯nal level of concordance between EEG and fMRI will be updated in the

light of new, relevant data. This framework enabled us to develop a network-based

source imaging (NESOI) system that employs multiple fMRI functional networks as

a source location prior to where the intrinsic brain activity with correlated °uctua-

tions is ¯rst introduced to constrain the spatial locations of EEG source (Lei et al.,

2011c, 2012).

2.2. EEG-informed fMRI analysis

EEG-informed fMRI analysis uses EEG as a predictor variable in the fMRI time-

series model (Groening et al., 2009; Vulliemoz et al., 2010a). Based on the assumption

of linear neurovascular coupling, previous studies convolved EEG features with a

standard HRF (Lange & Zeger, 1997). In this fashion, the hemodynamic correlates of

EEG rhythms (Goldman et al., 2002; Laufs et al., 2003a) and interictal EEG phe-

nomena in epilepsy (Salek-Haddadi et al., 2003) were ¯rst studied, followed by

adaptive modulations of event-related responses (Debener et al., 2006). However,

several reports showed variability in the shape of the HRF as a function dependent on

regions, subjects, age, task, sex, and sessions (Aguirre et al., 1998; Miezin et al., 2000;

Gotman, 2008; LeVan et al., 2010; Masterton et al., 2010). To enhance the accuracy

of EEG-informed fMRI analysis, we developed a scheme using classi¯ed EEG-de¯ned

events (Luo et al., 2010). Various interictal epileptic discharges are grouped into

di®erent subclasses, and are separately used for foci localization. Thus, the imaging of

the localizable foci can be enhanced largely even using the canonical HRF.

Considering the variability of the HRF context, a method that is independent of a

speci¯c shape of BOLD response may be an attractive alternative (Benar et al., 2002;

Gotman, 2008; Sturzbecher et al., 2009; Sato et al., 2010). However, the main ob-

stacle for these approaches is the large number of parameters. Bayesian framework

provides us with the ability to probabilistically incorporate the expected HRF shape,

which is a good framework to integrate strengths in di®erent HRF models. A robust

Bayesian general linear model for HRF estimation has the advantage of not intro-

ducing bias into the estimation, since the smooth constraints imposed are soft priors

and are clearly derived from physiological requirements (Marrelec & Benali, 2001; Lei

et al., 2010, 2011a).

The reliability of EEG-de¯ned events is a noteworthy topic for resting state

studies. The BOLD response is supposed to depend on a speci¯c frequency content of

neuronal activity, while others suggest that total power accounts for the changes in

BOLD or the dynamics of the various frequency components, such as the relative

magnitude of high and low frequencies (Rosa et al., 2010). EEG rhythm studies have

shown that the relationship between EEG and fMRI may be misled by high corre-

lation between di®erent frequency-band EEG signals (de Munck et al., 2007). These

problems can be remedied by multiple regressions of the BOLD signal on all EEG
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frequency bands or decomposed features (Laufs et al., 2003a; Mantini et al., 2007;

Eichele et al., 2008a). Current choices of confounds include motion regressors and

cardiac confounds (de Munck et al., 2007). A conservative scheme is to include as

many design confounds as possible to model other sources of variance in the BOLD

signal (Scheeringa et al., 2011). Furthermore, the EEG reference should be consid-

ered to set reliable EEG events, among which the reference electrode standardization

technique (REST) is a novel appropriate choice (Yao, 2001; Qin et al., 2010).

2.3. EEG/fMRI symmetrical fusion

EEG/fMRI symmetrical fusion refers to the use of a common forward or generative

model that can explain both modalities. In contrast, the asymmetrical integrations in

Secs. 2.1 and 2.2 give one modality privileged status as a priori information for the

other modality (Trujillo-Barreto et al., 2001). We can further categorize the sym-

metrical fusion to model- or data-driven fusion.

