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Full brain network models comprise a large-scale connectivity (the connectome) and neural mass models as
the network's nodes. Neural mass models absorb implicitly a variety of properties in their constant parame-
ters to achieve a reduction in complexity. In situations, where the local network connectivity undergoes
major changes, such as in development or epilepsy, it becomes crucial to model local connectivity explicitly.
This leads naturally to a description of neural fields on folded cortical sheets with local and global connectiv-
ities. The numerical approximation of neural fields in biologically realistic situations as addressed in Virtual
Brain simulations (see http://thevirtualbrain.org/app/ (version 1.0)) is challenging and requires a thorough
evaluation if the Virtual Brain approach is to be adapted for systematic studies of disease and disorders.
Here we analyze the sampling problem of neural fields for arbitrary dimensions and provide explicit results
for one, two and three dimensions relevant to realistically folded cortical surfaces. We characterize (i) the
error due to sampling of spatial distribution functions; (ii) useful sampling parameter ranges in the context
of encephalographic (EEG, MEG, ECoG and functional MRI) signals; (iii) guidelines for choosing the right spa-
tial distribution function for given anatomical and geometrical constraints.

© 2013 Elsevier Inc. All rights reserved.
Introduction

With the availability of full brain structural connectivity infor-
mation, the so-called connectome (Sporns, 2011), a new type of net-
work models emerged that needed to address novel challenges
characteristic for this macroscopic level of description. These chal-
lenges included the handling of a complex connectivity matrix in
three-dimensional physical space, the inclusion of many time delays
as a function of fiber lengths, as well as the correct choice of themath-
ematical model for a network node. Depending on the structural
parcellation (Kötter and Wanke, 2005), a network node typically
comprised a brain region of the size of multiple square centimeters
(Hagmann et al., 2008). The full brain modeling approach proved
successful in explaining the mechanisms underlying the emergence
of network patterns and their coherent intermittent dynamics for
resting state conditions (Deco and Jirsa, 2012; Deco et al., 2009,
2011; Ghosh et al., 2008). Crucial elements of the resting state dynam-
ics include stochastics and multistability (Freyer et al., 2009, 2011,
2012). The resting state patterns and its dynamics are robust and re-
producible within healthy populations (Damoiseaux et al., 2006; He
et al., 2007; Mantini et al., 2007; Raichle et al., 2001), but differ quite
significantly across diseases, such as schizophrenia, autism, epilepsy
and others (Buckner et al., 2008; Cherkassky et al., 2006; Corbetta
et al., 2005; Kennedy et al., 2006; Symond et al., 2005; Uhlhaas and
iegler).

rights reserved.
Singer, 2006, 2010), as well as the aging brain (Beason-Held et al.,
2009; Damoiseaux et al., 2008; Fransson et al., 2007; Koch et al.,
2010; Supekar et al., 2010). For this reason the resting state dynamics
finds enormous interest as a potential biomarker for disease or
disorder. Of particular interest in these network manipulations is
the ratio of local versus global connectivity. Local connectivity repre-
sents intracortical connections, whereas the global connectivity is
the connectome comprising the white matter fibers between cortical
and subcortical areas. Often local connectivity is absorbed in the pa-
rameters of the network node model. Manipulations of local connec-
tivity (such as pruning of fibers during development or sprouting in
epileptic tissue), however, are a key to modeling studies in a number
of situations and require a representation of the full brain network,
inwhich the brain region as a network node acquiresmore complexity
and encompasses the notion of local connectivity. A natural extension
of a network of coupled brain regions towards a spatially continuous
sheet is provided by the neural field theory (Coombes, 2010; Deco et
al., 2008; Jirsa, 2004). The aim of this work is to develop accurate nu-
merical approximations of neural field models on folded cortical sheets
with local and global connectivities, the latter typically obtained from
tractographic data.

The numerical approximation of a neural field is realized via a net-
work of neural masses. Neural field models cover the continuous de-
scription of interacting neural ensembles. A neural ensemble refers
to a local set of commonly interacting neurons (Freeman, 1992). An
ensemble of neurons of a certain class (e.g., due to receptor, location
and/or morphological classifications) can be described in terms of
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mean firing rate and mean postsynaptic potential as a so-called neu-
ral mass. Hence, a neural massmodel is a lumped representation, espe-
cially neglecting the spatial extend of a neural ensemble (Spiegler et al.,
2010). Note that a single neural ensemble (or even a cortical area under
certain functional circumstances Spiegler et al., 2011) can be described
as a set of interacting neuralmasses, for instance, a neuralmass of pyra-
midal cells, a neuralmass of glutamatergic spiny stellate cells and a neu-
ral mass of GABAergic neurons (Spiegler et al., 2010). Usually nonlinear
differential equations are used tomimic the complex behavior of neural
ensembles. These equations are difficult to solve analytically and
therefore such models are, nowadays, translated into a digital
scheme for integration. This approach brings a discretization prob-
lem in its wake. That means that a neural field model is translated
into a network of spatially separated sets of neural masses. For this
purpose, a crucial step is the sampling of the spatial distribution
function of the connections.

The sampling task can be addressed from three points of view
with the aim: (i) to construct a model based on biophysical or theo-
retical considerations, (ii) to describe spatial patterns in specific
empirical data, or (iii) to assess dynamics of an implemented neu-
ral field model. All three approaches are subject to restrictions of
the considered underlying techniques. The resolution of human
brain measurements, for instance, electrocorticography (ECoG)
and functional magnetic resonance imaging (functional MRI) is in
the order of mm (e.g., Blakely et al., 2008; Freeman, 2000; Yoo
et al., 2004; Zhang et al., 2008). In the case of electro- and magne-
to-encephalography (EEG and MEG) the spatial resolution is in
the order of cm (e.g., Freeman et al., 2003; Hämäläinen et al.,
1993; Malmivuo and Suihko, 2004; Srinivasan et al., 1999). More-
over, implementations of a model in a digital regime underlie, for
instance, a finite representation of numbers and its precision, and
a finite number of network nodes.

This work deals with the spatial sampling of two specific but widely
used choices of the homogeneous connectivity distribution function,
namely, the sum of Gaussian (e.g., Amari, 1977; Atay and Hutt, 2005;
Markounikau et al., 2010) and the sum of Laplace distributions (e.g.,
Jirsa and Haken, 1996). Because the main focus is on cortical dynamics,
the spatial distribution function is to a first approximation assumed to
be independent of the location on the cortical surface.

The main three emphases of this paper are: (i) what is the er-
ror that appears due to sampling a spatial distribution function;
(ii) what are the usable parameters for a spatial distribution function
considering the resolution of such measurements as EEG, MEG, ECoG
and functional MRI; and (iii) how can the parameters of a spatial dis-
tribution function be specified giving a specific discrete approxima-
tion of a cortical geometry.

This work extends previous studies of neural fields, such as Bojak
et al. (2010) and Freestone et al. (2011) in three points: (i) the sam-
pling procedure can be assessed using two measures (ii) that are ap-
plicable in any dimensional physical space (iii) for two widely used
spatial distribution functions.

Material and methods

Let φ be a variable of activity captured by the model (e.g., currents
or potentials), the evolution in time t can then be described by the fol-
lowing ordinary differential equation

D d=dtð Þφ tð Þ ¼ � tð Þ; ð1Þ

where D(d/dt) is the temporal differential operator with the polyno-
mial of constant coefficients D(λ) = ∑u = 0

U buλu of order U and � de-
scribes the (differentiable) input from interventions (e.g., transcranial
magnetic stimulation) or other structures that are not explicitly
described by the model (e.g., thalamic nuclei). A neural mass model
describes a neural ensemble by a set Ф of n : n ∈ ℕ interconnected
variables φn (Freeman, 1992), so that Eq. (1) becomes

D d=dtð ÞΦ tð Þ ¼ E tð Þ−A Φ tð Þð Þ; ð2Þ

whereD = (D1,D2,… ,Dn)⊤,Φ = (φ1,φ2,… ,φn)⊤, E = (�1, �2,… , �n)⊤

and the operator A(Φ) links the state variables within a neural massΦ.
For instance, in the case of the FitzHugh–Nagumo description
of temporal dynamics (FitzHugh, 1955; Nagumo et al., 1962) the oper-
ator is given by A(Φ) = (a11φ1 + a13φ1

3 + a21φ2, b0 + b11φ1 +
b21φ2)⊤, where a11 = a21 = −3a13 = 3, b11 = −10b0 / 7 =
5b21 / 4 =−1 / a11, n = 2 with D1(λ) = D2(λ) = λ and E ¼ �1

0

� �
;

see Appendix A for further details. This type of dynamics has been
shown to be a first good approximation of a population of FitzHugh–
Nagumo neurons with global coupling and dispersion (Assisi et al.,
2005; Stefanescu and Jirsa, 2008, 2011) and has appeal as a neural
mass model due to its mathematical simplicity. A local area (where
the spatial extension can be neglected) may consist of m : m ∈ ℕ dif-
ferent neural masses (e.g., pyramidal cells, glutamatergic spiny stellate
cells and GABAergic basket cells) composing a network of neural masses

P d=dtð ÞΨ tð Þ ¼ Ξ tð Þ−Λ Ψ tð Þð Þ þ S VlocΨ tð Þð Þ; ð3Þ

with Ψ = [Φ1; Φ2; … ; Φm], Ξ = [E1; E2; … ; Em], Λ = [A1; A2; … ;
Am]. The transfer function S(Ψ) of Ψ is taken to have a sigmoidal
shape in most works (e.g., Atay and Hutt, 2005; Breakspear et al.,
2006; Coombes, 2010; Jirsa and Haken, 1996; Pinotsis et al., 2012).
The temporal differential operator P = [D1; D2; … ; Dm] accounts for
m time constants that characterize the m different neural masses.
Note that the number of variables n can differ with the class of neural
mass i : i ∈ ℕ, [1, m] so that n : ni. The square matrix Vloc of order
∑i = 1

m ni connects state variables Ψ to transfer among the m different
neural masses. Hence, the local transfer matrix Vloc can be constructed,
for example, such that the m neural masses are simply connected via
the first state variable {φn = 1}i of each neural mass i. Using the
FitzHugh–Nagumo temporal dynamics for describing m neural masses
the network structure is then expressed by non-zero entries for odd
columns and rows in Vloc (i.e., connecting the first state variable of
each mass). Another example is the Jansen–Rit model (Jansen and
Rit, 1995; Spiegler et al., 2011) that describes the temporal evolution
of postsynaptic potentials ∀i : ni = 1, Φi = {φ1}i caused among three
interacting neural masses Ψ = [Φ1; Φ2; Φ3] : m = 3, namely, pyrami-
dal cells (i = 1) with feedback loops mediated by excitatory and inhib-
itory interneurons (i = 2 and i = 3, respectively) by a second-order
ordinary differential operator U = 2, P : Di = λ2 + 2biλ + bi

2

with b1 = b2 = 1 and b3 = 1 / 2. The vector Ξ = (�1, �2, �3)⊤ then
describes the extrinsic synaptic input on all three neural masses,
the state operator Λ = 03 × 1 since ∀i : ni = 1, the postsynaptic
potentials φni

are transferred according to a sigmoid function
S(φni) = 1 / (1 + ξ exp (−φni

)) : ξ =exp (3.36), and the transfermatrix
Vloc describes the four couplings between the three neural masses by the
nonzero entries V2,1 = 5V1,2 / 4 = 4V3,1 = −13V1,3 / 44 = 12.285
(see Appendix A for further details).

Note that the description for a local neural mass model Eq. (3)
neglects the spatial extent (i.e., only time dependent) and rather
represents a discrete representation of the neural tissue (i.e., m
neural masses). However, considering the extent of a neural tissue,
such as the whole cortex in the spatial domain, Ω, Eq. (2) leads to a
generalized neural field description by the following system of
delay-integro-differential equations

P d=dtð ÞΨ x; tð Þ ¼ Ξ x; tð Þ−Λ Ψ x; tð Þð Þ þ S VlocΨ x; tð Þð Þ

þ Vhom∫Ωdy Whom Δ x; yð Þð Þ S VlocΨ y; t−Δ x; yð Þ=c1ð Þð Þ
þ Vhet∫Ωdy Whet x; yð Þ S VlocΨ y; t−Δ x; yð Þ=c2ð Þð Þ;

ð4Þ
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where, in addition to Eq. (3), the integral terms in Eq. (4) connect
the state variables among the local networks in the k-dimensional
space Ω : Ω p ℝk with k = {1, 2, 3}, the locations x, y Ω = [−L,
L] and the spatial extension L of the neural field. If connections
are translationally invariant with respect to the distance Δ(x, y)
between two neural masses at x and y we call it homogeneous
Whom(Δ(x, y)), otherwise heterogeneous Whet(x, y). The latter
Whet(x, y) typically is global concerning the whole brain, whereas
the former Whom(Δ(x, y)) represents intracortical, that is a local
connection type. In general, the extent of the homogeneous connec-
tivity,Whom(Δ(x, y)), is assumed to be small compared to the spatial
extension L of the neural field. The parameters c1 and c2 account for
the propagation velocities through the homogeneous and heterogeneous
paths respectively. The square matrices Vhom and Vhet are of the same
order than Vloc and describe the coupling schemes for homogeneous
andheterogeneous connectivities, respectively. For instance, thehomoge-
neous paths connect all neural masses at different locations (see, David et
al., 2005, for an example of a hierarchical coupling scheme developed for
the Jansen–Rit model), while the heterogeneous paths are established by
pyramidal cells in layer V of the cortex projecting onto glutamatergic
spiny stellate cells in layer IV (Thomson and Bannister, 2003).

The neural field Eq. (4) can be transferred without loss of generality
into the framework of a network of neuralmasses Eq. (3) by adequately
sampling the spatial domain Ω. The connectivities Whom(Δ(x, y)) and
Whet(x, y) are sampled on the field geometry (i.e., integral terms in
Eq. (4)) and pooled with the coupling schemes, Vhom and Vhet, respec-
tively. While for a one-dimensional space the sampling procedure of
the connectivity functions is well-defined (i.e., with a Dirac comb), for
higher dimensional geometries k > 1 several methods are available,
such as the Delaunay triangulations (de Berg et al., 2008). However,
irrespective of the discretization procedure the space Ω is sampled
with a finite number of points l so that Eq. (4) results in

P̂ d=dtð ÞΨ̂ tð Þ ¼ Ξ̂ tð Þ−Λ̂ Ψ̂ tð Þ
� �

þ
X2
v¼0

Uv S VlocΨ̂ t−K=cvð Þ
� �

; ð5Þ

where the number of elements in the column vectors P̂= [P1, P2, … ,
Pl], Ψ̂= [Ψ1, Ψ2, … , Ψl],Ξ̂ = [Ξ1, Ξ2, … , Ξl], Λ̂ = [Λ1, Λ2, … , Λl], K

and the order of the square matrices Uv is l ∑m
i¼1 ni. Local (v = 0), ho-

mogeneous (v = 1) and heterogeneous connectivities (v = 2) are
described in the sampled spatial domain Ω by the coupling matrix
and the distance vector, Uv and K, respectively, where the speed for
local propagation is c0 = ∞. In other words, Uv and K code the
space–time structure of the connectivity over the space Ω in Ψ̂.

Note that each neural mass in the network could be considered to
take up space depending on the spatial sampling of a lattice, or as a
point, without spatial extent. In the first case, a neural mass model
is specific to a spatial scale of description, whereas in the latter case
it is not. In general, a neural mass can be defined by common input
and output behavior of neurons, regardless of whether the averaging
(e.g., of action potentials) takes place over time, space, or both.
However, within the scope of this work we do not restrict ourselves
to a specific definition about neural mass models.

The delay-differential system (Eq. (5)) reduces to a system of
ordinary differential equation, that is, the network of neural masses
(Eq. (3)) if ∀v : cv = ∞.

In addition to the spatial domain, also the discretization of the time
t is needed for numerical integration, which essentially transfers the
differential equations (i.e., Eqs. (1) to (5)) into a set of difference equa-
tions dependent on the numerical integration method (for example,
Euler's method and its modifications, such as the Runge–Kutta meth-
ods). In the scope of this work we focus on the spatial discretization
of the homogeneous connectivity Whom(Δ(x, y)) in the neural field
Eq. (3), since the heterogeneous connectivity Whet(x, y) of living
human beings is, for the present state-of-the-art, obtained by diffusion-
weighted MRI tractography procedures with an already coarser spatial
resolution, describing discrete connections between brain regions
(Cammoun et al., 2012).

