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a  b  s  t  r  a  c  t

Variations  of  excitatory  and  inhibitory  conductances  determine  the  membrane  potential  (Vm)  activity
of neurons,  as  well  as  their  spike  responses,  and are  thus  of  primary  importance.  Methods  to  estimate
these  conductances  require  clamping  the  cell at  several  different  levels  of Vm, thus  making  it impossible

to  estimate  conductances  from  “single  trial”  Vm recordings.  We  present  here  a  new  method  that  allows
extracting  estimates  of  the  full  time  course  of excitatory  and inhibitory  conductances  from  single-trial
Vm recordings.  This method  is  based  on  oversampling  of the  Vm. We  test  the  method  numerically  using
models  of  increasing  complexity.  Finally,  the  method  is  evaluated  using  controlled  conductance  injection
in cortical  neurons  in  vitro  using  the  dynamic-clamp  technique.  This  conductance  extraction  method
should  be very  useful  for future  in  vivo  applications.
. Introduction

Neocortical neurons recorded intracellularly in vivo are sub-
ected to an intense fluctuating synaptic bombardment (Azouz and
ray, 1999; Paré et al., 1998) suggesting that networks operate in a

high-conductance state” (reviewed in Destexhe et al., 2003). This
ynaptic conductance noise instantaneously shapes the membrane
otential (Vm) and the integrative properties of the neurons and
ontains information about the activity of the network. In order
o access this information from intracellular recordings, several

ethods have been proposed to measure conductances from the
m activity of neurons. One family of methods consists of build-

ng current–voltage relations from repeated trials in voltage clamp
r current clamp, and estimating conductances from the slope of
hese relationships (Borg-Graham et al., 1998; Wehr and Zador,
003; Wilent and Contreras, 2005; reviewed in Monier et al., 2008).
nother approach is statistical, and consists of estimating the statis-

ics of conductances (such as their mean value and variance) from
he Vm distribution (Rudolph et al., 2004). This method was  success-
ully applied to estimate excitatory and inhibitory conductances
n awake and naturally sleeping animals (Rudolph et al., 2007).
owever, all of these methods require analyzing the membrane
otential at several levels (obtained by constant repetitive current
njection in either voltage- or current clamp) and often relies on
he averaging of several trials and thus cannot be used to estimate
nstantaneous variations of conductances.

∗ Corresponding author. Tel.: +33 1 69 82 34 35; fax: +33 1 69 82 34 35.
E-mail address: Destexhe@unic.cnrs-gif.fr (A. Destexhe).
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More recently, a new approach was proposed to estimate con-
ductances from single trials of Vm activity (Pospischil et al., 2009a).
This method consisted of a maximum likelihood estimation of the
“most likely” conductance values underlying a given voltage trace.
This method could successfully estimate the mean and variance
of excitatory and inhibitory synaptic conductances from single Vm

traces. However, one drawback is that only estimates of the statis-
tics of conductances are possible, but not the full time course of the
conductances. Another drawback is that Vm recordings of sufficient
duration and stationarity must be used to accumulate sufficient
statistics for the method to provide reliable estimates (reviewed in
Piwkowska et al., 2008; Pospischil et al., 2009b).

In the present paper, we  propose a method to estimate the full
time course of conductances from single Vm traces. The principle of
our method is that if the Vm is oversampled compared to the con-
ductances, then the supplementary information provided by this
oversampling enables one to extract several variables from a single
measurement. We  outline the method theoretically, test it numer-
ically in models of increasing complexity, and finally in cortical
neurons in vitro.

2. Methods

2.1. General formulation
We first formulate the problem in a general form. The electrical
circuit equivalent to the membrane is shown in Fig. 1A. This circuit
is equivalent to a simpler circuit shown in Fig. 1B, where all con-
ductances have been lumped into a single equivalent conductance

dx.doi.org/10.1016/j.jneumeth.2011.09.010
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:Destexhe@unic.cnrs-gif.fr
dx.doi.org/10.1016/j.jneumeth.2011.09.010
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Fig. 1. Equivalent electrical circuits of the conductance-based models considered
where the inside of the cell is at the bottom and the outside at the top. (A) Equivalent
circuit for a single-compartment neuron with two  time-varying synaptic conduc-
tances, excitatory ge(t) and inhibitory gi(t), with their respective reversal potentials
Ee and Ei . C is the membrane capacitance and gL , EL are the passive conductance and
reversal potential, respectively. (B) Equivalent circuit with all conductances lumped
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n  a single equivalent conductance geq and reversal potential Eeq , both of which are
ime-dependent (see text).

eq, with its time-dependent reversal potential Eeq. The latter circuit
orresponds to the following equation:

V̇ = geq(t)(Eeq(t) − V), (1)

here geq = − Cg˛ and Eeq = − gˇ/g˛, with g˛ = − (1/C)(ge + gi + gL) and

ˇ = (1/C)(geEe + giEi + gLEL). |g˛| is the inverse of the instantaneous
embrane time constant and Eeq is the instantaneous reversal

otential. Eeq is negative when g˛ and gˇ are of the same sign for
ubthreshold membrane potentials.