Model-driven symmetric fusion usually is predicated on the activity of an ensemble

of postsynaptic potentials. This has two e®ects that translates into net primary

current densities and then to EEG; and alternatively translates into vasomotor feed

forward signal and then to BOLD. A review on model-driven fusion of brain oscil-

lations can be found in Valdes-Sosa et al. (2009a). Dynamic causal models (DCM) is

another framework for models of neuroelectric and metabolic activity in neuronal

populations (Friston et al., 2003; Kiebel et al., 2007; Chen et al., 2012). Neural ¯eld

model provides another framework to integrate macroscopic models at large spatial

scales with models at the microscopic scale (Chauvet, 1993; Poznanski & Riera,

2006). As model-driven fusions usually are neurophysiologically grounded, inversion

of these models might provide us with the key insights into the genesis of neuronal

activity and how it is mediated by intrinsic�extrinsic connections (Riera et al., 2005;

Valdes-Sosa et al., 2009a; Coombes, 2010).

As the complexity of real metabolic�hemodynamic cascades renders the estima-

tion of model-driven fusion problematic, some researchers have relied on measuring

mutual dependence between EEG and fMRI signals, i.e., the symmetric fusion

(Valdes-Sosa et al., 2009a). Most work on data-driven fusion has mapped measures of

association or covariation of the EEG and BOLD signal. In this approach, the BOLD

signal is usually considered to have the same time evolution as the EEG. A multi-

linear version of partial least squares (Martinez-Montes et al., 2004) carries out

EEG/fMRI fusion by a combination of spatial, temporal and frequency signatures of

the EEG. This method ensures maximal covariance of temporal signatures of EEG

with those of BOLD. An even more comprehensive approach is that of Valdes-Sosa

et al. (2009a) who gained fusion by measuring the correlation between estimated

signals by solving the spatial inverse problem for the EEG and the temporal inverse

problem for BOLD. These approaches are usually hampered by the lack of detailed

information about neurovascular coupling. This was remedied by a common spatial
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assumption in both modalities. In Daunizeau et al. (2007), the authors restricted

common parameters to the position and extent of the EEG and fMRI sources.

Joint EEG/fMRI ICA decompositions provide a natural framework to integrate

the two modalities (Eichele et al., 2009). Several new methods based on ICA employ

simpli¯ed neurovascular coupling models that integrate model- and data-driven

fusions (Debener et al., 2005; Goldman et al., 2009; Luo et al., 2010). We will discuss

these methods in detail in Sec. 3.1.

As mentioned in Daunizeau et al. (2010), any symmetric fusion confronts two

problems. First, the common substrate underlying EEG and fMRI signals should be

identi¯ed by the fusion method. Second, when inferring this common subspace, the

uncertainty should be decreased by the fusion method. The key strength of the data-

driven fusion is its ability to provide empirical constraints for modeling (Valdes-Sosa

et al., 2009a). However, only model-driven fusion can provide us with a deeper un-

derstanding of neural mechanisms. Further improvements depend on the integration

of model- and data-driven fusions.

3. Hybrid Fusion

EEG�fMRI coupling varies for di®erent brain states and regions, and the proliferating

number of fusion methods each re°ects di®erent ideas on how to model this phenom-

enon.Methodological and conceptual developments increasingly suggest that a °exible

hybridmethod based on the integration of data- andmodel-drivenmethodsmay be the

best strategy for EEG/fMRI fusion. Such a method should have an adaptable frame-

work that comprises both a generative model and a signal processing scheme simul-

taneously. Here we propose one possible candidate: the ICA-based fusion.

3.1. The ICA-based fusion

ICA was developed to decompose mixed signals and therefore seems ideal to address

the convolution operators implicit in the forward problems of the EEG (spatial)

and fMRI (temporal) signals. It is therefore unsurprising that ICA has become in-

creasingly popular for analyzing brain imaging data (Makeig et al., 1997; McKeown

et al., 1998; Chen & Yao, 2004). When considering the fusion problem, one must take

into consideration the di®erences in spatial and temporal resolution of each modality.