Homogeneous connectivity

The homogeneous connectivity Whom(Δ(x, y)) between neurons
or neural ensembles is usually specified in the literature as isotropic
and dependent only on the distance r = Δ(x, y) between two sites
x and y. Mathematically, this describes a symmetric function
Whom(r) = Whom(−r) implying that the expectation value is zero
∫−∞
∞

r Whom(r) dr = 0. In the literature, the homogeneous connec-
tivityWhom(Δ(x, y)) is usually described by the Gaussian distribution
function (e.g., Amari, 1977; Atay and Hutt, 2005; Freestone et al.,
2011; Markounikau et al., 2010) or the Laplace distribution function
(e.g., Jirsa and haken, 1996; Nunez, 1974; van Rotterdam et al., 1982;
Wilson and Cowan, 1973). In this work we consider both descrip-
tions of the homogeneous connectivity Whom(Δ(x, y)) by the follow-
ing expression

Whom;ζ zð Þ ¼ η
XR
u¼1

βu;ζ exp −γu;ζ z⊤z
� �1=ζ� �

; ð6Þ

where z = |x − y| is a column vector with k entries. The superscript ⊤
denotes the transpose operator. The homogeneous connectivity con-
sists of R : R ∈ ℕ distribution kernels with the synaptic weight βu,ζ :
βu,ζ ∈ ℝ (i.e., excitatory βu,ζ > 0, inhibitory βu,ζ b 0) and the spreading
γu,ζ for each distribution that are in total scaled by η (e.g., with respect
to R; see Appendix B for more information). If the shape parameter is
ζ = 1 or ζ = 2, then the kernel is a sum of Gaussian or a sum of Laplace

distributions, respectively (see Fig. 1). Note that
ffiffiffiffiffiffiffi
z⊤z

p
¼ ‖ z ‖2 is the

Euclidean norm on ℝk and Eq. (6) can be rewritten as follows

Whom;ζ rð Þ ¼ η
XR
u¼1

βu;ζ exp −γu;ζ r2=ζ
� �

; ð7Þ

where r = Δ(x, y) = ‖ z ‖2. The homogeneous connectivity function
Whom(z) is consequently a radial function Whom(z) : ℝk → ℝ on the
physical spaceΩ p ℝk (see k-Dimensional case section in Appendix B).

In the following, we illustrate our approach to assess the sampling ap-
proximation by using a single exemplary building block, that is, R = 1 of
the homogeneous connectivity Whom,ζ (z) for both cases, Gaussian ζ = 1
and Laplace distributions ζ = 2. The decay is γ1,1 =γ1,22 / 4 and γ1,2 =ffiffiffi
2

p
= σ , with the standard deviation σ. The integral ∫−∞

∞
Whom,ζ (z) dz

of the homogeneous connectivity function is normalized to unity
with ηβ1,1 = (γ1,1 / π)k / 2 and ηβ1,2 =

ffiffiffi
π

p
ηβ1;1=Γ 1þ kð Þ=2ð Þ for the

Gaussian and the Laplacian kernel, respectively, where Γ(λ) =
∫
0

∞
yλ − 1 exp(−y) dy is the gamma function (see k-Dimensional case

section in Appendix B for more details). However, the procedure can
be directly applied to a sum of Gaussian, a sum of Laplace distributions
and a sum of both including excitation as well as inhibition. Note that
we refer Whom,ζ (z) and Whom,ζ (r), respectively, to the case R = 1 in
the rest of this paper without further indication.

Sampling the homogeneous connectivity

Let the metric r = Δ(x, y) of the radial function Eq. (7) for the ho-
mogeneous connectivity Whom,ζ (r) be periodically captured along a
basis v for the given k-dimensional Euclidean spaceΩwith a constant
interval ϱ, the Petersen–Middleton theorem then informs about the re-
quirements for an exact sampling procedure, that is, sampling lattice v
with a minimum sampling interval ϱ (Petersen and Middleton, 1962).
This theorem extends the well-known Whittaker–Kotel'nikov–Shannon
sampling theorem (e.g., Shannon, 1949) to k-dimensional Euclidean
spaces. According to the mentioned sampling theorems, the spatial
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Fig. 1. Whom,ζ (r) in (A) radial r and (B) frequency domain q.
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spectra of the homogeneous connectivity function Whom,ζ (r) must be
compact for preserving the information through a spatial discretization.
An approximate reconstruction can be obtained under the condition
that the spectrum is compact enough within the bound qc

W̃ hom;ζ q; kð Þ≈ 0 ∀q > qc; ð8Þ

where W̃hom,ζ (q, k) is the k-dimensional Fourier transform. Sampling
a basis v of the k-dimensional space Ω (i.e., v is a set of k basis vectors)
periodically by ϱ gives the sampling lattice. A sampling lattice that uses
a minimum number of vertices l to achieve exact reproduction of
a bandlimited radial function, such as the homogeneous connectivity
Whom,ζ (r) is, for instance, the hexagonal lattice in two dimensions and
the body-centered cubic lattice in three dimensions (Petersen and
Middleton, 1962). The sampling interval (or the edge length) ϱ p Δ(x,
y) between to cortical location sites x and y must be at least twice
the spectrum cutoff qc at a finite spatial frequency

ϱ≤ 1
2qc

: ð9Þ

Decomposing the homogeneous connectivity, as described in Eq. (6),
into an infinite number of waves we obtain

W̃hom;ζ s; kð Þ ¼ 2πð Þ−k=2∫
Ω∈Rk

dz Whom;ζ zð Þ exp j s⊤z
� �

; ð10Þ

where j is the imaginary number ( j2 = −1) and s is the spatial frequen-
cy vector of the k-dimensional spatial frequency basis that is orthogonal
to v (Petersen andMiddleton, 1962). Since the homogeneous connectiv-
ity, Eq. (6), is radial onℝk, see Eq. (7), the Fourier transform is radial, that
is, q = ||s ||2 (more details are provided in k-Dimensional case section in
Appendix B), and for both example building blocks the Fourier transform
is specified by

W̃hom;ζ q; kð Þ ¼ ηβ1;ζ ν1;ζ �
exp − q2

4γ1;ζ

 !
ζ ¼ 1

γ2
1;ζ þ q2

� �kþ 1
2 ζ ¼ 2

8>>>>>><
>>>>>>:

ð11Þ

with the scaling ν1,ζ

ν1;ζ
∀k

2γ1;ζ

� �−k=2
ζ ¼ 1

2k=2 γ1;ζffiffiffi
π

p Γ
kþ 1
2

� �
ζ ¼ 2

8>>>><
>>>>:

ð12Þ

As it is apparent from Eq. (11) that Eq. (6) is not strictly band-
limited, the homogeneous connectivityWhom,ζ (z) cannot be perfectly
reconstructed from an finite sequence of samples l. Under these cir-
cumstances, it is highly important to deliberate on the spatial frequency
bound qc, Eq. (9), that allows by implication to assess the approximation
of the homogeneous connectivity.

For estimating the approximation spatial frequency bound qc we
define two measures that assess: (i) the magnitude of a frequency
response, and (ii) the ratio of the spatial frequencies of interest to all
spatial frequencies of the homogeneous connectivity. The combina-
tion of both measures gives an estimate of the captured spatial fre-
quencies and the corresponding magnitude of response for a spatial
frequency bound qc. By applying the sampling theorem to the magni-
tude measure and to the spatial frequency measure we obtain an
assessment of the spatial frequency bound qc, or alternatively the sam-
pling interval ϱ, depending on the standard deviationσ of the local ho-
mogeneous connectivity functions Whom,ζ (z).

Magnitude measure
The homogeneous connectivity function Whom,ζ is typically a low-

pass filter with the maximum spatial frequency response at |W̃hom,ζ (0)|
that decreaseswith frequency (see Eq. (6) and Fig. 1). Let the approxima-
tion spatial frequency bound qc = qdB be assigned to a specific magni-
tude ratio as follows

Gζ qdB; kð Þ ¼ 10 log10
W̃

2
hom;ζ qdB; kð Þ

W̃
2
hom;ζ 0; kð Þ

0
@

1
AdB; ð13Þ

it appears that the magnitude ratio measure Gζ (qdB , k) in decibel (dB) is
simply scaled by the dimensionality k of the spaceΩ (see k-Dimensional
case section in Appendix B) as follows

Gζ qdB; kð Þ ¼ χGζ qdB; k ¼ 1ð Þ; ð14Þ

with the scaling

χ ¼
1 ζ ¼ 1
k þ 1

2
ζ ¼ 2 :

8<
: ð15Þ

The spatial frequency qdB for both building blocks of the connec-
tivity function is then

q2dB
γζ
1;ζ

∀k
−

log 10ð Þ Gζ qdB;1ð Þ
5 dB

ζ ¼ 1

10−Gζ qdB ;1ð Þ= 20 dBð Þ−1 ζ ¼ 2

8><
>: ð16Þ

for the Gaussian (i.e., ζ = 1) and for the Laplace distribution kernel
(i.e., ζ = 2). Note that the magnitude measure Gζ (qdB , k) is inde-
pendent of the dimensionality k for the Gaussian kernel, that is,
G1 (qdB , ∀k) =G1 (qdB , 1) but not for the Laplacian distribution
kernel (see Appendix B). In the latter case, the spatial frequency qdB
is simply determined by the magnitude decay G2 (qdB , 1) of the
one-dimensional Laplacian distribution kernel (see Eq. (16)). The di-
mensional corrected magnitude criteria for the Laplacian distribution

.
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kernel are given in Table 1 for a selection of values. For instance, the
−3.01 dB-criterion in dimension k = 1 is equivalent to the −4.515 dB
and −6.021 dB-criterion in dimension k = 2 and k = 3, respectively.
The caseGζ (qdB , k) ≈ −3 dB is awidely usedmeasure of the bandwidth
of afilter definedby the so-called 3 dB-cutoff frequency q−3 dB atwhich the
maximum response decreases by 1ffiffi

2
p (e.g., Freestone et al., 2011). In gener-

al, such amagnitudemeasure is not appropriate if high spatial frequencies
of low power (i.e., q > qdB) contain information to capture. On that ac-
count we introduce a spatial frequency measure in the following section.

Spatial frequency measure
The range of spatial frequencies of interest [0, qα] : qc = qα is

defined as the cumulative of the Fourier transform W̃hom,ζ (q, k) of the
homogeneous connectivity function Whom,ζ (r) containing (1 − α) ×
100 % of all frequencies

∫
q
α

0
dqW̃hom q; kð Þ ¼ 1−αð Þ∫∞

0
dq W̃hom q; kð Þ; ð17Þ

where α ∈ [0, 1]. The amount of spatial frequencies that are not captured
by the integration is specified byα and is given for both building blocks of
the connectivity function by

αζ qα ; kð Þ ¼ 1−

erf
qα

2
ffiffiffiffiffiffiffiffiffi
γ1;ζ

p
 !

ζ ¼ 1

1
2k−2

Γ kð Þ
Γ2

k
2

� � qα
γ1;ζ

2F1
1
2
;
kþ 1
2

;
3
2
;− q2α

γ2
1;ζ

 !
ζ ¼ 2

8>>>>>><
>>>>>>:

ð18Þ

with the Gaussian error function erf (λ) and the Gaussian hypergeo-
metric function 2F1(·,·;·;·), where Γ(λ) = ∫

0

∞
yλ − 1 exp(−y) dy is

the gamma function. The spatial frequency measure αζ (qα , k) is inde-
pendent of the dimensionality k for the Gaussian distribution kernel,
that is, α1 (qα , ∀k) = α1 (qα , 1), where αζ (qα , k) is dependent on k
for the Laplacian distribution kernel. However, in the latter case, α2

(qα , k) can be specified for any dimension k based on the first two

α2 qα ;1ð Þ ¼ 1− 2
π
tan−1 qα

γ1;2

 !
; ð19Þ

α2 qα ;2ð Þ ¼ 1− qαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2
1;2 þ q2α

q : ð20Þ

The series expansion for k > 2 can be found in k-Dimensional case
section in Appendix B. The spatial frequency measure αζ (qα , 3) for
the three-dimensional Laplacian kernel reads

α2 qα ;3ð Þ ¼ α2 qα ;1ð Þ− 2
π

γ1;2qα
γ2
1;2 þ q2α

: ð21Þ

The spatial frequency content measure αζ (qα , k), Eqs. (18) to (21),
rates the amount of uncovered spatial frequencies due to a given
spatial frequency of interest qα dependent on the k-dimensionality
of a Euclidean space Ω ∈ ℝk in the case of the Laplacian distribu-
tion kernel, that is, ζ = 2. Since the radius r = ‖ z ‖2 : z ∈ Ω of the
homogeneous connectivity function Whom,ζ carries the k-volume of
the Euclidean space Ω with it and thus the radial frequency q = ‖s‖2
: r ↔ q as well, through the k-dimensional Fourier transform (i.e.,
Table 1
Shift of magnitude and frequency measure, G2 (qdB , k) and α2 (qα , k), for the Laplacian kern

k = 1 G2 (qdB , k) = f(G2 (qdB , 1)) in dB

−20 −3.01 −1

2 −30 −4.515 −1.5
3 −40 −6.021 −2
s ↔ z), the spatial frequency content measure α2 (qα , k) needs to be
corrected if we wish to consider equivalent spatial frequencies of interest
qα regardless of dimension k, such as given by Eq. (16). Along these
lines, we solve Eq. (19) for qα / γ1,2 that we fix for all dimensions k
(note that γ1,2 is independent of k), introduce it then in Eq. (20),
and use the series expansion of the spatial frequency measure α2

(qα , k + 2), given in k-Dimensional case section in Appendix B,
to obtain the corrected spatial frequency content measure for the
relevant physical spaces

α2 qα ;2ð Þ ¼ 2 sin2 π
4
α2 qα ;1ð Þ

� �
ð22Þ

α2 qα ;3ð Þ ¼ α2 qα ;1ð Þ− 1
π
sin πα2 qα ;1ð Þð Þ: ð23Þ

based on a given amount of uncovered spatial frequenciesα2 (qα , 1) for
the one-dimensional case. The dimensional corrected spatial frequency
criteria are given in Table 1 for a selection of values. For instance, the
5 %-criterion in dimension k = 1 is equivalent to the 0.3083 % and
0.0205 % criteria in dimensions k = 2 and k = 3, respectively.

Combined measure and sampling assessment
The magnitude measure allocates the magnitude decay to a fre-

quency and the frequency measure allocates the amount of not cap-
tured frequencies to a bandwidth. Since the spatial bandwidth can
be specified by using the magnitude measure the amount of not
captured spatial frequencies can be allocated to a decay by inserting
Eqs. (16) into (18) with qα = qα = qdB, and we obtain

α1 G1 qc;1ð Þ;∀kð Þ ¼ 1− erf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− log 10ð Þ G1 qc;1ð Þ

20 dB

r !
ð24Þ

for the Gaussian distribution kernel (i.e., ζ = 1) and

α2 G2 qc;1ð Þ;1ð Þ ¼ 1−2
π
tan−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10−G2 qc ;1ð Þ=20 dB

p
−1

� �
ð25Þ

α2 G2 qc;1ð Þ;2ð Þ ¼ 1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−10G2 qc ;1ð Þ= 20 dBð Þ

p
ð26Þ

α2 G2 qc;1ð Þ;3ð Þ ¼ α2 G2 qc;1ð Þ;1ð Þ−2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10−G2 qc ;1ð Þ= 20 dBð Þ−1

p
10−G2 qc ;1ð Þ= 20 dBð Þ ð27Þ

for k = 1, k = 2 and k = 3 of the Laplacian distribution kernel
(i.e., ζ = 2). Using Eq. (14) the frequency measure α2 (G2(qc, 1), k)
with respect to the criterion for the one dimensional case, Eqs. (24)
to (27), can be rewritten as α2 (G2(qc, k), k). Furthermore, in order to
sample the maximum spatial frequency of interest qα we apply the
sampling theorem Eqs. (9) to (18) with ϱζ = ϱ and qc = qα

αζ ϱζ ; k
� �

≥1−

erf
1

4
ffiffiffiffiffiffiffiffiffi
γ1;ζ

p
ϱζ

 !
ζ ¼ 1

Γ kð Þ
Γ2

k
2

� � 21−k

γ1;ζ ϱζ
2F1

1
2
;
kþ 1
2

;
3
2
;− 1

4γ2
1;ζ ϱ

2
ζ

 !
ζ ¼ 2

;

8>>>>>><
>>>>>>:

ð28Þ
el Whom,2 (z ∈ ℝk) on k-dimensional spaces. Eq. (14) specifies f and Eqs. (22) to (23) g.

α2 (qα , k) = g(α2 (qα , 1)) in %

5 10 20 80

0.308 1.231 4.894 69.098
0.021 0.164 1.290 61.290
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and then to capture the bandwidth spanned by qc we equate Eq. (28)
with Eqs. (24) to (27)

2γζ=2
1;ζ ϱζ Gζ qc; 1ð Þ

� �
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− 5 dB

log 10ð ÞGζ qc;1ð Þ

s
ζ ¼ 1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10−Gζ qc ;1ð Þ= 20 dBð Þ−1

p ζ ¼ 2
:

8>>><
>>>: ð29Þ

Taking the standard deviation σζ = σ into account that both con-
nectivity kernels (i.e., Gaussian and Laplacian) have in common
through the normalization, that is, γ1,1 = γ1,2

2 / 4 and γ1;2 ¼
ffiffiffi
2

p
= σ

(see Appendix B), Eq. (29) gives then the lower bound for the ratio
of standard deviation σζ to sampling interval ϱζ for a magnitude
decay Gζ (qc , 1) as follows

1ffiffiffi
2

p σζ

ϱζ
≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

log 10ð ÞGζ qc;1ð Þ
5 dB

r
ζ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10−Gζ qc ;1ð Þ= 20 dBð Þ−1

p
ζ ¼ 2

:

8>><
>>: ð30Þ

Consequently, both parameters, standard deviation σζ and the
sampling interval ϱζ can be written as a function of Gζ (qc, 1) and
the other, ϱζ and σζ, respectively. Furthermore, the magnitude
decay Gζ (qc , 1), in Eq. (27), measures the homogeneous connectiv-
ity Whom,ζ (z) in one-dimensional spaces and can be specified for
k-dimensions using Eq. (14). For the rest of this paper, the standard
deviation σζ (Gζ (qc , k)) and the sampling interval ϱζ (Gζ (qc , k))
will refer to Eq. (30). Using the series expansion of the spatial fre-
quency measure α2 (qα , k + 2), given in k-Dimensional case section
in Appendix B, it can be shown that the relation in Eqs. (29) and (30)
holds for any dimensional Laplacian distribution kernels. Based on
the lower bound for the ratio of standard deviation σζ to sampling in-
terval ϱζ in Eq. (30) we can relate the magnitude decay Gζ (qc , k) (or
the spatial frequency content αζ (ϱζ , k)) of the Gaussian distribution
(i.e., ζ = 1) to the Laplacian distribution kernel (i.e., ζ = 2) for com-
parison. Assuming that both kernels are characterized by the same
standard deviation σ = σζ and are periodically sampled using
the same step size ϱ = ϱζ, (i) the magnitude measure G1 (qc , k) =
G1(qc , 1), ∀k renders G2 (qc , k)

G2 qc; kð Þ ¼∀k−ξχ log 1−ξ−1 G1 qc; kð Þ
� �

; ð31Þ

with ξ ¼ 20 dB
log 10ð Þ and χ ¼ kþ1

2 , and (ii) the spatial frequency measure α2

(ϱ, k) describes α1 (ϱ, k) = α1 (ϱ, 1), ∀k by

α2 ϱ; kð Þ¼∀k 1− 2ffiffiffi
π

p Γ kþ 1
2

� �
Γ k

2

� � erf−1 1−α1 ϱ; kð Þð Þ

� 2F1
1
2
;
kþ 1
2

;
3
2
;− erf−1 1−α1 ϱ; kð Þð Þ2

� � ð32Þ

with

α2 ϱ;1ð Þ ¼ 1− 2
π
tan−1 erf−1 1−α1 ϱ;1ð Þð Þ

� �
ð33Þ

α2 ϱ;2ð Þ ¼ 1− erf−1 1−α1 ϱ;1ð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
erf−1 1−α1 ϱ;1ð Þð Þ2 þ 1

q ð34Þ

α2 ϱ;3ð Þ ¼ α2 ϱ;1ð Þ− 2
π

erf−1 1−α1 ϱ;1ð Þð Þ
erf−1 1−α1 ϱ;1ð Þð Þ2 þ 1

ð35Þ

for the relevant physical spaces. The series expansion forα2 (qα , k + 2),
given in k-Dimensional case section in Appendix B, can beused to deter-
mine the relation in higher dimensional space, that is, k > 3. Applying
Eqs. (22) and (23) to Eqs. (34) and (35), respectively, and then solving
both for α2 (ϱ, 1) gives Eq. (33). In other words, matching frequency
content criteria α2 (ϱ, 1) with the dimensionality k of the underlying
space by Eqs. (22) and (23), reduces the relation of the frequency con-
tent of Gaussian and Laplacian distribution in k-dimensional space,
Eq. (32), to the one-dimensional case, Eq. (33).

Cortex model

As a concrete example for a geometrical approximationwe use here
a triangulated cortical surface Cortex_reg13.mat that is included in the
Virtual Brain software package, available at http://thevirtualbrain.org/
app/ (version 1.0). This surface composes the cortical geometry of
16,384 vertices and 32,760 triangles. Periodic boundaries determine
the two hemispheres composed by 8192 vertices each. Each vertex
covers nearly 16 mm2 of the cortical sheet. Here, we are not discussing
the geometric sampling procedures that are used for this cortex model.
However, if the sampling is regular (e.g., regular triangulation) the
edges characterize the basis of the sampling lattice (e.g., two vectors
in the hexagonal sampling lattice). In general, it is worth mentioning
that the cortical surface may not be regularly sampled from empirical
data, such as from anatomical MRI because of irregular shape, finite
size or finite number of voxels. That means that the length of edges ϱ
(i.e., distances between two vertices) of the resulting surface mesh
may rather differ than be the same. This issue has to be taken into
account for developing a dynamical system on top of such a discrete
geometrical structure, in particular when the aim is to investigate spa-
tiotemporal patterns.

In our particular case themesh that describes an individual cortical
surface is based on a set of anatomicalMRI scans. Themesh is obtained
by extracting a high-resolution surface from MRI, and sampling the
high-resolution surface down to a manageable number of vertices
for simulating brain dynamics on a state-of-the-art computer system.
The downsampling procedure achieves a balance between surface
curvature preservation and mesh regularity. By neglecting the errors
that are associated with the imaging technique, the sampling of the
cortical surface from the MRI scanned volume can be characterized
by the probability density q(σ) of lengths between the edges of the
mesh. For our particular example, the histogram in Fig. 2 characterizes
the edge lengths ϱ. The number of bins nbins in the histogram is calcu-
lated according to nbins = exp (0.626 + 0.4 log(nϱ − 1)), where
nϱ = 49,140 is the total number of edges ϱ (Otnes and Enochson,
1972). In addition to Fig. 2, the edge length distribution is character-
ized using the statistical moments (see Table 2). The distribution fairly
reveals to be unimodal and asymmetric (or more precisely, positively
skewed). The range of edge lengths has nearly the order of magnitude
of 1 cm (see Table 2). This indicates that the spatial dynamics are sam-
pled differently, depending on the position in the cortical mesh by
using a homogeneous connectivity function Whom(z) (with the same
order of spatial spreading σ).

Regarding a specific probability density of the edges, p(ϱ), and a
specific spreading of homogeneous connectivities, σζ , the amount
of spatial frequencies αζ (ϱ, k)|σζ

that is not covered due to the sam-
pling can be characterized in terms of mean

E αζ ; kð Þj
σζ

 !
¼ ∫αζ ϱ; kð Þj

σζ

p ϱð Þ dϱ; ð36Þ

and variance

Var αζ ϱ; kð Þj
σ ζ

 !
¼ ∫ αζ ϱ; kð Þj

σζ

 !
−E αζ ϱ; kð Þj

σζ

 !2

ϱð Þ dϱ: ð37Þ

These two measures are used here to assess the approximation of
a neural field as a network of neural masses for the geometric model
of the cortical surface with an unimodal compact probability density
of edges (see Fig. 2).



Fig. 2. Edge length distribution characterizes the cortex model.
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Results

The magnitude Gζ (qdB , k) and the frequency measure αζ (qα , k)
allow for the assessment of the approximation of the homogeneous
connectivity function Whom,ζ (z). The spatial cutoff frequency qc of
the homogeneous connectivity is measured (see, for example, Fig. 3)
as a function of the magnitude decay Gζ (qc , k) and the amount of un-
covered spatial frequencies αζ (qc , k) for both building blocks, namely,
Gaussian and Laplacian distributions (i.e., ζ = 1 and ζ = 2) with the
standard deviation σζ : (i) to determine the sampling width ϱζ for
discretizing Whom,ζ (z), using the Petersen–Middleton theorem (see
Eqs. (8) and (9)); or (ii) to parameterize the homogeneous connectiv-
ity for a given discrete geometry (see, for example, the cortex model
presented in the Cortex model section). The measures are indepen-
dent of the dimension k for the Gaussian kernel and are specific to a di-
mension k for the Laplacian kernel.

In the case of the Laplacian distribution function, criteria for both
measures, G2 (qc , 1) and α2 (qc , 1), can be matched with the dimen-
sion by the relations in Eqs. (14), (22) and (23). A given criterion G2

(qc , 1) for the magnitude decay G2 (qc , k) = (k + 1) G2 (qc , 1) / 2
(see Eq. (14) and Table 1) gives, for higher dimensions k, lower pro-
portions αζ (qc , k) of the spatial frequencies q that are not covered
with the cutoff frequency qc (see Table 3). A given criterion αζ (qc ,
1) for the frequency content αζ (qc , k) (relation is given with
Eqs. (22) and (23) as well as Table 1) indicates a higher magnitude
decay Gζ (qc , k) of the Laplacian kernel with increasing dimensionality
k (see Table 3). However, applying the dimensional corrected criteria
to the sampling assessment, σζ (Gζ (qc , k)) and ϱζ (Gζ (qc , k)) (using
Eqs. (25) to (27) for α2 (qc, 1)) reduces the k-dimensional sampling
problem to the one-dimensional sampling problem (see Tables 4 to
6). Applying the same criteria to any dimension k, that is, G2 (qc ,
k) = G2 (qc , 1) and α2 (qc , k) = α2 (qc , 1), the sampling assessment
misleadingly indicates an improvement with the dimensionality k of
the Euclidean space Ω ∈ ℝk for the parameterization: (i) of the sam-
pling procedure (i.e., sampling interval ϱζ and spatial spectrum cutoff
qc); and (ii) of the Laplacian distribution kernels, that is, σ2 (see
Table 2
Statistics of edge lengths ϱ of the cortex model.

Parameter Value Unit

Range [0.6638, 7.7567] mm
Expectation 3.9761 mm
Variance 1.1882 mm2

Skewness 0.3667 1
Quantile—5 % 2.3141 mm
Quantile—50 % 3.8979 mm
Quantile—95 % 5.9199 mm
Quantile—99 % 6.7165 mm
Tables 4 to 6, values in square brackets). Comparing the Gaussian dis-
tribution and the Laplacian distribution function by means of Eq. (31)
reveals the reason for that. The compactness of the Laplacian (i.e.,
peak) near the origin is indicated by a faster decay within the range:
G(qc , k) b G2 (qc , k) b 0, whereas the fat tails of the Laplacian distribu-
tion function are indicated by a slower decay within the range: G2 (qc ,
k) b G(qc , k), with G(qc , k) = G1 (qc , 1) = G2 (qc , k). The transition
G(qc , k) from the tails to the bounded part near the origin decreases
with increasing dimension k, since the spatial frequencies of the
Laplacian distribution kernel decay with the power of the dimension
k by kþ1

2 . Consequently, the peak around zero z = 0 gets less pro-
nounced and the tails get more pronounced with increasing dimen-
sion k (see Fig. 1). Typical values for G(qc , k) are: G(qc , k) = 0 for
all dimensions k and, in addition, G(qc , 2) = −9.937 dB for k = 2,
or G(qc , 3) = −21.827 dB for k =3. Consequently, it should be em-
phasized that a matching of measures to the dimensionality of an un-
derlying space is crucial.

Applying the dimensional matched measures to the Gaussian and
Laplacian distribution reduces any k dimensional sampling problem
to the one-dimensional problem, as mentioned previously. Using the
dimensional corrected criteria, the sampling assessment indicates
that for the same spatial cutoff frequency qc (or sampling width ϱζ)
and standard deviation σζ more spatial frequencies are covered
using a Gaussian compared to a Laplacian distribution function (see
Tables 4 to 6). In other words, to cover the same proportion of spatial
frequencies (i.e., 1 − αζ (qc , 1)), the ratio of standard deviation σζ to
sample width ϱζ has to be greater for the Laplacian, ζ = 2, compared
to the Gaussian distribution kernel, ζ = 1 see Eqs. (32) to (35).

Overall, the sum of Gaussian distributions is better to approxi-
mate, that is, with fewer samples than the sum of Laplacian distribu-
tions for any dimensional spaces. To assess the spatial approximation
of a neural field (see Eq. (4)) as a network of neural masses (see
Eq. (5)), Eqs. (24) to (27) and Eq. (30) can be used, which are brought
together in Fig. 3 and Supplementary data in Fig. S1 for k = 2 and
k = 3.

The approximation of the neural field as a network of neural masses
can be approached from different perspectives to: (i) consider biologi-
cal evidence in the model; (ii) model a specific measurement; or,
(iii) define a dynamical model on top of a discrete cortical geometry.
The sampling approximation is examined from these three points of
view in the following sections by considering three approxima-
tion criteria: αζ (qc , 1) = 0.05, Gζ (qc , 1) = −20 dB and Gζ (qc , 1) =
−3 dB. For all three criteria, the matching, G2 (qc , k) and α2 (qc , k), is
given in Table 1, and the relation between the magnitude Gζ (qc , k) and
the spatial frequency measure αζ (qc , k), Eqs. (24) to (27), is listed in
Table 3 for the two different kernels: Gaussian,Whom,1(z), and Laplacian,
Whom,2(z), distribution.

From biophysical considerations to a network of neural masses

Intracortical and short-range corticocortical connections (linking
adjacent cortices) in humans are described in the literature with a
range up to several mm (e.g., Burkhalter and Bernardo, 1989; Schüz
and Braitenberg, 2002). Considering such short-range connections
we use here, for a demonstration of our approach, a standard devia-
tion of σζ = σ = 1 mm for both homogeneous connectivity distribu-
tion functions, the Gaussian as well as Laplacian distribution. Note
that this choice is in line with the homogeneous connectivity parame-
terization in modeling studies, such as of the visual cortex of cats
(Markounikau et al., 2010), the auditory cortex of rats (Pinotsis et
al., 2012), or multi-unit recordings (Freestone et al., 2011). Using
Eq. (29), or alternatively Fig. 3, the maximum sampling interval ϱζ
is determined by the given standard deviation σζ = 1 mm, the
amount of uncovered spatial frequencies αζ (qc , k) and the magni-
tude decay Gζ (qc , k) of Whom,ζ (z) given in Table 3. Overall, for this
parameter case, a network of neural masses should be spatially



A

B

Fig. 3. Spatial frequency content α and magnitude G of (A) Whom,1 (z, σ) : z ∈ ℝk, ∀k and (B) Whom,2 (z ∈ ℝ, σ) dependent on sampling (ϱ, qc). G2 (1) can be corrected by χ ¼ kþ1
2 .
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sampled with a maximum sampling width in the order of submillime-
ters that covers spatial frequencies in the order of qc = 1 mm−1. The
specific values are given in Table 4.

Regarding the dimensionalmatched criteria (see Table 1), the sam-
pling of both kernels is comparable for Gζ (qc , 1) = −3 dB, whereas
the sampling of the Laplacian distribution kernel (i.e., ζ = 2) should
be almost two times and nine times finer-grained for Gζ (qc , 1) =
−20 dB and αζ (qc , 1) = 5 % compared to the Gaussian kernel
(i.e., ζ = 1).