This suggests the following approach. For the EEG, source activations are assumed

to be temporally independent of one another; therefore temporal ICA (tICA) is a

reasonable choice, which is bolstered by the insu±cient spatial sampling of this type

of signal. For the fMRI, the sparsely distributed nature of the spatial pattern

for typical cognitive activation paradigms seems compatible with the framework

of spatial ICA (sICA). A strength of this choice is that prototypical EEG and

image artifacts are also sparse and localized along the selected dimensions (McKeown

et al., 1998).

As illustrated in Fig. 1, the combinations of ICA and matching schemes engender

various ICA-based EEG/fMRI fusions. Notice that this framework can be con¯gured
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to allow tensor ICA (Groves et al., 2011) or multiway analysis (Martinez-Montes

et al., 2004). Raw EEG and fMRI data ¯rst undergo a modality-speci¯c preproces-

sing; then, features are extracted by ICA and independent components (IC) from

di®erent modalities are matched in the spatial or temporal domain. Various ICA-

based fusions can be chosen in a given context. Procedure \A-i": this is a popular

EEG-informed fMRI fusion (Debener et al., 2005; Goldman et al., 2009). In this

scheme, single-trial event-related potentials (ERPs) are decomposed in EEG to

create the time course of events. These events are then convolved with a HRF, and

used as a regressor in standard general linear model (GLM) analysis (Luo et al.,

Fig. 1. Various ICA-based EEG/fMRI fusions. Data °ow from raw EEG and fMRI data to the
correlation between modalities. Signal process: \A" is temporal ICA on EEG; \B" is spatial ICA on
fMRI. Component matching: \i " is in temporal domain and \ii" is in spatial domain. The sizes and
shapes of the matrices used by di®erent fusion method are depicted heuristically.
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2010). This procedure can be extended to \A-i/ii", which estimates source locali-

zations problem using the EEG IC as the candidate time courses of EEG and BOLD

signals (after convolving with a HRF (Brookings et al., 2009)). If we employ ICA on

fMRI signal and leave EEG unchanged, this will yield other fusion procedures: \B-i"

and \B-ii". Procedure \B-i" uses the time course of fMRI component to match with

the trial-by-trial variability of the ERPs. In Mantini et al. (2009), the authors found

several fMRI brain functional networks account for EEG sustained and transient

activity during target detection. In contrast, procedure \B-ii" uses the fMRI com-

ponents directly as source location priors for EEG source imaging (Lei et al., 2011c,

2012). This method, termed NESOI, can be considered a matching scheme in the

spatial domain.

Decomposing the EEG and fMRI simultaneously (i.e., \A/B" in Fig. 1)

engenders many other fusions. Procedure \A/B-i" can be realized in two ways.

Moosmann et al. (2008) provided a single-trial joint ICA, which puts EEG

and fMRI signal-trial data into a joint space. Signals need undergo typical pre-

processing, including convolution or deconvolution to compensate for the hemo-

dynamic lag. Another strategy, parallel group ICA (Eichele et al., 2008a) involves

two stages: ¯rst, recovering time courses from the group combined EEG and

fMRI data using ICA in each modality, followed by matching components by

correlating their trial-to-trial modulation. The last procedure \A/B", joint

ICA (jICA), does not have any matching step. Instead of working with single

trials, joint ICA (jICA) combines the average ERPs (frequently only at one

channel) and fMRI contrast images for a group of subjects into a single ICA

analysis. jICA derives a spatiotemporal solution with jointly estimated maximally

independent sources of between-subject e®ects (Calhoun et al., 2006). A short-

coming of the described procedures is that they do not explicitly state generative

models. This problem is remedied with a procedure of type \A/B-i/ii" termed

\Spatio-Tempral EEG/fMRI Fusion" (STEFF), which will be introduced in detail

in Sec. 3.2.

We list the di®erent ICA-based approaches in Table 1, where their properties,

concise description, and related references are gathered. In this table, a great va-

riety of schemes have been collated. Interestingly, there are some schemes that have

not dealt with the EEG/fMRI fusion literature, such as procedures \A-ii", \B-i/ii"

and \A/B-ii". Important virtues of the ICA-based fusion methods include the

implicit removal of artifacts and noise, the ability to include prior information, and

to allow group inferences. In the above, ICA provides a low-dimensional projection

in which not only can EEG and fMRI common components (illustrated in cylinder

III in Fig. 2) be analyzed explicitly, but the single modality sensitive components

(illustrated in cylinders I and II in Fig. 2) also be visualized and analyzed explicitly.