Applying the same criteria to any dimension k, that is,Gζ (qc , k) =Gζ

(qc , 1) and αζ (qc , k) = αζ (qc , 1) (see Table 4, values in square
brackets), the spatial sampling of both kernels is comparable for all
Table 3
Relation of magnitude Gζ (cζ (qc , k), k) [Gζ (αζ (qc , 1), k)] in dB and frequency measure αζ

Whom,ζ (z) : z ∈ ℝk αζ (Gζ (qc , k), k) in %

ζ k Gζ (qc , k) = −3 dB

1 ∀k 40.510
2 1 63.594
2 2 54.580 [45.880]
2 3 50.594 [34.622]
criteria used here, except for αζ (qc , k) = 5 % in the two-dimensional
case (i.e., k = 2), where the sampling of the Laplacian distribution
kernel (i.e., ζ = 2) should be almost two times finer-grained compared
to the Gaussian kernel.

Note that the relations are inverse for the spatial cutoff frequency
qc, using Eq. (9), also owing to the broader spectrum of the Laplacian
compared to the Gaussian distribution (see Fig. 1).

From measurements to a network of neural masses

All measurements have their peculiarities and limitations, such as
accuracy and precision of a quantity (i.e., potential) in space and/or
(Gζ (qc , k), k) [αζ (Gζ (qc , 1), k)] in %.

Gζ (αζ (qc , k), k) in dB
αζ (qc , k) = 5%

Gζ (qc , k) = −20 dB

3.188 −16.683
20.483 −44.214
11.425 [5.132] −66.321 [−30.330]
8.417 [1.385] −88.429 [−25.643]



Table 4
Maximum sampling interval ϱζ for Whom,ζ (z) with σζ = 1 mm. Uncorrected intervals, [ϱζ (Gζ (qc , 1))] and [ϱζ (αζ (qc , 1))] are in brackets.

Whom,ζ (z) : z ∈ ℝk ϱζ (Gζ (qc , k)) in mm ϱζ (αζ (qc , k)) in mm
αζ (qc , 1) = 5 %

ζ k Gζ (qc , 1) = −3 dB Gζ (qc , 1) = −20 dB

1 ∀k 0.6006 0.2330 0.2551
2 1 0.5493 0.1179 0.0278
2 2 0.5493 [0.6935] 0.1179 [0.1853] 0.0278 [0.1162]
2 3 0.5493 [0.8128] 0.1179 [0.2404] 0.0278 [0.1924]
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time. All the measurements that we address here apply to the brain.
Along these lines we consider the brain as a continuous physical pro-
cess which generates uncertainty at a finite rate that is empirically
observable. In order to describe a measurement one may simply use
the limitations (e.g., noise) to construct a model regardless of the
source of uncertainty. Here we are using the examples of functional
MRI, ECoG, EEG and MEG to demonstrate how to set up a dynamical
model and how to assess the approximations. For this purpose, we
directly infer the cutoff frequency qc from the limitation of the mea-
surements (e.g., noise level) and use Eq. (9) to determine the sam-
pling width ϱ = ϱζ as a constant value for the distances of location
sites in the network of neural masses (i.e., regular sampling). Of course,
limitations may vary with specific experimental set-ups and should
condition a specific modeling. In the case of EEG and MEG, for instance,
the distances of the finite measuring sites to the neural substrate in-
volve volume conduction of the head and thus a variety of sources
and uncertainty that limits, or rather characterizes an observation.
Since in the scope of this paper we do not analyze concrete recordings
we refer instead to findings indicated in the literature, such as spatial
resolution and noise level of an addressed brain measurement entity.

Considering the spatial resolution of ECoG and EEG, the minimum
appropriate value for the standard deviation σζ of the homogeneous
connectivity function, Whom,ζ (z), can be specified dependent on
the proportion of uncovered spatial frequencies αζ (qc , k) and the
magnitude decay Gζ (qc , k) by using Eq. (29), or alternatively Fig. 3
combined with the criteria in Table 3. In general, the minimum ap-
propriate standard deviation σζ depends on the approximation crite-
rion characterized by αζ (qc , 1) and Gζ (qc , 1).

Freeman et al., (2000) describe the inflection point above noise level
in a spatial spectrum as an optimal criterion for a low pass spatial filter
to remove noise. This inflection point is indicated at qc = 0.4 mm−1 for
the ECoG (Freeman et al., 2000), which corresponds to a minimum sam-
pling width of ϱζ ≤ 1.25 mm. The spatial resolution of functional MRI
techniques is comparable to ECoG (Petridou et al., 2013; Yoo et al.,
2004). Overall, for a spatial grid modeling based on ECoG and functional
MRI, a standard deviation (or spreading) σζ of the homogeneous connec-
tivity Whom,ζ (z) in the order of several mm up to cm is necessary to ex-
plain the spatial correlations.

Regarding the dimensional matched criteria (see Table 1), the
standard deviation of both kernels is comparable for Gζ (qc , 1) =
−3 dB whereas the standard deviation of the Gaussian distribution
kernel (i.e., ζ = 1) can be set two times and nine times smaller for
Gζ (qc , 1) = −20 dB and αζ (qc , 1) = 5 % compared to the
Laplacian kernel (i.e., ζ = 2). For the Gaussian distribution kernel
(i.e., ζ = 1) the standard deviation σ should be at least in the
Table 5
Minimum standard deviation σζ of Whom,ζ (z) for ECoG and functional MRI with the m
Uncorrected standard deviations, [σζ (Gζ (qc , 1))] and [σζ (αζ (qc , 1))] are in brackets.

Whom,ζ (z) : z ∈ ℝk σζ (Gζ (qc , k)) in mm

ζ k Gζ (qc , 1) = −3 dB

1 ∀k 2.081
2 1 2.275
2 2 2.275 [1.803]
2 3 2.275 [1.538]
order of several mm, where for the Laplacian distribution kernel σ
should be in the order of cm (see Table 5).

Applying the same criteria to any dimension k, that is, Gζ (qc , k) =
Gζ (qc , 1) and αζ (qc , k) = αζ (qc , 1) (see Table 5, values in square
brackets), the standard deviation of both kernels is comparable for
almost all magnitude criteria Gζ (qc , 1), except for αζ (qc , k) = 5 %
in the two-dimensional case (i.e., k = 2), where the standard deviation
of the Gaussian distribution kernel (i.e., ζ = 1) can be set two times
smaller compared to the Laplacian distribution kernel (i.e., ζ = 2).

Note that for the Gaussian distribution kernel the standard deviation
is in the range that we considered in From biophysical considerations to
a network of neural masses section for all three criteria.

Regarding EEG, Freeman et al. (2003, Chap. 4.4) indicate the inflec-
tion point in the spatial spectrum at which EEG would be sampled
above the noise level (i.e., oversampling) with qc = 0.04 mm−1.
Because Freeman et al. (2003) recommend a 3 to 5 times higher sam-
pling rate than that limit, we use here a spatial cutoff frequency of
qc = 0.05 mm−1 that corresponds to a maximum sampling width of
ϱ = 10 mm, using Eq. (9). Note that the resolution of EEG is compara-
ble to MEG (Hämäläinen et al., 1993; Malmivuo and Suihko, 2004).
The cortical lattice that covers the activity on the scalp is coarser com-
pared to the intracranial grid for ECoG by the factor of 10. As a conse-
quence, the connectivity kernels Whom,ζ (z) that are able to describe
the spatial correlations have standard deviations σ in the order of
several cm (see Table 6) and thus outside the range for intracortical
and short-range corticocortical connections (see From biophysical
considerations to a network of neural masses section).

Considering the dimensional matched criteria (see Table 1), the
standard deviation of both kernels is comparable for Gζ (qc , 1) =
−3 dB, whereas the standard deviation of the Gaussian distribution
kernel (i.e., ζ = 1) can be set two times and nine times smaller for Gζ

(qc, 1) = −20 dB and αζ (qc , 1) = 5 % compared to the Laplacian ker-
nel (i.e., ζ = 2).

Applying the same criteria to any dimension k, that is, Gζ (qc , k) =
Gζ (qc , 1) and αζ (qc , k) = αζ (qc , 1) (see Table 6, values in square
brackets), the standard deviation of both kernels is comparable for
most of the magnitude criteria Gζ (qc , 1), except for αζ (qc , k) = 5%
in the two-dimensional case (i.e., k = 2), where the standard deviation
of the Gaussian distribution kernel (i.e., ζ = 1) can be set two times
smaller compared to the Laplacian distribution kernel (i.e., ζ = 2).

From a geometric model of the cortex to a network of neural masses

Given a surface model (i.e., k = 2) of the cortical geometry (see
Cortex model section) the minimum standard deviation σζ of the
aximum frequency qc = 0.4 mm−1 and the optimal sampling width ϱζ = 1.25 mm.

σζ (αζ (qc , k)) in mm
αζ (qc , 1) = 5 %

Gζ (qc , 1) = −20 dB

5.365 4.900
10.607 44.923
10.607 [6.747] 44.923 [10.757]
10.607 [5.199] 44.923 [6.496]



Table 6
Minimum standard deviation σζ ofWhom,ζ (z) for EEG andMEGwith the maximum frequency qc = 0.05 mm−1 and the optimal sampling width ϱζ = 10 mm. Uncorrected standard
deviations, [σζ (Gζ (qc , 1))] and [σζ (αζ (qc , 1))] are in brackets.

Whom,ζ (z) : z ∈ ℝk σζ (Gζ (qc , k)) in mm σζ (αζ (k)) in mm
αζ (qc , 1) = 5 %

ζ k Gζ (qc , 1) = −3 dB Gζ (qc , 1) = −20 dB

1 ∀k 16.651 42.919 39.199
2 1 18.204 84.853 359.386
2 2 18.204 [14.420] 84.853 [53.975] 359.386 [86.053]
2 3 18.204 [12.303] 84.853 [41.591] 359.386 [51.969]

713A. Spiegler, V. Jirsa / NeuroImage 83 (2013) 704–725
homogeneous connectivity function Whom,ζ (z) can be specified due
to the given characteristic edge length ϱ using the approximation
criteria Gζ (qc , 1) and αζ (qc , 1) in Table 3 and Eq. (29) or Fig. 3.
Here, we use the expectation value of the edge lengths in the geomet-
ric model, E(ϱ = 3.98 mm) for demonstration (see Table 2 and
Fig. 2). That spatial limit corresponds to a maximum spatial cutoff
frequency of qc = 0.13 mm−1. In general, the edge lengths are
in the range of spatial resolution of EEG and MEG (see From
measurements to a network of neural masses section). This is conse-
quently also the case for the spatial frequencies q. Overall, the
standard deviations of the homogeneous connectivity functions
Whom,ζ (z) are in the order of Whom,ζ (z). The specific values for the
standard deviations considering the expectation value of the edge
lengths in the model E(ϱ) =3.98 mm are listed in Table 7.

The standard deviation of both kernels is comparable for the mag-
nitude decay criteria, except for the dimensional uncorrected criteri-
on, Gζ (qc , 2) = −20 dB (see Table 7, values in square brackets),
where the standard deviation of the Gaussian distribution kernel
(i.e., ζ = 1) can be set two times smaller compared to the Laplacian
distribution kernel (i.e., ζ = 2).

Regarding the criterion for the spatial frequency measure, the
standard deviation of the Gaussian distribution kernel (i.e., ζ = 1) is
nine times and two times smaller for the dimensional corrected crite-
rion, αζ (qc , 2) = 5 %, and for the uncorrected criterion, αζ (qc , 2) =
0.308 % (see Table 1), compared to the Laplacian kernel (i.e., ζ = 2).

Given the dimensional matched values for the minimum
standard deviation σζ for both connectivity kernels Whom,ζ (z) in
Table 7, the discretization of a neural field as a network of neural
masses on the two-dimensional geometry of the cortex model (see
Cortex model section) is assessed for all used criteria by considering
the proportion of covered spatial frequencies αζ (ϱ , k)|σζ

using the
specific probability density of the edge lengths p(ϱ) (Eqs. (36) and
(37)). In this way, αζ (ϱ , k)|σζ

should indicate the given spatial
frequency content αζ (qc , k) for dimension k = 2 of all criteria, Gζ

(qc, 1) and αζ (qc , 1). The values of αζ (ϱ , k)|σζ
are listed in

Table 8. Indeed, αζ (ϱ , k)|σζ
reflects αζ (qc , k) (for conversions, see

Tables 1 and 3), although with high variations due to the irregularity
of the cortical mesh. To capture, for instance, (1 − αζ (qc , k)) × 100
% = 85 % of all spatial frequencies of the homogeneous connectivity,
Whom,ζ (z), that is, G1 (qc , 2) ≈ −14.5 dB and G2 (qc , 2) ≈ −43.85 dB
for ζ = 1 and ζ = 2, respectively, the minimum standard deviation of
a Gaussian and a Laplacian kernel is σ1 ≥ 14.55 and σ2 ≥ 140.01 mm,
respectively, for this cortex model.

As an example we sample the model of the cortical geometry (i.e.,
space Ω ∈ ℝ2) using the Gaussian homogeneous function Whom,1 (z)
with three different standard deviations σ = 15 mm, σ = 25 mm
Table 7
Minimum standard deviation σζ of Whom,ζ (z) for the two-dimensional cortex model, k = 2
0.13 mm−1. Uncorrected standard deviations, [σζ (Gζ (qc , 1))] and [σζ (αζ (qc , 1))] are in b

Whom,ζ (z) : z ∈ ℝk σζ (Gζ (qc , k)) in mm

ζ k Gζ (qc , 1) = −3 dB

1 2 6.627
2 2 7.245 [5.739]
and σ = 41 mm. To obtain the connectivity of each vertex with its
neighborhood on the triangular mesh, the shortest path along the
edges to a neighbor is considered to sample the homogeneous con-
nectivity function. The resulting homogeneous connectivity matrices
U1(σ) are shown in Fig. 4. The matrices are of size (l × l), where l
is the number of vertices (here l = 16,384). The increase of connec-
tivity spreading reduces the sparseness of the matrix. Since U1(σ)
condenses the couplings between two location sites on the two-
dimensional space of the cortical surface, the spatial structure of the
surfaceΩ and the connectivity kernel is coded, but not well presented
in a two-dimensional array of location sites. However, at least the
hemispheres can be distinguished by the two large clusters that ap-
pear with increasing standard deviation σ.

Discussion

In this paper an approach is presented with the aim to assess the
translation of neural field models into a network of neural masses. A
translation is often inevitable, in particularwith the aim to incorporate
discrete information on heterogeneous connections established by
white matter fibers (i.e., connectome). For this reason it is crucial to
assess the translation of a spatiotemporal dynamic model in a digital
scheme for integration. The work presented in this paper extends
previous studies on two-dimensional neural fields, such as Bojak
et al. (2010) and Freestone et al. (2011) in three points: (i) the spa-
tial sampling approximation (e.g., spatial cutoff frequency) can be
assessed using two measures, magnitude and frequency measure
(ii) that are applicable on any dimensional physical space (iii) for two
widely used classes of connectivity probabilities, namely, Gaussian
and Laplacian probability functions.

In the case of neural field models, the homogeneous connectivity
(i.e., intracortical connections) has to be sampled in space. For this
case we applied two measures to quantify the sampling quality. The
sampling is complicated due to the fact that the geometry of the
human cerebral cortex shows a highly folded surface that varies across
subjects. We applied our approach to a model of a cortical surface de-
rived from experimental data. We focused on the spatial sampling as-
pect rather than the neural mass and its spatial and/or temporal
consolidation. In otherwords, a neuralmassmodel thatmay be specif-
ic to a certain spatial extent and to a given measurement should be
specified after the space has been sampled.

Considering the work of Bojak et al. (2010), the two measures
presented here can be used to assess themaximum reliable spatial fre-
quency in their mean field simulations for EEG and MEG. Freestone
et al. (2011) mention, for instance, that the spatial cutoff frequency
becomes a design choice for the desired level of smoothness in their
, with the mean edge length ϱζ = E(ϱ) = 3.98 mm and the maximum frequency qc =
rackets.

σζ (αζ (qc , k)) in mm
αζ (qc , 1) = 5 %

Gζ (qc , 1) = −20 dB

17.082 15.601
33.771 [21.482] 143.036 [34.249]



Table 8
Mean and standard deviation of the dimensional corrected approximation error αζ (ϱ,
k)|σζ

in % of the cortex model using σζ and qc from Table 7.