Moreover, using ICA, the computational load of fusion can be reduced greatly.

Regional di®erences among brain scans are characterized by a handful of compo-

nents instead of the original hundreds of thousands of voxels or hundreds of elec-

trodes.
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Table 1. The ICA-based EEG/fMRI fusion methods. Procedure is written in simpli¯ed form. For
signal process, \A" is temporal ICA on EEG and \B" is spatial ICA on fMRI. For components
matching, \i" is matching in temporal domain and \ii" in spatial domain.

Procedure Name
Purpose of

ICA The Step-by-Step Instructions Ref.

A-i Single-trial
EEG�fMRI

Extract trial
dynamic

EEG-unmixing using ICA; the
single trial EEG feature predicts
the fMRI response

Debener et al., 2005;
Goldman et al., 2009;
Luo et al., 2010

Rhythm
EEG�fMRI

Temporal
hypotheses

Separate speci¯c rhythm from
EEG using ICA; EEG-informed
fMRI

Scheeringa et al.,
2008

A-i/ii Model-reduced
joint inverse

Temporal
hypotheses

Producing candidate EEG signals
using ICA; convolving HRF to
produce candidate BOLD signals;
¯tting simultaneously a solution
to both modalities

Brookings et al., 2009

B-i Temporal cor-
relation

Temporal
hypotheses

Extracting temporal coherent
networks from fMRI using ICA;
matching EEG trial-by-trial vari-
ability (HRF convoluted) with the
time-courses of fMRI components

Mantini et al., 2009

B-ii NESOI Spatial
priors

Extracting spatial prior from
fMRI using ICA; fMRI-con-
strained ERP imaging

Lei et al., 2011c; Lei
et al., 2012

A/B-i Single-trial
joint ICA

Fusion Entering single-trial EEG and
fMRI data into one joint space;
the hemodynamic lag between
trials is compensated by deconvo-
lution; extraction linked compo-
nents using ICA

Moosmann et al.,
2008

Parallel group
ICA

Temporal
hypotheses

Recovering time courses from the
group combined EEG and fMRI
data using ICA in each modality;
matching components by corre-
lating their trial-to-trial modula-
tion

Eichele et al., 2008a

A/B ERP/fMRI
joint ICA

Fusion Entering ERP waveform and
fMRI activation map for each
participant into one joint space;
extraction linked components
using ICA

Calhoun et al., 2006

A/B-i/ii STEFF Specify
temporal
and spatial
hypotheses

Adopting ICA to recover the time
course and spatial mapping com-
ponents from EEG and fMRI
separately; linked components in
the spatial and temporal domain
using an Empirical Bayesian (EB)
model

Lei et al., 2010
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3.2. Spatial�temporal EEG/fMRI fusion

Spatial�temporal EEG/fMRI fusion (STEFF) employs spatial constraint and tem-

poral prediction fusions in parallel in the unmixed space (Lei et al., 2010). In Fig. 3,

EEG and fMRI information is decomposed by data-driven methods into temporal

and spatial compressed components. Their complementary features are apparent in

each domain, and are fused between modalities using a model-driven method. STEFF

can be described as being comprised of the following steps:

First, ICA decomposition on the original data. For a single subject, suppose tICA

on EEG generates p tIC (waveforms) and the corresponding p topographies. Suppose

sICA on fMRI generates q sIC (spatial patterns) and the corresponding time courses.

This procedure can be replaced with group ICA in group inferences (Calhoun et al.,

2001), and group maps and time courses for both EEG and fMRI will be invoked (Lei

et al., 2010).

Second, EEG source imaging. The fMRI spatial IC patterns (the top center panel)

are employed as the covariance priors (constraints) of the EEG source distribution to

¯nd the voxel-wise description of the electric responses (the top left panel) of the

topography (the bottom left panel) of an EEG temporal IC. With q sIC of fMRI, each

topography is projected to the cortex surface (p EEG tIC in total).

Third, hemodynamic response function estimation. The EEG time courses (the

bottom center panel), which are the trial-by-trial dynamics extracted from EEG

temporal IC (not shown here), are utilized to form the design matrix of the fMRI time

course (the right panel) of each fMRI spatial IC to estimate (predict) the hemody-

namic response function (the bottom right panel), and then to reconstruct its

Fig. 2. The low-dimensional projection manifold for the ICA-based fusion. Using ICA, the signals are
decomposed into two non-orthogonal subspaces: the white and gray cylinders contribute to the inde-
pendent components of EEG and fMRI respectively. The intersection cylinder III de¯nes the common
substrate of neuronal activity. Conversely, the cylinder I (respectively II) denotes the subspace of
neuronal activity detected by EEG (or fMRI) that does not contribute to fMRI (or EEG)
measurements.
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neuronal °uctuation. With p tIC of EEG, each fMRI time course can reconstruct

their HRF (q HRF in total).

The above steps constitute a parallel fusions in the temporal and spatial domains,

and further mathematical details are given in Appendix (Lei et al., 2011c).

A similar hierarchical linear model is employed in Fig. 3. For \EEG source ima-

ging" (the left area in Fig. 3), to ¯nd the voxel-wise description of the topography of

an EEG IC, fMRI IC patterns are employed as the covariance priors for EEG source

distribution. Considering that some EEG sources may be blind for fMRI measure-

ments, we employ multiple sparse priors (Friston et al., 2008) for the remaining

source space outside the subspace generated by fMRI IC. The balance between

regions I and III in Fig. 2 is implemented by containing both fMRI IC and multiple

sparse priors for spatial priors (Lei et al., 2011c, 2012). This scheme di®ers from other

fMRI-constrained EEG imaging methods (Dale et al., 2000; Baillet et al., 2001) where

fMRI activation is adopted equivalently. In STEFF, the di®erent spatial patterns are

Fig. 3. STEFF employs constrain and prediction for information integration in parallel (adapted from
Lei et al. (2010)). The fMRI spatial IC patterns (the top center panel) are employed as the covariance
priors (constraints) of the EEG source distribution to ¯nd the voxel-wise description of the electric
responses (the top left panel) of the topography (the bottom left panel) of an EEG temporal IC. The
EEG time courses (the bottom center panel), which are the trial-by-trial dynamics extracted from EEG
temporal IC (not show here), are utilized to form the design matrix of the fMRI time course (the top
right panel) of each fMRI spatial IC to estimate (predict) the hemodynamic response function (the
bottom right panel), and then to reconstruct its neuronal °uctuation. Further mathematical details are
given in the Appendix.
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given di®erent weights by Empirical Bayesian (EB), thus the constraints can be

°exible and realistic. For \fMRI HRF estimation" (the right area in Fig. 3), the trial-

by-trial dynamics extracted from EEG IC acts as the prediction information and

forms the design matrix for fMRI HRF estimation. The stimulus function, which

encodes a generic obligatory response to target stimuli of constant amplitude, is also

implemented to associate with exogenous features of the evoked response and other

tasks. This scheme is used to maintain the balance between regions II and III in

Fig. 2. The estimated HRF is region-speci¯c and physiologically smoothed because of

the adoption of a smoothness constraint.

The STEFF procedure is not only an integration of data- and model-driven

methods, but also achieves a balance between the spatial and temporal domains. In

examining the link between EEG and fMRI (see cylinder III in Fig. 2), EEG source

imaging enables multiple fMRI spatial maps to match EEG topography, and fMRI

HRF estimation enables multiple EEG trial amplitudes to match an fMRI time

course. As a result, mappings are reconstructed as the common substrate of neuronal

activity. Noticeably, the mappings are sparse and robust when facing mismatching

situations in the spatial or temporal domain (Lei et al., 2010).