Whom,ζ (z) Gζ (qc , 1) = −3 dB Gζ (qc , 1) = −20 dB αζ (qc , 1) = 5 %

ζ = 1 38.374 ± 12.775 4.548 ± 4.890 6.326 ± 6.040
ζ = 2 62.035 ± 8.272 20.321 ± 5.163 0.330 ± 0.178
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approximated field using Gaussian radial basis functions. The ap-
proach presented here could be used to specify the spatial cutoff
frequency for the homogeneous connectivity in the neural field as
well as spatial cutoff frequency for the radial basis functions in their
data-driven framework of neural field modeling (Freestone et al.,
2011 use a −3 dB-cutoff criterion). Furthermore, the widely used
Laplacian distribution for describing the homogeneous connectivity
(e.g., Jirsa and Haken, 1996; Nunez, 1974; van Rotterdam et al.,
1982; Wilson and Cowan, 1973) behaves in a specific way depending
on the dimension of the considered physical space (see the discussion
in Comparison of Gaussian and Laplaican connectivities section as
well as Figs. 3 and S1). For that reason, a magnitude criterion, such
as the−3 dB-cutoff criterion can bemisleading, especiallywhen com-
paring the approximation on different spaces. Therefore, it is essential
to match the measures and thus the criteria to the dimension of the
underlying space. Using the spatial frequency measure introduced
here (see Spatial frequency measure section), the cutoff criterion can
be defined as a proportion of spatial frequencies that are to be cap-
tured. In addition to the widely used magnitude measure, the spatial
frequency measure gives additional information and improves the
assessment of the approximation. Both measures and the criteria
therefore can be easily applied to any dimensional spaces for both
widely used homogeneous connectivity functions by matching the
measures to the dimension. In fact, thematching reduces the sampling
task of both homogeneous connectivity functions in higher dimen-
sional spaces to the one-dimensional sampling case.

To go more into detail, two specific criteria are applied to assess
the sampling of the homogeneous connectivity in space. The limita-
tions of our approach are discussed in Sampling the connectivity in
space section. The approximation of the homogeneous connectivity
with the aim to create a computational model can be tackled with dif-
ferent intentions. The three scenarios we went through are discussed
in Computational models section. The impact of sampling the homo-
geneous connectivity is discussed in Bandwidth-limiting effect of
sampling on the homogeneous connectivity section. An alternative
approach of approximation and assessment of the homogeneous
connectivity is discussed in An alternative approximation of the
homogeneous connectivity section. Finally, the two distributions
that are used in the scope of this work to describe the homogeneous
A B

Fig. 4. Homogeneous connectivity matrix U1 (R = ζ = 1) aggregates Whom(z, σ, R, ζ), sam
25 mm, and (C) σ = 41 mm.
connectivity are compared in Comparison of Gaussian and Laplaican
connectivities section.

Sampling the connectivity in space

In order to sample a signal or a function in a domain, the basic the-
orem that needs to be satisfied is the Nyquist–Shannon sampling
theorem (Shannon, 1949) and its extension to higher dimensional
Euclidean spaces, the Petersen–Middleton theorem (Petersen and
Middleton, 1962). In our case the characteristics of the functions that
are used to describe the homogeneous connectivity are complicating
the sampling procedure in addition to the already complex spatial ge-
ometry of the cortex. In fact, we are dealing with twomodels of differ-
ent scales derived fromdifferent sources. On the one handwe have the
geometric model of the cortex derived from structural measurements,
and on the other hand we have the probability distribution describing
intracortical connections derived from biophysical techniques and
considerations. The local connectivity is usually approximated as a
continuous function, that is symmetric and translationally invariant
in physical space. This continuity characteristic is basically the reason
why the Petersen–Middleton sampling theorem is not satisfiable, and
a sampling is not perfect. In order to perform an adequate sampling of
the homogeneous connectivity we introduce two measures for (i) the
decay of magnitude, and (ii) the proportion of covered spatial fre-
quency components to the uncovered ones. Criteria are obtained by
applying the measures to the connectivity distribution function and
then to the Petersen–Middleton sampling theorem. This procedure
leads to themain result of this work (see, for example, Fig. 3) that per-
mits to assess and to set up the sampling of the Gaussian and Laplacian
distribution functions. In addition to the magnitude measure we also
measure the content of spatial frequencies because the magnitude
measure implies that the spatial frequencies outside themaximum re-
sponse (cutoff) do not convey additional information. This is so far not
clear for the brain due to the nonlinear characteristics of brain activity
(Buzsáki, 2006; Freeman, 2000; Nunez, 1995). In the discussion, up to
here, we assumed that the underlying physical space is either contin-
uous, or the available discrete geometric cortexmodel is well sampled.
In particular, the procedure implied that the sampling is periodically
along the basis of the considered space, in other words, that the
space is sampled with a fixed step size, forming an optimal lattice
(e.g., a two-dimensional hexagonal sampling lattice; Petersen and
Middleton, 1962). In practice, the extraction and sampling of the cor-
tex from structural brain data (i.e., MRI) is complicated because of the
folding of the cortical sheet in sulci and gyri. However, the sampling of
the physical space is beyond the scope of this work, and we assume
that the cortex model is well constructed. In this paper we demon-
strate our approach by using the example of an irregular cortical
C

pling the cortex model Ω (see Cortex model section) with (A) σ = 15 mm, (B) σ =
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grid (from anatomical MRI; see Cortex model section and From a
geometric model of the cortex to a network of neural masses section).
Due to the irregular spatial grid, the criterion is applied to the mean
value of the edge lengths, and the sampling of the homogeneous con-
nectivity distributions is then assessed by taking all edges into account
(see Table 8). In this way, the approximation error can be considered
as the upper bound regarding a basis of the sampling lattice with
respect to the applied criterion to specify the distribution function.

Computational models

The measurements considered here (i.e., ECoG, EEG, MEG and
functional MRI) are capable of gathering activity on various spatial
scales ranging from neuronal ensembles to the whole brain (i.e., de-
pendent on the number of measurement sites or sensors and sensor
layout) with different temporal resolutions. All four measurement
modalities contain less spatial information than the intracranial bio-
physical plausible configuration due to the distance of the sensors
to the neural substrate in the case of the considered electrophysio-
logical measurements (i.e., ECoG, EEG and MEG) or the spatial extent
of the recording site (i.e., voxel size) in the case of fMRI. Functional
MRI and ECoG recordings provide better spatial information than
EEG or MEG (see From measurements to a network of neural masses
section).

Due to these differences in scales of organization, brain network
models can be defined specific to a type of measurement by consider-
ing its information content. The results presented here provide a
guideline (see From measurements to a network of neural masses
section) of how to do so with an emphasis on the right choice of
model with parsimonious variables and parameters. For instance, in
a situation where a parsimonious model captures well the recordings
on the level of the measurement sites, a model to integrate multimod-
al data (e.g., for all four measurement modalities) needs to describe
the spatiotemporal dynamics on a more detailed level (see, for in-
stance, Bojak et al., 2010, and references therein), such as the neural
substrate. In the scope of this work, we give guidance to set up a cor-
tical mesh based on biophysical considerations and given anatomical
and geometric constraints (see From biophysical considerations to a
network of neural masses section and From a geometric model of
the cortex to a network of neural masses section). Since in such a
multimodal approach the described state is usually not directly acces-
sible to the measurement (e.g., membrane potential for functional
MRI) a link to each measurement has to be established. In addition
to Eq. (5), a so-called observer systemQ can be introduced that relates
the hidden state Ψ̂to a certain measurement M as follows

M ¼ Q Ψ̂; a
� �

þ ε; ð38Þ

where a parameterizes the observation and ε describes the noise
processes, such as thermal noise associated with the measuring appa-
ratus. The observer system Q has to take into account additional
information on the physics of the sources, the media and the mea-
suring apparatus. In the case of ECoG, EEG and MEG this comprises,
for instance, the equivalent dipole model (Lopes da Silva and van
Rotterdam, 1999; Schimpf et al., 2002), the geometry, permeability
and permittivity of tissues (Haueisen et al., 1997, 2002) and the sen-
sors (e.g., Hämäläinen et al., 1993). Further, functional MRI records
change in metabolism and blood flow indicating energy consumption.
These changes are indirectly related to changes in the activity of neu-
rons or neural ensembles. For this reason, a hemodynamicmodel, such
as the Ballon–Windkessel model (Friston et al., 2000, 2003) has to be
used as observer system. A model that integrates ECoG, EEG, MEG
and functional MRI contains redundancy as the observer system Q is
low-pass filtering the state Ψ̂ in space for EEG and MEG and in time
for functional MRI.
To range this study in the area of neural field modeling, a selection
of studies should be taken into consideration. For instance, Liley et al.
(2002) specify the Laplacian distribution for the homogeneous con-
nectivity with a standard deviation of σ2 = 35.355 mm. Using our
approach, this configuration corresponds to a sampling interval of
ϱ2 = 0.984 mm on an optimal (e.g., hexagonal) two-dimensional
lattice for capturing (1 − α2 (qc , 1)) × 100 % = 95 % of all spatial
frequencies up to qc = 0.508 mm−1. This model consequently can
be ranged in a description on the level of ECoG and fMRI (see From
measurements to a network of neural masses section) and allows for
incorporating more macroscale brain measurements, such as EEG and
MEG. Other neural field studies specify coarser standard deviations for
the homogeneous connectivity, such as Nunez and Srinivasan (2006) :
σ2 = 141.421 mm, Robinson et al. (1997) : σ2 = 118.794 mm, or
Jirsa et al. (2002) : σ2 = 84.853 mm, all using the Laplacian distribu-
tion. Again, applying the frequency measure αζ (qc , k) (see Spatial
frequency measure section), and considering these configurations on
an optimal (e.g., hexagonal) two-dimensional lattice, (1 − α2 (qc ,
1)) × 100 % = 95 % of all spatial frequencies of the Laplacian connec-
tivity function are covered with a sampling interval ϱ2 and a spatial
cutoff frequency qc : ϱ2 = (3.935, 3.306, 2.361) mm and qc =
(0.1271, 0.1513, 0.2118) mm−1, listed in the order of the three stud-
ies. As a consequence, all three models can be ranged in a description
on the level of EEG and MEG (see From measurements to a network
of neural masses section). To complete, Markounikau et al. (2010)
and Freestone et al. (2011) are using a Gaussian distribution; and
Pinotsis et al. (2012) use a Laplacian distributed homogeneous con-
nectivity with standard deviations in the range of mm for intracrani-
al recordings, where all three models correspond to a description
on the level of human intracranial connections From biophysical
considerations to a network of neural masses section. For all these
example cases, we assumed an optimal sampling. However, knowing
the sampling lattice allows for assessing the approximation of neural
fields as networks of neural masses and, moreover, for better
interpreting the spatial pattern obtained from numerical simulations
(e.g., with noise).

Bandwidth-limiting effect of sampling on the homogeneous connectivity

The finite step size ϱ of the spatial sampling is limiting the spatial
frequencies by ŝ containing the continuous homogeneous connectiv-
ity kernel Whom(z). The maximum frequency ŝ can be specified
according to the magnitude Eq. (13) and/or the spatial frequency
measure Eq. (17). In order to discuss the bandwidth-limiting effect
we transform the spectra of both kernels back into the spatial domain
by

Whom;ζ zð Þ ¼ 1ffiffiffiffiffiffi
2π

p ∫
−ŝ

ŝ
ds W̃hom;ζ sð Þ exp jszð Þ: ð39Þ

We obtain the following transfer function Khom,ζ (z) = Ŵhom,ζ (z) /
Whom,ζ (z)

Khom;1 zð Þ ¼ 1ffiffiffiffiffiffi
2π

p
X∞
u¼0

−1ð Þu
2u 1þ 2uð Þu!

jz
σ
þ σ ŝ
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−σ ŝ
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for the Gaussian distribution kernel Whom,1(z) and

Khom; 2 zð Þ ¼ 1
π
tan−1 σ ŝffiffiffi
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Fig. 5. Bandwidth-limitation effect on Whom,ζ (z) : (A, C) Gaussian ζ = 1 and (B, D) Laplacian distribution ζ = 2.
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for the Laplacian distribution kernelWhom,2 (z). The mathematical de-
tails are presented in Appendix C. In Fig. 5 we see that the shape of the
Gaussian distributionWhom,1 (z) is preserved, where the Laplacian dis-
tribution Whom,2 (z) is modified by an oscillatory term. Generally, the
sampling limitation of the bandwidth effects a reduction of the peak
around z = 0 in both cases. In the case of the Laplacian distribution
the peak is well-sampled simply for the limit ŝ → ∞. In other words,
for finite sampling width, ϱ, the peak of the Laplacian distribution is
not preserved and an oscillatory term is added, especially for higher
sampling spatial frequencies.

An alternative approximation of the homogeneous connectivity

Another approach to implement the homogeneous connectivity
Whom,ζ (z) in the framework of a neural field or a network of neural
masses is to specify the partial differential operator Cζ (∂/∂x, ∂/∂t)
(Jirsa, 2009; Qubbaj and Jirsa, 2009). This alternative representation
of the homogeneous connectivity function Whom,ζ (z) (including the
propagation delays) as a power series of partial derivatives (i.e., with
respect to time t and space x) allows to approximate Whom,ζ (z) as a
finite number of terms that act on the stateΨ (x, t) allows to compare
both distribution functions. Using the Green's function method (e.g.,
Jirsa and Haken, 1996, 1997; Nunez, 1995) we can rewrite the system
for the generalized neural field Eq. (4) as follows

P ∂=∂tð ÞΨ x; tð Þ ¼ Ξ x; tð Þ−Λ Ψ x; tð Þð Þ þ Vloc S Ψ x; tð Þð Þ
þVhom Cζ ∂=∂x; ∂=∂tð Þ S Ψ x; tð Þð Þ;

ð42Þ

where the partial differential operator Cζ (∂/∂x, ∂/∂t) is given as a power
series in ∂/∂x and ∂/∂t for the Gaussian Whom,1(z) and Laplacian distri-
bution function Whom,2 (z) (Eqs. (D.11) and (D.12), respectively) used
here for specifying the homogeneous connectivity (see Eq. (B.11)).
The details of the calculus and the power series of the partial differential
operator can be found in Appendix D. Note that the partial differential
operator for the Laplacian distribution C2 (∂/∂x, ∂/∂t) is in line with pre-
vious studies (Jirsa, 2009; Qubbaj and Jirsa, 2009). In general, both dis-
tribution functions can simply be determined rigorously as partial
differential operator if infinite number of terms v are considered sup
{v} = ∞. Expanding the power series Cζ (λ1, λ2) Eqs. (D.11) and
(D.12) we obtain the following first four derivatives

C1
∂
∂x ;

∂
∂t

� �
≈ 1ffiffiffiffiffiffi

8π
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for the Gaussian distribution kernel Whom,1 (z) with sup{v} = 1 and
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∂
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− σ
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2πc21

∂2

∂t2
þ… ð44Þ

for the Laplacian distribution kernelWhom,2 (z) with sup{v} = 2. How-
ever, the coefficients indicate the contribution of each term and thus in-
dicate the convergence of the power series. The contribution can be
assessed by applying the magnitude measure G(a), Eq. (13), described
in Magnitude measure section, to the coefficient a of each derivate
(∂u + w) / (∂xw ∂tu) in Cζ (∂/∂x, ∂/∂t), and then using a criterion, such
as G(a) ≤ −20 dB. In this way the approximation of the homogeneous
connectivity Whom(z) can be assessed, dependent on the propagation
speed c1 and standard deviation σ. Fig. 6 shows the coefficients in
the space spanned by the derivatives with respect to space and time
Cζ (∂/∂x, ∂/∂t) up to order sup{u} = sup{w} = 6. The magnitude ratios
G(a) of the coefficients (i.e., the gray scale) are showing the case
(c1, σ) = (1, 0.4). From the characteristic spatiotemporal pattern of
the coefficients we see that all even order derivatives exist with respect
to space in Cζ (∂/∂x, ∂/∂t)ζ but no odd derivatives. This is simply due to
the fact that both distributions Whom,ζ (z) are even functions in space.
Considering the changes in time we see that all derivatives of even
and odd order exist with respect to time, except for the case of the
Gaussian distribution where the derivatives for the spatial offset, that
is, (∂/∂x)0 are of even order. This is due to the fact that the propagation
delay is defined by the spatial distances and the distances have no
specific spatial pattern on Ω. Whereas for the case of the Gaussian dis-
tribution the coefficients of all existing derivatives are positive, the
coefficients for the case of the Laplacian distribution are positive for
even and negative for odd order derivatives with respect to time. In
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Fig. 6. Coefficients of the differential operator Cζ (λ1, λ2) for (A) the Gaussian ζ = 1 and (B) the Laplacian distribution ζ = 2. Coefficients are black framed squares, gray shaded for
(c1, σ) = (1, 0.4), where λ1 = ∂/∂x, λ2 = ∂/∂t, and the ★ denotes coefficients for which the ratio |a| / sup{|a|} > −20 dB.
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general, the power series converges faster with v and with increasing
order of derivatives (v and u) for the Gaussian compared to the
Laplacian distribution. In the case of the Gaussian distribution the
coefficients drop off with higher order derivatives with respect to
both, time and space. In the case of the Laplacian distribution the
coefficients drop faster along the spatial and temporal offset (∂/∂x)0
and (∂/∂t)0, respectively, compared to the mixed derivatives (around
∂u / (∂xu/2 ∂tu/2)). This is the reason why, for the example in Fig. 6,
we need to expand at least seven terms sup{v} = 6 of the power series
for the Laplacian distribution to satisfy the criterion G(a) ≤ −20 dB.
For the Gaussian distribution two terms are sufficient to satisfy the −
20 dB-criterion in our example. This approximation involves 4 and 13
derivatives, up to the order of 2 and 4 for theGaussian and the Laplacian
distribution, respectively (including the offsets). This approach also
demonstrates that an approximation of the Gaussian distribution is
less expensive than for the Laplacian distribution.