3.3. The data- versus model-driven fusion

Generally, data-driven fusion is applied to data when speci¯c hypotheses on spatial

and temporal relationships are unavailable, or ill-speci¯ed, such as situations where

traditional inference tests (Friston et al., 1995) are not justi¯able or are too insen-

sitive due to conservative signi¯cance thresholds. ICA is intrinsically a multivariate

approach and is particularly useful for data fusion of multiple tasks or data modal-

ities (Calhoun et al., 2009b). Excepting ICA-based fusion in Sec. 3.1, we also em-

phasize there are a large number of possible fusion methods that have not been

implemented in EEG/fMRI fusion. For example, using combined group-discrimina-

tive techniques (Sui et al., 2009), the authors found that coe±cient-con-

strained�independent component analysis (CC�ICA) is sensitive and accurate in

detecting group di®erences (e.g., controls versus patients). This framework is further

improved using canonical correlation analysis (Sui et al., 2010). Recently, another

methodnamed linked ICA (Groves et al., 2010) uses amodularBayesian framework for

simultaneouslymodeling and discovering common features acrossmultiple modalities.

Linked ICAautomatically determines the optimal weighting of eachmodality, and can

also detect single-modality structured components when present. Apparently, these

methods are possibilities for developing new EEG/fMRI fusion techniques.

Compared with data-driven fusions, model-driven fusion requires an explicit

biophysical model that illustrates postsynaptic potentials to EEG on one hand, and

BOLD signals on the other hand (Valdes-Sosa et al., 2009a). Simultaneous EEG and

fMRI recordings add problems to the model-driven fusions because of the involve-

ment of two multivariate spaces and many necessary speci¯cations. There is an

increased degree of complexity in determining which channels would be sensitive to

EEG/fMRI FUSION BASED ON INDEPENDENT COMPONENT ANALYSIS 325

J.
 I

nt
eg

r.
 N

eu
ro

sc
i. 

20
12

.1
1:

31
3-

33
7.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
 O

F 
E

L
E

C
T

R
O

N
IC

 S
C

IE
N

C
E

 &
 o

n 
08

/0
2/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



event-related function, whose locations and latencies should be used to derive the

event-related dynamics, whose regions in fMRI activation would be expected, and

whose features should be utilized as fMRI predictors. However, only inversion of

model-driven fusion can provide us with important insights into the nature and

structure of cerebral activity (Friston et al., 2003; Kiebel et al., 2006).

Despite their individuality, the integration and interaction of data- and model-

driven methods for EEG/fMRI fusion might be a promising approach to the EEG/

fMRI fusion. As illustrated in Fig. 4, the data-driven method can provide empirical

constraints for hierarchical relationships among di®erent levels of cortices (Garrido

et al., 2007). In addition, the data-driven method provides a framework in which

predictions from larger-scale computational models of electrophysiological and he-

modynamic phenomena can be tested. For example, the approach may be used to

locate the components that jointly re°ect high-frequency EEG and low-frequency

fMRI signals, respectively (Deco et al., 2008).

4. Discussion

In this article, we systematically described ICA-based EEG/fMRI fusion. The

complementary natures of simultaneous EEG/fMRI and the features of various in-

tegration methods are emphasized. As EEG and fMRI are volume-conducted and

hemodynamics-convolved signal of brain activity, the correlations between modali-

ties may be far from its neural mechanism. The ICA-based EEG/fMRI fusion is

helpful in various experiments because of its °exible framework to integrate the data-

and model-driven methods. With integration of neuroimaging techniques and cog-

nitive computation, ICA-based EEG/fMRI fusion can adapt to di®erent levels of

concordance between EEG and fMRI. Future development of the EEG/fMRI fusion

may help us analyze brain activity during natural stimulation (Hasson et al., 2010) in

situations closer to everyday-life such as watching movies, (Hasson et al., 2004),

driving (Calhoun & Pearlson, 2012), sleeping (Horovitz et al., 2009), and decision

making (Sajda et al., 2009).

Below we discuss current trends in the methodological development of this fast-

developing ¯eld.