Following this alternative approximation of the homogeneous
connectivity, the obtained partial differential equations can also be
implemented in a digital scheme for integration. For this purpose,
methods that control the step size of integration are available for an
optimal sampling of the evolution in space and time. However, this
approach might be restricted to study the homogeneous connectivity
Whom(z) (i.e., spatially continuous) since the available empirical data
(e.g., diffusion-weighted MRI tractography) characterize a heteroge-
neous connectivity (i.e., connectome) Whet(z) as non-continuous with
respect to the cortical neural sources and targets projected onto the
cortical surface.

Comparison of Gaussian and Laplacian connectivities

Comparing both distribution functions, Gaussian Whom,1 (z) and
Laplacian Whom,2 (z), we can see that the most salient difference is
the peak around zero z = 0 (see in Fig. 1). Concerning a normalization
of both connectivity kernelsWhom,ζ (z) with respect to a joint standard
deviation (see Appendix B), the Laplacian peak Whom,2 (z = 0) tops
the Gaussian peak Whom,1 (z = 0) up to four-dimensional Euclidean
space z ∈ Ω. As we discussed earlier (in Bandwidth-limiting effect of
sampling on the homogeneous connectivity section) it is not possible
to sample the peak of the Laplacian around z = 0 (see Fig. 5).

The spatial Fourier spectrum of a Gaussian-distributed homoge-
neous connectivity in any k dimensional Euclidean space Ω is again
characterized by a Gaussian because it is an eigenfunction of the
Fourier transform. Consequently, magnitude decay and frequency
content of the Gaussian distribution kernel, G1 (qc , k) and α1 (qc , k),
remain unchanged, independent of the dimension k of the space Ω.
In contrast, because of the singularity at the origin (i.e., peak) and
the fat tails of the Laplacian-distributed homogeneous connectivity,
the Lorentzian shaped spatial spectrum of a one-dimensional
Euclidean space decays with the power of increasing dimension k by
kþ1
2 (see Tables 4 to 6). In general, a radial function, that is, radially sym-
metric on Ω ∈ ℝk has a Fourier transform that decays faster than
q(k + 1) / 2 if integrable and bounded near the origin. Consequently,
the fat tails of the Laplacian distribution kernel and thus the corre-
sponding low spatial frequencies get more pronounced with increas-
ing dimensionality k. That is why, the magnitude decay and the
frequency content of the Laplacian distribution kernel, G2 (qc , k) and
α2 (qc , k), are dependent on the dimension k of the space Ω. In other
words, using the same criteria for different k dimensional spaces,
such as G2 (qc , k) = −3 dB and α2 (qc , k) = 5 % neglect the extent
of the underlying space Ω. Suiting the criteria to the dimensionality
of the spaces (using Eqs. (14), (22) and (23) as well as Table 1) allows
to compare the sampling procedure of the Laplacian-distributed ho-
mogeneous connectivity independent of the dimensionality, assum-
ing regular sampling lattices (e.g., hexagonal and body-centered
cubic lattice in k = 2 and k = 3 dimensional spaces). That way, the
magnitude decay and the spatial frequency content of the Laplacian
distribution kernel are independent of the dimensionality k of the
space Ω and reduce to the one-dimensional cases. With respect to
bothmeasures, the Gaussian is easier to sample than the Laplacian dis-
tribution function.

The motivation for using the Laplacian distribution in neural field
theory is that Braitenberg and Schüz (1991) showed that the short-
range intracortical fiber system of the mouse cortex shows a distri-
bution with a connection probability which decays exponentially
over the distance. This does not imply that it decays exponentially
over all distances, in particular in the vicinity of z = 0, simply because
of the finite number of measured points considering a certain dis-
tance to the soma. Furthermore, the somata are also taking up space,
for instance, ≈15 μm in diameter in the human prefrontal cortex
(Rajkowska et al., 1998). One could speculate that a Gaussian distribu-
tion (or even a third, different type of distribution) would also be suit-
able to explain such experimental data as gathered by Braitenberg and
Schüz (1991). AsWilson and Cowan, (1973) mentioned, “It is possible
that Gaussians would have been amore propitious choice.” [compared
to Laplacian distribution functions].

For comparing both, Gaussian and Laplacian distributions we fit
the ratio of the standard deviation of the Gaussian to the Laplacian
distribution a = σζ = 2 / σζ = 1, using a method of least squares. The
fitting procedure is described in Appendix E. For instance, for the
one-dimensional case, the distributions are fitting best for a ratio
of a = 0.703, considering all distances z ∈ ℝ. For fitting the tails of
the distributions within the interval ẑ ≤ z b ∞, without taking the
peaks into account (i.e., z ̂ > 0), criteria for the lower bound z ̂ can be
applied, such as the magnitude criterion described in Magnitude
measure section. See Appendix E for the ratios a that fit the tails
using the −3 dB-criterion. In the case of fitting the whole range
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or using the magnitude criterion for fitting the tails the standard
deviation of the Gaussian has to be decreased for fitting the
Laplacian best (see also Fig. 1). In general, the fit is complicated by
the fact that the Laplacian has fatter tails than the Gaussian
distribution. This is also the case when using the amplitude of one of
the distributions as a degree of freedom in addition to the spreading
ratio a. Finally, if the Gaussian distribution is the homogeneous
connectivity of choice, the correction(s) due to fitting to the
Laplacian can be considered for assessing the approximation
described in Sampling the homogeneous connectivity section, using
Fig. 3.

Conclusion

Local connectivity contributes to the organization of the spatio-
temporal large-scale brain dynamics. Before the full brain network
modeling with local and global connectivity is carried into the applied
domains, some ground truths need to be established. This has been
the objective of the current article.

In general, a neural field needs to be approximated by a network
of neural masses when

• inherent nonlinearities (e.g., transfer function S(φ) is sigmoidal)
complicate solving the equation(s) and/or

• discrete connections (e.g., brain region connecting white matter
fibers identified by diffusion-weighted MRI tractographic techniques)
aimed to be integrated.

Where neural fields are spatially continuous descriptions of brain
activity, networks of neural masses are discrete (e.g., point-like)
descriptions in space.

An approximation of the neural field comprises a sampling in
space, in particular of the local (homogeneous) connectivity (see
Sampling the connectivity in space section). An approximation of the
homogeneous connectivity function (i.e.,Whom (z)) can be assessed by

• the decay of the connectivity in space (see Magnitude measure
section) and/or

• the amount of omitted spatial frequencies (see Spatial frequency
measure section).

This holds for any dimensional Euclidean spaces.
The local connectivity is typically described by a sum of Gaussian

or Laplace distributions. In this work an approximation is assessed
using a single Gaussian or Laplace distribution, assuming a regular
k-dimensional sampling lattice. However, the assessment approach
presented here is in principle applicable to the sum of such distribu-
tions as well as to more complicated sampling schemes, using irregu-
lar sampling lattices. Moreover, this approachmight be also applicable
to other distributions, such as the gamma distribution (Hutt and Atay,
2005, 2007).

Here, the results show that the Gaussian distribution has a num-
ber of advantages over the widely used Laplacian distribution. For in-
stance, in comparison to the Laplacian distribution, the Gaussian

• is easier to approximate (see Bandwidth-limiting effect of sampling on
the homogeneous connectivity section to Comparison of Gaussian and
Laplaican connectivities section) and/or

• requires fewer spatiotemporal derivatives (see An alternative
approximation of the homogeneous connectivity section).

Finally, the present work gives guidance for modeling certainmea-
surement modalities or integrating a number of them, such as ECoG,
EEG, MEG and/or functional MRI, using given anatomical and geomet-
ric constraints or from scratch (see Computational models section).

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.06.018.
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Appendix A. FitzHugh–Nagumo and Jansen–Rit model

To compare the exemplary implementation of the FitzHugh–
Nagumo or the Jansen–Rit model in the general framework, Eq. (2)
or Eq. (3) (see Material and methods section), the conventional for-
mulation of both models is shown in this appendix.

FitzHugh–Nagumo model

The FitzHugh–Nagumo model has the following structure

dφ1

dt
¼ a11φ1 þ a13φ

3
1 þ a21φ2 þ �1 ðA:1Þ

dφ2

dt
¼ b0 þ b11φ1 þ b21φ2 ðA:2Þ

with the parameters as follows: a11 = a21 = c, a13 = −c / 3, b0 =
a / c, b11 = −1 / c, b21 = −b / c, where a = 0.7, b = 0.8 and c = 3
(FitzHugh, 1961).

Jansen–Rit model

A general structure of the Jansen–Rit model (Jansen and Rit, 1995)
is given by a set of nine coupled first-order ordinary differential
equations:

Pyramidal cells

d2φ1

dt2
þ 2

dφ1

dt
þ φ1 ¼ S V1;2φ2 þ V1;3φ3

� �
þ �1 ðA:3Þ

Excitatory interneurons

d2φ2

dt2
þ 2

dφ2

dt
þ φ2 ¼ S V2;1φ1

� �
þ �2 ðA:4Þ

Inhibitory interneurons

d2φ3

dt2
þ 2b3

dφ3

dt
þ b23φ3 ¼ b23 S V3;1φ1

� �
þ �3 ðA:5Þ

where the variables are normalized with respect to the characteris-
tic constant of the model: time t = t a : a = 100 s−1, potential φ =
r y(t / a) : r = 0.56 mV−1. Since the original model distinguishes ex-
citatory from inhibitory couplings with two different time constants a
and b, and the excitatory time constant a is used here for normaliza-
tion so that the parameter b3 = b / a : b = 50 s−1 is the ratio of inhi-
bition to excitation rate. The coupling factors are: V1,2 = 2e0rC2A / a,
V1,3 = −2e0rC4B / b, V2,1 = 2e0rC1A / a and V3,1 = 2e0rC3A / a,
where e0 = 2.5 s−1 is the potential for which 50 % firing rate is
achieved, A = 3.25 mV and B = 22 mV determine themaximumam-
plitude of the excitatory and inhibitory postsynaptic potentials, and
C1 = 5C2 / 4 = 4C3 = 4C4 (e.g., C1 = 135 is used for alpha-like ac-
tivity). Due to the normalizations the sigmoid function reads S(φ) =
Sigm[φr−1] / (2e0) = (1 + ξ exp(−φ))−1 with ξ = exp(rv0) and
v0 = 6 mV. In addition to the original formulation of the model, the
structure presented here, Eqs. (A.3) to (A.5), also considers afferent

http://dx.doi.org/10.1016/j.neuroimage.2013.06.018
http://dx.doi.org/10.1016/j.neuroimage.2013.06.018
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input to both interneural populations (i.e., �1 and �3). The afferent
input firing rate in the original version �2 is here normalized by �2 =
p(t / a) / (2e0 C2).

Appendix B. Homogeneous connectivity

Using the case of a single kernel R = 1 for the homogeneous con-
nectivity Whom,ζ (z), Eq. (6) then reads

Whom;ζ zð Þ ¼ ηβ1;ζ exp −γ1;ζ z⊤z
� �1=ζ� �

: ζ ¼ 1;2f g; ðB:1Þ

where z is a column vector with zu ∈ k , k = {v | v ∈ ℕ} entries. Con-
verting z from Cartesian to k-spherical coordinates (e.g., Stein and
Shakarchi, 2003, Appendix 2.4) by

z ¼ r

sinϕ1 sinϕ2⋯ sinϕk−2 cosϕk−1
sinϕ1 sinϕ2⋯ sinϕk−2 sinϕk−1

⋮
sinϕ1 sinϕ2

cosϕ1

0
BBBB@

1
CCCCA ðB:2Þ

with the radial coordinate r ¼ ‖z‖2 ¼
ffiffiffiffiffiffiffi
z⊤z

p
; r : r∈Rþ and the angular

coordinates 0 ≤ ϕv ≤ π for 1 ≤ v ≤ k − 2; 0 ≤ ϕk − 1 ≤ 2π, Eq. (B.1)
reads

Whom;ζ rð Þ ¼ ηβ1;ζ exp −γ1;ζ r2=ζ
� �

: ðB:3Þ

This transform nicely shows the radial symmetry of the homoge-
neous connectivity Eq. (6). The k-dimensionality of z reduces to
one-dimension using spherical coordinates.

We normalize a single distribution kernel as follows

ηβ1;ζ

� �−1 ¼ ∫⋯
∞

∫
−∞

exp −γ1;ζ z⊤z
� �1=ζ� �

dz1 ⋯ dzk ðB:4Þ

¼k>1 sk−2 1ð Þ∫
π

0

dϕ sink−2 ϕð Þ

�∫
∞

0

dr exp −γ1;ζ rð Þ2=ζ
� �

rk−1
;

ðB:5Þ

(e.g., Stein and Shakarchi, 2003, Appendix 3.3) so that the area or
k-volume under the homogeneous connectivity Whom,ζ (z) is unity,
where sk−2 rð Þ ¼ 2πk=2rk−1

Γ k=2ð Þ is the surface of the k-sphere with the gamma

function Γ(λ) = ∫
∞

0

yλ − 1 exp(−y) dy. The variance of a single distri-

bution kernel σ2 is defined by

σ2k ¼ ∫⋯
∞

∫
−∞

Whom;ζ zð Þ∏
k

u¼1
z2u dz1 ⋯ dzk: ðB:6Þ

In the case of the Gaussian distribution kernel, that is, ζ = 1 the
normalization reads in closed form

ηβ1;1 ¼ γ1;1

π

� �k=2
; ðB:7Þ

with

γ1;1 ¼∀k
1

2σ2 : ðB:8Þ

In the case of the Laplacian distribution kernel, that is, ζ = 2 the
closed-form of the normalization reads

ηβ1;2 ¼ γk
1;2

2k

π
1−k
2

Γ 1þk
2

� � ; ðB:9Þ
with

γ1;2 ¼∀k
ffiffiffi
2

p

σ
: ðB:10Þ

The decay γ1,ζ of both kernels is independent of the dimensional-
ity k of z but the kernels are scaled differently by ηβ1,ζ so that Eq. (B.1)
then reads

Whom;ζ zð Þ
ηβ1;ζ

¼
exp − z⊤z

2σ2

 !
ζ ¼ 1

exp − 1
σ

ffiffiffiffiffiffiffiffiffiffiffi
2 z⊤z

p� �
ζ ¼ 2

;

8>>><
>>>: ðB:11Þ

with ηβ1,ζ corresponding to Eqs. (B.7) to (B.10). Note that Eq. (B.11)
gives the radial kernels by substituting r2 = z⊤z.

In the following two sections the Fourier transform W̃hom,ζ (q, k),

the total frequency content ∫
∞

0

dq W̃hom,ζ (q, k) and the cumulative

distribution ∫
sα

0

ds W̃hom,ζ (q, k) are listed for both kernels Eq. (B.1)

(i.e., Gaussian and Laplacian distribution) that are necessary to obtain
the two specific measures presented in Material and methods section,
where W̃hom,ζ (q, 1) = W̃hom,ζ = 1 (s) with q = ‖ s ‖2.

One-dimensional case

For the Gaussian distribution kernel Eq. (B.1) the Fourier transform
is obtained by

Ŵ hom;1 sð Þ ¼ 1ffiffiffiffiffiffi
2π

p ∫
∞

−∞
dz Whom;1 zð Þ exp −jszð Þ ðB:12Þ

¼ ηβ1;1ffiffiffiffiffiffi
2π

p ∫
∞

−∞
dz exp −γ1;1; z

2−jsz
� �

ðB:13Þ

¼ ηβ1;1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πγ1;1

q exp − s2

4γ1;1

 !
∫
∞þ js

2
ffiffiffiffiffiffi
γ1;1

p

−∞þ js
2
ffiffiffiffiffiffi
γ1;1

p
dy exp −y2

� �
;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ ffiffi

π
p

ðB:14Þ

with y ¼ 2γ1;1zþjs
2
ffiffiffiffiffiffi
γ1;1

p and dz ¼ ffiffiffiffiffiffiffiffiffi
γ1;1

p
dy;

W̃hom;1 sð Þ ¼ ηβ1;1 ν1;1 exp − s2

4γ1;1

 !
ðB:15Þ

¼ ν1;1 Whom;1 z ¼ s
2γ1;1

 !
ðB:16Þ

where ν1,1 = (2γ1,1)−1/2 scales the spectrum of the Gaussian kernel.
The spatial frequency content measure Eq. (17) is defined with re-

spect to all frequencies that are integrated in W̃hom,ζ (s), taking into
account the symmetry of W̃hom,ζ : W̃hom,ζ (−s) = W̃hom,ζ (+s)

∫
∞

0
ds W̃hom;1 sð Þ ¼ 1

2
∫
∞

−∞
dsW̃hom;1 sð Þ ðB:17Þ

¼ μβ1;1ν1;1

2
∫
∞

−∞
ds exp − s2

4γ1;1

 !
ðB:18Þ

¼ ηβ1;1ffiffiffi
2

p ∫
∞

−∞
dy exp −y2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ ffiffi
π

p

; ðB:19Þ



720 A. Spiegler, V. Jirsa / NeuroImage 83 (2013) 704–725
with s ¼ 2
ffiffiffiffiffiffiffiffiffi
γ1;1

p
y and ds ¼ 2

ffiffiffiffiffiffiffiffiffi
γ1;1

p
dy, so that

∫
∞

0
ds W̃hom;1 sð Þ ¼

ffiffiffi
π
2

r
ηβ1;1: ðB:20Þ

The cumulative distribution function for a maximum spatial fre-
quency of interest sα can be approximated by the Gauss error function
erf (λ) as follows

∫
sα

0

ds W̃
hom;1

sð Þ ¼
ffiffiffi
2

p
ηβ1;1 ∫

sα
2
ffiffiffiffiffiffi
γ1;1

p

0

dy exp −y2
� �

ðB:21Þ

¼
ffiffiffi
π
2

r
η β1;1 erf

sα
2

ffiffiffiffiffiffiffiffiffi
γ1;1

p
 !

; ðB:22Þ

with s ¼ 2
ffiffiffiffiffiffiffiffiffi
γ1;1

p
y and ds ¼ 2

ffiffiffiffiffiffiffiffiffi
γ1;1

p
dy.

In the case of the Laplacian distribution kernel Eq. (B.1) the Fourier
transform is obtained by

W̃hom;2 sð Þ ¼ ηβ1;2ffiffiffiffiffiffi
2π

p ∫
∞

−∞
dz exp −γ1;2 zj j−jsz

� �
ðB:23Þ

¼ ηβ1;2ffiffiffiffiffiffi
2π

p ∫
0

−∞
dz exp z γ1;2−js

� �� �
þ ηβ1;2ffiffiffiffiffiffi

2π
p ∫

∞

0
dz exp −z γ1;2 þ js

� �� � ðB:24Þ

¼ ηβ1;2ν1;2
1

γ2
1;2 þ s2

; ðB:25Þ

which is a Lorentzian function that is scaled by ν1;2 ¼ ffiffi
2
π

p
γ1;2.

The spatial frequency content measure Eq. (17) for the Laplacian
distribution kernel is defined by the following integrals

∫
sα

0
ds W̃hom;2 sð Þ ¼ ηβ1;2ν1;2 ∫

sα

0
ds

1
γ2
1;2 þ s2

ðB:26Þ

¼ ηβ1;2
ν1;2

γ1;2
tan−1 sα

γ1;2

 !
; ðB:27Þ

where for all spatial frequencies sα → +∞

∫
∞

0
ds W̃hom;2 sð Þ ¼ ηβ1;2

πν1;2

2γ1;2
: ðB:28Þ

k-Dimensional case

Taking advantage of the radial symmetry of the homogenous con-
nectivity kernels Eq. (B.3) the integrals of the k-dimensional Fourier
transform

W̃hom;ζ s; kð Þ ¼ 2π−k=2 ∫⋯
∞

∫
−∞

Whom;ζ zð Þ exp −js⊤z
� �

dz1 ⋯ dzk; ðB:29Þ

can be reduced to

W̃ hom;ζ q; kð Þ ¼ sk−2 1ð Þ
2πð Þk=2 ∫

∞

0
Whom;ζ rð Þ rk−1 dr

� ∫
π

0
exp −jrq cos ϕð Þð Þ sink−2 ϕð Þ dϕ ðB:30Þ

¼ q−
k−2
2 ∫

∞

0
dr Whom;ζ rð Þ rk=2 Jk−2

2
qrð Þ ðB:31Þ
using spherical coordinates (see Eq. (B.2)), where r = || z ||2 and q =
|| s ||2 (Schaback and Wu, 1996; Stein and Shakarchi, 2003; Stein and
Weiss, 1971). The surface of the k-dimensional sphere is
sk−2 rð Þ ¼ 2πk=2rk−1

Γ k=2ð Þ . Note that the integral in Eq. (B.31) that includes the
Bessel function of the first kind Jk−2

2
qrð Þ of order (k − 2) / 2 is the Hankel

transform. Applying the radial connectivity kernels Eq. (B.3) in Eq. (B.31)
with Eqs. (B.7) to (B.10) and using the Hankel transform (Poularikas,
2010, Tab. 9.2: Eqs. (9) and (10)), the radial Fourier spectrum is obtained
for both kernels

W̃hom;ζ q; kð Þ ¼ ηβ1;ζ ν1;ζ

exp − q2

4γ1;ζ

 !
ζ ¼ 1

1

γ2
1;ζ þ q2

� �kþ 1
2

ζ ¼ 2

;

8>>>>>>>><
>>>>>>>>:

ðB:32Þ

where the scaling ν1,ζ is

ν1;ζ ¼∀k
2γ1;ζ

� �−k=2
ζ ¼ 1

2k=2 γ1;ζffiffiffi
π

p Γ
kþ 1
2

� �
ζ ¼ 2

:

8>>>><
>>>>:

ðB:33Þ

Please note that the Fourier spectra W̃hom,ζ (q, k) Eq. (B.32) with the
scaling ν1,ζ , see Eq. (B.33), incorporates the one-dimensional case, that
is, k = 1with s = q (see Eqs. (B.15) and (B.25)). Eq. (B.32) is therefore
a closed-form expression of the Fourier transform of the connectivity
kernel Eq. (B.1) for k-dimensional space z. Moreover, in the case of the
Gaussian distribution kernel, that is, ζ = 1, the shape of the spectrum
is independent of the dimension k, simply the scaling ν1,1 depends on
k, whereas, in the case of the Laplacian distribution kernel, that is,
ζ = 2, the shape and the scaling of the spectrum change with the di-
mensionality to the power of kþ1

2 and to the power of k
2.

For the k-dimensional Gaussian distribution kernel both measures,
magnitudemeasureG1 (qdB , k) and spatial frequency contentmeasure
α1 (qα , k), presented in Material and methods section are completely
specified by the integral given in One-dimensional case section in
Appendix B for the one-dimensional case, that is, k = 1, since the
k-dependent scaling ν1,1 is canceled out (see Eqs. (13) and (17)).

For the k-dimensional Laplacian distribution kernel the dimension-
ality k simply scales the magnitude measure G2 (qdB , k) for the one-
dimensional case (i.e., k = 1) with the factor χ that is the power of
the spectrum χ ¼ kþ1

2 (see Eqs. (13) and (B.32)). Again, for both mea-
sures the k-dependent scaling ν1,2 is canceled out due to the ratio
of spectral components. For the spatial frequency content measure
α2 (qα , k) the cumulative of the spectrum of the k-dimensional
Laplacian distribution kernel W̃hom,2 (q, k) is required (see Eq. (17)).
The total area or the k-volumeunder the k-dimensional Laplaciandistri-
bution kernel W̃hom,2 (q, k) (Eq. (B.32)) is obtained, using Gradshteyn
and Ryzhik (2007), Eq. 3.241–411

1
ηβ1;2ν1;2

∫
∞

0
dq W̃hom;2 q; kð Þ ¼∀k 2k

γk
1;2

Γ2 k
2

� �
4Γ kð Þ : ðB:34Þ

Note that this is a closed-form expression for k-dimensional space
z since Eq. (B.34) incorporates the one-dimensional case, that is, k = 1
(Eq. (B.28)). The qα-bounded area or k-volume under the Laplacian
kernel Eq. (B.32) is obtained, using Gradshteyn and Ryzhik (2007),
Eq. 3.254-1

1
ηβ1;2ν1;2

∫
qα

0
dq W̃hom;2 q; kð Þ ¼∀k qα

γkþ1
1;2

2F1
1
2
;
kþ 1
2

;
3
2
;− q2α

γ2
1;2

 !
; ðB:35Þ
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where 2F1(·,·;·;·) denotes the Gaussian hypergeometric function. The
one-dimensional case, that is, k = 1, Eq. (B.27) is incorporated in

Eq. (B.35) because 2F1 1
2 ;1; 3

2 ;− q2α
γ1;2

� �
¼ γ1;2

qα
tan−1 qα

γ1;2

� �
, that is therefore

a closed-form expression for k dimensions. The effect of the dimen-
sionality k on the spatial frequency content measure α2 (qα , k) is
dependent on the hypergeometric function. Using Bronstejn and
Semendjajew (1996), Eq. 0.9.5–50. to solve the integral on the left-
hand side of Eq. (B.35) gives a closed-form as follows

kþ 1ð Þγ2
1;2 ∫

qα

0

dq

γ2
1;2 þ q2

� �kþ 3
2

¼

qα

γ2
1;2 þ q2α

� �kþ 1
2

þ k ∫
qα

0

dq

γ2
1;2 þ q2

� �kþ 1
2

ðB:36Þ

which is a series that starts either from the k = 1 area

∫
qα

0

dq

γ2
1;2 þ q2

� � ¼ qα
γ2
1;2

2F1
1
2
;1;

3
2
;− q2α

γ2
1;2

 !
ðB:37Þ

¼ 1
γ1;2

tan−1 qα
γ1;2

 !
ðB:38Þ

or from k = 2 volume

∫
qα

0

dq

γ2
1;2 þ q2

� �3
2
¼ qα

γ3
1;2

2F1
1
2
;
3
2
;
3
2
;− q2α

γ2
1;2

 !
ðB:39Þ

¼ qα

γ2
1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2
1;2 þ q2α

q ðB:40Þ

for either odd or even number of dimension k. Note that Eq. (B.38) is
equivalent to Eq. (B.27), simply unscaled. Compared to the closed-
form expression Eq. (B.35), all higher dimensional qα-bounded vol-
umes, that is, k > 2 can be calculated, using Eq. (B.36), simply know-
ing the solution for the first and second dimension, Eqs. (B.38) and
(B.40). In the case of Eq. (B.35) the hypergeometric function needs to
be specified separately for each dimension k. Substituting Eqs. (B.34)
and (B.35) or Eqs. (B.34) and (B.36) in Eq. (17), the spatial frequency
content measure α2 (qα , k) for the k-dimensional Laplacian distribu-
tion kernel Whom,2 (r) is obtained

α2 qα ; kð Þ ¼ 1− 1
2k−2

Γ kð Þ
Γ2 k

2ð Þ
qα
γ1;2

2F1
1
2
;
kþ 1
2

;
3
2
;− q2α

γ2
1;2

 !
ðB:41Þ

α2 qα ; kþ 2ð Þ ¼ α2 qα ; kð Þ−4
k

γ1;2

2

� �k Γ kð Þ
Γ2 k

2

� � qα

γ2
1;2 þ q2α

� �kþ1
2

ðB:42Þ

with

α2 qα ;1ð Þ ¼ 1− 2
π
tan−1 qα

γ1;2

 !
ðB:43Þ

α2 qα ;2ð Þ ¼ 1− qαffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2
1;2 þ q2α

q : ðB:44Þ

Compared to Eq. (B.41), the spatial frequency content measure
α2 (qα , k) can be calculated for all higher dimensional Laplacian
kernels k > 2 on the basis of the one-dimensional Eq. (B.43) and two-
dimensional kernel Eq. (B.44), using Eq. (B.42). Evaluating the
difference between α2 (qα , k) and α2 (qα , k + 1) in addition to
Eq. (B.42) we can conclude that the spatial frequency content measure
α2 (qα , k) for the Laplacian distribution kernel generally decreases
with increasing dimensionality α2 (qα , k) ≥ α2 (qα , k + 1) ∀qα , ∀k. Fi-
nally, for higher dimensional (k > 2) Laplacian distribution kernels
Whom,2 (r, k) the spatial frequency content measure α2 (qα , k) for
k = 1 and k = 2, respectively, can be used by correcting the dimen-
sionality with Eq. (B.42).

For correcting the k-volume effect on the spatial frequency content
measure α2 (qα , k) for the Laplacian distribution kernel Whom,2 (r, k)
we set the spatial cutoff frequency qc = qα to be the same for all
k-dimensional Euclidean spaces (note that γ1,2 is independent of k).
Solving Eq. (B.43) for qα

γ1;2
, and then plugging it in Eq. (B.44) gives

the corrected spatial frequency content measure α2 (qα , 2) for
dimension k = 2 as a function of the spatial frequency content mea-
sure α2 (qα , 1) in the k = 1-dimension case

α2 qα ;2ð Þ ¼ 2 sin2 π
4

α2 qα ;1ð Þ
� �

: ðB:45Þ

Using Eq. (B.42) with Eq. (B.45) gives the corrected spatial fre-
quency content measure α2 (qα , 3) for three-dimensional space,
k = 3 based on the spatial frequency content measure α2 (qα , 1)
in the k = 1-dimensional case

α2 qα ;3ð Þ ¼ α2 qα ;1ð Þ− 1
π
sin π α2 qα ;1ð Þð Þ: ðB:46Þ

In the scope of this work we are content with physical spaces up to
dimension k = 3. However, the series expansion Eq. (B.42) can be
used to correct the spatial frequency content measure α2 (qα , k) for
higher dimensional spaces, if necessary.