Fig. 4. Integration of data- and model-driven fusions. Despite the individuality between data and
model, the integration and interaction of data and model might be promising for EEG/fMRI fusion.
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4.1. Fusion for large-scale brain network

The next phase of cognitive neuroscience is to go beyond studying local brain regions

and to begin learning about the global, distributed networks underlying cognitive

activity. The dynamic information, regardless modeled within dynamic continuity

(Cacha & Poznanski, 2011) or dynamic connectivity (Bullmore & Sporns, 2009),

might allow de¯ning precisely the timing and location of cognitive processes. For

example, noninvasive dynamic imaging of epileptic brain can enhance our under-

standing of seizure generation and propagation (Tyvaert et al., 2009). Future

developments of the EEG/fMRI fusion require deeper understanding of the dynamics

within and between distributed networks in the brain.

In order to reconstruct the large-scale neuronal dynamics, measurements with

both high temporal and spatial resolution are essential. For fMRI, the temporal

dynamics of IC (after ICA decomposition) has been utilized to examine the causality

among di®erent brain networks (Jafri et al., 2008; Demirci et al., 2009). Functional

network connectivity (FNC) emerges as a powerful way to characterize the rela-

tionships between distributed brain networks, as opposed to functional connectivity

which focuses upon the relationships between single voxels (Stevens et al., 2009).

Initial studies used the lag between time courses to examine FNC di®erences between

schizophrenic and healthy controls (Jafri et al., 2008). A recent improvement using

Granger causality analysis (GCA) studies the direct interactions among networks

(Demirci et al., 2009; Porcaro et al., 2009).

Identifying network interaction from the complementary neuroelectric and he-

modynamic signals may help explain the complex relationships between di®erent

brain regions. A straightforward extension of fMRI FNC covers the interaction be-

tween EEG condensed components. The low spatial resolution of EEG can be im-

proved by source localization techniques (Lei et al., 2011c, 2012). The interactions

between functional networks in each modality can be determined by GCA. Based on

the NESOI-estimated matching between EEG and fMRI components, multimodal

functional network connectivity (mFNC) provides a fusion for large-scale brain

network (Lei et al., 2011b). It may help explain the complex relationships between

distributed cerebral sites in the brain and possibly provide new understanding of

neurological and psychiatric disorders (Calhoun et al., 2009a; Lei et al., 2011b).

4.2. Scienti¯c questions in the EEG/fMRI fusion

For some scienti¯c investigations, fMRI is su±cient for questions of where and EEG

is su±cient for questions of when (Friston, 2009). So what is the sort of scienti¯c

question that really requires EEG/fMRI fusion? This question is particularly im-

portant for functional neuroimaging. Initially, researchers used simultaneous EEG

and fMRI to uncover the regions of the brain showing changes in the BOLD signal in

response to epileptic spikes seen in the EEG. Established diagnostic application

improves our understanding of the spatiotemporal mapping of epileptic networks

(Groening et al., 2009; Vulliemoz et al., 2010b). Another promising application is
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the study of rest-state network. Research in EEG (Laufs et al., 2003b; Chen et al.,

2008) and fMRI (Damoiseaux et al., 2006; Mantini et al., 2007) have shown that

these networks are pervasive in the resting state and during task performance, and

hence provide robust measures of the interacted and disturbed brain activity. Recent

work shows that the information contained within EEG microstates on a millisecond

timescale is able to elicit BOLD activation patterns consistent with well-known rest-

state networks (Britz et al., 2010; Musso et al., 2010; Van De Ville et al., 2010).

Acknowledgment

The manuscript was substantially improved thanks to the thoughtful comments of

the anonymous reviewer to whom we wish to extend our thanks. This project was

funded by grants from the 973 project 2011CB707803, the National Nature Science

Foundation of China (31070881, 31170953, 81071222, 31200857) and the 111 Project

for neuroinformation of the Ministry of Education of China, the Fundamental

Research Funds for the Central Universities (SWU1209319), National Key Discipline

of Basic Psychology at Southwest University (NSKD11047) and Humanity and Social

Science Youth foundation of Ministry of Education of China (12YJC190015).

Appendix

STEFF contains parallel fusions in the temporal and spatial domains (Lei et al.,

2010). Both are modeled with an EB model (Phillips et al., 2005; Friston et al., 2006):

Y ¼ X�þ E1 E1 � Nð0;C1Þ
� ¼ 0þ E2 E2 � Nð0;C2Þ

�
; ðA:1Þ

For \EEG source imaging", Y ¼ Y T
e 2 Rn�1 is one of the p-independent components

EEGtopographieswithn channels.X 2 Rn�d is the known lead-¯eldmatrix calculated

for the selected head model, and � 2 Rd�1 is the unknown distribution of d dipoles.

Nð0;CÞ denotes a multivariate zero-mean Gaussian distribution with covariance C .

The terms E1 and E2 represent random °uctuations in channel and source spaces,

respectively. These spatial covariances E1 and E2 are mixtures of covariance compo-

nents at the corresponding levels.At the electrode space level, we assumeC1 ¼ ��1In to

encode the covariance of electrode noise, where In is an n � n identity matrix. At the

source space level, we express C2 as the covariance components,

C2 ¼
Xk
i¼1

�iVi; ðA:2Þ

where � � ½�1; �2; . . . ; �k �T is a vector of k non-negative hyperparameters that

control the relative contribution of each covariance basis matrix, Vi. The Green

function, G ¼ 2 expðAÞ, models anatomic coherent sources and is a function of an

adjacency matrix, A, with Aij 2 ½0; 1� encoding the neighboring relationships

among nodes of the cortical mesh de¯ning the solution space (Harrison et al.,
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2007). The jth column of the Green function matrix G is qj , encoding neighboring

patches weighted by their surface proximity. Two di®erent kinds of covariance

matrices are employed:

fVig ¼ fV f
i g [ fV e

i g; ðA:3Þ
where V e

i encodes multiple sparse priors (Friston et al., 2008) that are sparsely

sampled from a subspace of EEG source space that does not necessarily contribute

to fMRI measurements and V f
i encodes the prior coherence pattern information

derived from fMRI. Each fMRI sIC is scaled to z scores and is mapped to construct

V f
i (Lei et al., 2011c).

For \fMRI HRF estimation", Eq. (A.1) has very di®erent explanations.

In Eq. (A.1), Y ¼ Yf 2 Ru�1 is one time course of the q fMRI sICs with u volumes

(or time points), and � 2 Rd�1 is the unknown HRF for each time course (d ¼ lm,

l: order of the convolution model; m: number of stimulus functions). The covari-

ance of E1 is C1 ¼ ��1Iu and C2 is the discrete second order di®erentiation

matrix that gives smooth constraints for HRF (Marrelec & Benali, 2001).

X 2 Ru�d is the design matrix, consisting of the lagged stimulus function matrix

Xs. Given that ½x1; x2; . . . ; xu�T , the �th column of Xs, is an event time course,

then X is

X ¼

� � � x1 0 0 0 � � �
� � � x2 x1 0 0 � � �

� � � ..
. ..

. . .
.

0 � � �
� � � xl xl�1 � � � x1 � � �

� � � ..
. ..

. ..
. ..

. � � �
� � � xu xu�1 � � � xu�lþ1 � � �

2
6666666664

3
7777777775
; ðA:4Þ

i.e., the ð� � 1Þl þ 1th to the �lth columns of X contain the lagged �th column of

Xs. Xs consists of two kinds of stimulus functions:

Xs ¼ ½X f
s X

e
s �: ðA:5Þ

The ¯rst stimulus function X f
s encodes invariant evoked responses to target sti-

muli; the additional functions X e
s encodes the \single trial quanti¯cation" of the

EEG tIC, where the single trial quanti¯cations are ¯rst decorrelated using

Schmidt-Gram orthogonalization from the nonspeci¯c hemodynamic response to

stimulus onsets, ensuring the speci¯city of inferences from the electrophysiological

predictors.
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