Appendix C. Bandwidth-limitation

Applying the bandwidth limiting transform, Eq. (39), to the Fourier
transformof the normalizedGaussian distribution function, Eq. (B.15),
we obtain

Ŵ hom;1 zð Þ ¼ 1ffiffiffiffiffiffi
2π

p ∫
ŝ

−ŝ
ds exp −σ2s2

2
þ jsz

 !
ðC:1Þ

¼ 1ffiffiffi
2

p
πσ

exp − z2

2σ2

 !
∫
ŷ

−ŷ

dy exp −y2
� �

; ðC:2Þ

where
ffiffiffi
2

p
σ y ¼ σ2s−jz,

ffiffiffi
2

p
dy ¼ σds, �ŷ

ffiffiffi
2

p
σ ¼ �ŝσ2−jz and ŝ is

the maximum spatial frequency. Please note that the expression be-
fore the integral in Eq. (C.2) is the Gaussian distribution function
Whom,1 (z) (see Eq. (6)), which allows to introduce the transfer func-
tion Khom,1(z) = Ŵhom,1 (z) / Whom,1 (z). We can write the integral
in Eq. (C.2) as follows

2Khom;1 zð Þ ¼ erf
jzþ σ2 ŝffiffiffi

2
p

σ

 !
− erf

jz−σ2 ŝffiffiffi
2

p
σ

 !
: ðC:3Þ

Writing the error function as a power series (see Oldham et al.,
2009, Chap. 40) we obtain Eq. (40)

Khom;1 zð Þ ¼ 1ffiffiffi
2

p
π

X∞
u¼0

−1ð Þu
2u 1þ 2uð Þu!

jz
σ
þ σ ŝ

� �1þ2u
− jz

σ
−σ ŝ

� �1þ2u� �
:

ðC:4Þ
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Applying the bandwidth limiting transform, Eq. (39), to the Fourier
transform of the normalized Laplacian distribution function, Eq. (B.25),
we can write

Ŵ hom;2 zð Þ ¼ 1ffiffiffi
8

p
π

∫
ŝ

−ŝ
ds1

exp js1z1ð Þffiffiffi
2

p
þ jσs1

þ ∫
ŝ

−ŝ
ds2

exp js2z2ð Þffiffiffi
2

p
−jσs2

 !
; ðC:5Þ

where s1 = −s2 = s and thus z2 = −z1 accounts for the absolute
value z in Eq. (B.1). Considering then the fact that z1 = |z | : ∀z ≥ 0
and − z2 = |z | : ∀z ≤ 0, Eq. (C.5) can be written as follows

Ŵ hom;2 zð Þ ¼ 1ffiffiffi
8

p
π

∫
ŝ

−ŝ

ds
exp js zj jð Þffiffiffi
2

p
þ jσ s

ðC:6Þ

¼ 1ffiffiffi
2

p
σ

exp −
ffiffiffi
2

p
zj j

σ

 !
j
2π

∫
ŷ

−ŷ

dy
y exp jy zj jð Þ ; ðC:7Þ

where �σ ŷ ¼
ffiffiffiffiffiffiffiffi
−2

p
� σ ŝ. Analogous to the calculation for the

Gaussian we can introduce the transfer function Khom,2 (z) =
Ŵhom,2 (z) /Whom,2 (z) since the exponential expression before the inte-
gral in Eq. (C.7) corresponds to the Laplacian distribution function
Whom,2 (z) (see Eq. (6)) so that we obtain

Khom;2 zð Þ ¼ j
2π

∫
ŷ

−ŷ

dy
y exp jy zj jð Þ : ðC:8Þ

Using Gradshteyn and Ryzhik (2007), Eq. 3.352–3; Eq. (C.8) result in

Khom;2 zð Þ ¼ j
2π

Ei jŷ zj jð Þ−Ei −jŷ zj jð Þð Þ; ðC:9Þ

where Ei(λ) = −∫
−λ

∞
dy exp(−y) / y is the exponential integral.

We then write Khom,2 (z) as a power series (see Oldham et al., 2009,

Chap. 37) and obtain Eq. (41)

Khom;2 zð Þ ¼ 1
π
tan−1 σ ŝffiffiffi

2
p

� �
þ j
2π

X∞
u¼1

zj ju
σuu!u

ffiffiffi
2

p
−jσ ŝ

� �u− ffiffiffi
2

p
þ jσ ŝ

� �u� �
:

ðC:10Þ

The magnitude measure Eq. (15) and the spatial frequency mea-
sure Eq. (18) can be applied to the transfer functions Khom,ζ (z) by
ŝ = sdB , σ = σdB and ŝ = sα , σ = σα , respectively.

Appendix D. Partial differential form

In this appendix the partial differential operator that describes the
homogeneous connectivity Whom(z) is derived. For that purpose, we
use the Green's function method and follow the study of the Laplacian
distribution for the homogeneous connectivity by Qubbaj and Jirsa
(2009) and Jirsa (2009).

Considering the inhomogeneous part (i.e., right-hand side) of the
delay-integro-differential equations, Eq. (4),

P d=dtð ÞΨ x; tð Þ ¼ Ξ x; tð Þ−Λ Ψ x; tð Þð Þ þ S VlocΨ x; tð Þð Þ þ VhomH x; tð Þ;
ðD:1Þ

we can write the homogeneous connectivity term H(x, t) as follows

H x; tð Þ ¼ ∫
Ω
dy Whom Δ x; yð Þð Þ S VlocΨ y; t−Δ x; yð Þ=c1ð Þð Þ ðD:2Þ

¼ ∫
Ω
dy∫

∞

−∞
dT I Δ x; yð Þ; t−Tð Þ S VlocΨ y; Tð Þð Þ; ðD:3Þ

where

I Δ x; yð Þ; t−Tð Þ ¼ Whom Δ x; yð Þð Þ δ T−t þ Δ x; yð Þ=c1ð Þ; ðD:4Þ
with the Dirac's delta function δ(z). The function I(Δ(x,y), t − T) can
then be formulated as

I x−y; t−Tð Þ ¼ 1
2π

∫
∞

−∞
ds∫

∞

−∞
dω Ĩ s;ωð Þ exp js x−yð Þ þ jω t−Tð Þð Þ; ðD:5Þ

assuming that Δ(x, y) =(x − y(2. Using the Fourier transforms,
Eq. (D.1) can be written as follows
1
2π

P d=dtð Þ ∫
∞

−∞
ds∫

∞

−∞
dω Ψ̃ s;ωð Þ exp jsxþ jωtð Þ

¼ 1
2π

∫
∞

−∞
ds∫

∞

−∞
dω Ξ̃ s;ωð Þ−Λ Ψ̃ s;ωð Þ

� �
þ S̃ s;ωð Þ

� �
� exp jsxþ jωtð Þ þ 1

2πð Þ2 ∫Ω
dy∫

∞

−∞
dT

�∫
∞

−∞
ds∫

∞

−∞
dω Ĩ s;ωð Þ exp js x−yð Þ þ jω t−Tð Þð Þ

� ∫
∞

−∞
ds′∫

∞

−∞
dω′ S̃ s′;ω′ð Þ exp js′yþ jω′Tð Þ;

ðD:6Þ

where the variablesΨ(x, t), Ξ̃(x, t) and the functions I ̃(x, t), S ̃(x, t) de-
note the Fourier transform. Applying the fact that (∂/∂t)u exp(jωt) =
(jω)u exp(jωt) to the differential operator P(d/dt) and rearranging
the terms, we obtain

∫
∞

−∞
ds ∫

∞

−∞
dω exp jsxþ jωtð ÞP jωð Þ Ψ̃ s;ωð Þ

¼ ∫
∞

−∞
ds ∫

∞

−∞
dω exp jsxþ jωtð Þ Ξ̃ s;ωð Þ−Λ Ψ̃ s;ωð Þ

� �
þ S̃ s;ωð Þ

� �
þ 1
2π

∫
∞

−∞
ds ∫

∞

−∞
dω exp jsxþ jωtð Þ Ĩ s;ωð Þ ∫

∞

−∞
ds′ ∫

∞

−∞
dω′ S̃ s′;ω′ð Þ

� ∫
Ω

dy exp jy s′−sð Þð Þ ∫
∞

−∞
dT exp jT ω′−ωð Þð Þ:

ðD:7Þ
Note that the last two integrals on the right-hand side of Eq. (D.7)

are equivalent to 2π δ(s′ − s) and 2π δ(ω′ − ω) for L → ∞. Hence,
Eq. (D.7) reduces to

∫
∞

−∞
ds∫

∞

−∞
dω exp jsxþ jωtð ÞP jωð Þ Ψ̃ s;ωð Þ

¼ ∫
∞

−∞
ds∫

∞

−∞
dω exp jsxþ jωtð Þ Ξ̃ s;ωð Þ−Λ Ψ̃ s;ωð Þ

� �
þ S̃ s;ωð Þ

� �
þ 2π ∫

∞

−∞
ds∫

∞

−∞
dω exp jsxþ jωtð Þ Ĩ s;ωð Þ S̃ s;ωð Þ

ðD:8Þor simply,

P jωð Þ Ψ̃ s;ωð Þ ¼ Ξ̃ s;ωð Þ−Λ Ψ̃ s;ωð Þ
� �

þ S̃ s;ωð Þ
þ2π Vhom Ĩ s;ωð Þ S̃ s;ωð Þ:

ðD:9Þ

We then write Ĩ(s,ω) as a power series in s andω, and wemultiply
both sides of Eq. (D.9) by exp(jsx + jωt) and integrating over s and ω
to obtain the partial differential form

P ∂=∂tð ÞΨ x; tð Þ ¼ Ξ x; tð Þ−Λ Ψ x; tð Þð Þ þ S VlocΨ x; tð Þð Þ
þVhomCζ ∂=∂x; ∂=∂tð Þ S VlocΨ x; tð Þð Þ; ðD:10Þ

where the partial differential operator Cζ (∂/∂x, ∂/∂t) = Ĩ(s, ω) due to
the fact that (js)v (jω)u exp(jsx + jωt) = (∂/∂x)v (∂/∂t)u exp(jsx +
jωt). Substituting the normalized homogeneous connectivity functions
Whom,ζ (z) as defined by Eq. (B.1) in Eq. (D.4), and then using the Fourier
transform to apply the relation Cζ (js, jω) = Ĩ(s, ω) we obtain

C1 λ1;λ2ð Þ ¼
X∞
v¼0

X2v
u¼0

a0 u; vð Þ a1 u; vð Þ þ a2 u; vð Þ λ1ð Þ λ2v−u
1 λu

2 ðD:11Þ

for the Gaussian distribution function Whom,1 (z) and

C2 λ1;λ2ð Þ ¼
X∞
v¼0

Xv
u¼0

a u; vð Þ λv−u
1 λu

2 ðD:12Þ
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for the Laplacian distribution function Whom,2 (z) with the coefficients

a u; vð Þ ¼ 1
4π

σvv! j2v þ j2u
� �

cu1u! v−uð Þ! ðD:13Þ

a0 u; vð Þ ¼ 1
4
ffiffiffiffiffiffi
2π

p σ2v

cu1u! 2v−uð Þ! ðD:14Þ

a1 u; vð Þ ¼
2vð Þ! 1þ j2u

� �
2vv!

ðD:15Þ

a2 u; vð Þ ¼
ffiffiffi
2
π

r 2vv!σ 1−j2u
� �

2v−uþ 1
: ðD:16Þ

The Fourier transform of the function I(z, τ) is given by

Ĩ s;ωð Þ ¼ 1
2π

∫
∞

−∞
dz∫

∞

−∞
dτ I z; τð Þ exp −jsz−jωτð Þ ðD:17Þ

and specified as follows

Ĩ 1 s;ωð Þ ¼ 1
4
ffiffiffiffiffiffi
2π

p exp −b1 s;ωð Þ2
� �

þ exp −b2 s;ωð Þ2
� �� �

þ j

2
ffiffiffiffiffiffi
2π

p F b1 s;ωð Þð Þ−F b2 s;ωð Þð Þð Þ

ðD:18Þ
for the Gaussian distribution function Whom,1 (z) as well as

Ĩ2 s;ωð Þ ¼ 1
2π

1þ jωσ=c1
1þ jωσ=c1ð Þ2 þ σsð Þ2 ðD:19Þ

for the Laplacian distribution function Whom,2 (z) where the coeffi-
cients b1 (s, ω) and b2 (s, ω) are defined by

bu s;ωð Þ ¼ σffiffiffi
2

p s− −1ð Þuω=c1
� � ðD:20Þ

and F(λ) is Dawson's integral (see Oldham et al., 2009, chap. 42)

F λð Þ ¼ exp −λ2
� �

∫
λ

0
dy exp y2

� �
ðD:21Þ

¼
ffiffiffi
π

p
2

λ
X∞
u¼0

−1ð Þuλ2u

Γ uþ 3=2ð Þ ðD:22Þ

with the gamma function Γ(λ) = ∫
0

∞
yλ − 1 exp(−y) dy. We them

write Ĩζ (s, ω), as a power series in s and ω which correspond to
Eqs. (D.11) and (D.12) for ζ = 1 and ζ = 2, respectively,

Ĩζ s;ωð Þ ¼ Cζ js; jωð Þ: ðD:23Þ

Appendix E. Fitting connectivity distribution functions

For finding the best-fitting parameters (a, b) we minimize the in-
tegral of square residuals between the Gaussian and the Laplacian.
The fitting parameters are the amplitude a and spreading b. The inte-
gral of square residuals are given as follows ẑ > 0

Y a; b ^; zð Þ ¼ ∫
ẑ

∞
dz Whom;1 σ zð Þ−a Whom;2 bσzð Þ
� �2 ðE:1Þ

¼ Y1 ẑð Þ þ Y12 a; b ^; zð Þ þ Y2 a; b ^; zð Þ; ðE:2Þ
with

Y1 ẑð Þ ¼ ∫
ẑ

∞
dz W2

hom;1 σ zð Þ ðE:3Þ

Y12 a; b ^; zð Þ ¼ −2a ∫
ẑ

∞
dz Whom;1 σzð ÞWhom;2 σ zð Þ ðE:4Þ

Y2 a; b ^; zð Þ ¼ −a2 ∫
ẑ

∞
dz W2

hom;2 σ zð Þ: ðE:5Þ

Please note that Y1 is independent of the fitting parameters a and
b. Hence, we simply need to consider Y12 and Y2. Using the definition
of the connectivity distributions Eq. (B.1) we can write Eq. (E.4) as
follows

Y12 a; b ^; zð Þ ¼ − affiffiffiffiffiffiffiffiffi
πσ2

p ∫
ẑ

∞
dz exp −z2=2−

ffiffiffi
2

p
bz

� �
ðE:6Þ

¼ −
ffiffiffi
2
π

r
a
σ2 exp b2

� �
∫
∞

ẑ=
ffiffi
2

p
þb

dy exp −y2
� �

; ðE:7Þ

where y ¼ z =
ffiffiffi
2

p
þ b, dy ¼ dz =

ffiffiffi
2

p
, y ẑð Þ ¼ ẑ =

ffiffiffi
2

p
þ b and y(∞) = ∞.

Writing the integral in Eq. (E.7) as complementary error function
we obtain

Y12 a; b ^; zð Þ ¼ − affiffiffi
2

p
σ2

exp b2
� �

erfc ẑ=
ffiffiffi
2

p
þ b

� �
: ðE:8Þ

Substituting the connectivity distributions Eq. (B.1) in Eq. (E.5) we
obtain

Y2 a; b ^; zð Þ ¼ a2

2σ2 ∫
ẑ

∞
dz exp −

ffiffiffi
8

p
bz

� �
: b > 0 ðE:9Þ

¼ a2ffiffiffiffiffiffi
32

p
σ2b

exp −
ffiffiffi
8

p
bẑ

� �
: ðE:10Þ

In order to find the global minimum for b we substitute a = b in
Eqs. (E.8) and (E.10). This has the effect that a change of the standard
deviation σ by a is compensated by fixing the area under the Laplacian
to unity. The parameter a describes then the ratio of the standard devia-
tion of the Laplacian to the Gaussian distribution a = σζ = 2 / σζ = 1.We
then calculate the derivative of Y(a, ẑ), Eq. (E.2) with respect to b

d
da

Y a ^; zð Þ ¼ d
da

Y12 a ^; zð Þ þ d
da

Y2 a ^; zð Þ ðE:11Þ

¼ 1ffiffiffiffiffiffi
32

p
σ2

h
−4 2a2 þ 1
� �

exp a2
� �

erfc aþ z=
ffiffiffi
2

p� �
þ 1−

ffiffiffi
8

p
az

� �
exp −

ffiffiffi
8

p
az

� �
þ8a exp −z

ffiffiffi
8

p
aþ z

� �
=2

� �
=
ffiffiffi
π

p i
:

ðE:12Þ

Both connectivity functions are fitting for a given z ̂ if Eq. (E.12) has
at least a zero at which the derivative (with respect to a) is positive.
The derivative of Eq. (E.12) is not shown here. Using the Nelder–Mead
simplexmethod (Nelder andMead, 1965)we identified the globalmin-
imum a = 0.703 for ẑ = 0. Note that for ẑ such criteria as the magni-
tude criteria described in Magnitude measure section can be used.
Applying the−3 dB-criterion either to the Gaussian or to the Laplacian
distribution we identified a global minimum a = 0.79 or a = 0.81.
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