In its simplest form, Eq. (1) can be written as:

˙
 = g˛(t)V + gˇ(t), (2)

here we call g˛(t) and gˇ(t) “preconductances”, given by:

g˛(t)
gˇ(t)

)
= 1

C

(
−1 −1
Ee Ei

)  (
ge(t)
gi(t)

)
+ 1

C

(
−gL

gLEL

)
. (3)

ny complex membrane circuit with an arbitrarily large number
f conductances can be formulated under the form of Eq. (2).  We
ill consider this form in the next sections. In the case of a mem-

rane equation with two conductances, such as Fig. 1A, estimating
he preconductances is equivalent to estimating the two  synaptic
onductances, according to the following change of variables:
ge(t)
gi(t)

)
= 1

Ee − Ei

(
Ei 1

−Ee −1

)  (
Cg˛ − gL

Cgˇ − gLEL

)
, (4)

here Ee − Ei is assumed to be different from zero.
In the following, we will focus on extracting the precon-

uctances g˛ and gˇ, from the measurement of V, which is a
ell-defined mathematical problem.
nce Methods 210 (2012) 3– 14

2.2. Idea of the oversampling method

To extract conductances from the Vm activity, we assume that
the subthreshold variations of the Vm are represented by Eqs. (2)
and (3).

Supposing that V is known as a time series of N values

V0, V1, V2, . . . , VN−1,

we can rewrite this equation in discretized form:

1
�t

[Vj+1 − Vj] = g˛,jVj + gˇ,j, (5)

where Vj = V(j�t), g˛,j = g˛(j�t), gˇ,j = gˇ(j�t), j = 0, . . .,  N − 1.
This constitutes a set of N algebraic equations for t = 0, . . .,

(N − 1)�t.  The problem is that this set has 2N unknowns and is
therefore not solvable in general.

To solve these equations, we make the following “oversampling”
approximation: we  suppose that g˛ and gˇ can be represented with
half the sampling frequency as that of V, which corresponds to the
time series of N/2 values:

g˛,0, g˛,2, g˛,4, . . . , g˛,N−2,

and similarly for gˇ. We  further assume that g˛ and gˇ are constant
within each interval 2�t, which is written as:

g˛,2k = g˛,2k−1, (6)

and similarly for gˇ, where k is a positive integer (k = 0, . . .,
[(N/2) − 1]).

Thus, we can rewrite the discretized system (Eq. (5)) as:⎧⎨
⎩

1
�t

[V2k+1 − V2k] = g˛,2kV2k + gˇ,2k

1
�t

[V2k+2 − V2k+1] = g˛,2kV2k+1 + gˇ,2k

. (7)

Since all values of V(t) are known, the above set constitutes a
set of N/2 pairs of algebraic equations with 2 unknowns, g˛,2k and
gˇ,2k, and is therefore solvable. In the present example, we have
calculated the conductances ge and gi using Eq. (4) with parameters
Ee = 0 mV,  Ei = − 80 mV,  EL = − 80 mV  and gL = 10−4 S/cm2.

Although in principle this procedure may  work, we  can see from
Fig. 2 that the extracted conductances can suffer from very large
errors, even including negative values which are impossible phys-
ically. What are the origins of such errors? Can we  overcome them
and obtain a method to reliably estimate conductances? This is the
object of the next sections.

2.3. Extraction of the conductances

We start from the general solution of Eq. (2),  which is given by:

V(t) = e

∫ t

to
g˛(�)d�

[
V(to) +

∫ t

to

gˇ(�)e
−
∫ �

to
g˛(�′)d�′

d�

]
. (8)

We can always approximate a continuous function f(t) of class
C01 by a staircase function described by

f T(t) =
N∑

n=1

�n(t)f (n�nt′),

where �n(t) = H(t − n�t ′)[1 − H(t − (n + 1)�t ′)] is a window func-

tion defined by two Heaviside functions H. We can do such an

1 Class C0 is the ensemble of continuous functions.
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ig. 2. Failure to extract conductances using a two-times oversampling of the V
onductances extracted from the Vm activity using Eq. (7).  (D) Overlay of (A and C).

pproximation for the preconductances if they are of class C0, which
ives:

g˛(t) =
N∑

n=1

�n(t)g˛(n�t′)

gˇ(t) =
N∑

n=1

�n(t)gˇ(n�t′)
, (9)

here �t′ is a fixed time interval. By substituting expressions (9) in
he general solution (8) of Eq. (2),  we obtain the following approx-
mation for V:

(t + �t′) = eg˛(t+�t′)�t′V(t) + gˇ(t + �t′)
g˛(t + �t′) [ eg˛(t+�t′)�t′ − 1],  (10)

This solution2 is equivalent to considering that the preconduc-
ances g˛ and gˇ are constant inside the interval �t′, which is an
xcellent approximation when this interval is sufficiently small
ecause the voltage error is of order 2 when the preconductance
rror is of order 1 (see Appendix C). If the voltage is sampled at a
wice higher temporal resolution (or more) compared to the pre-
onductances, then to insure that the solution of Eq. (2) corresponds
o the measured voltage, the following condition must be satisfied:

g˛(t+2�t)�t
gˇ(t + 2�t)

g˛(t+2�t)�t

⎫⎬
V(t + �t) = e V(t) +
g˛(t + 2�t)

[e − 1]

V(t  + 2�t) = eg˛(t+2�t)�tV(t + �t) + gˇ(t + 2�t)

g˛(t + 2�t)
[eg˛(t+2�t)�t − 1] ⎭ , (11)

2 This is obtained under the assumption that the numerical solution of V between
wo  adjacent samples satisfies the first-order differential equation with constant
oefficients ((dV/dt) = g˛(to + �t ′)V + gˇ(to + �t ′)), the initial condition V(to) and the
symptotic condition V(∞) = − (gˇ(to + �t ′))/(g˛(to + �t ′)).
 Conductances injected in a passive neuron model. (B) Resulting Vm activity. (C)

where �t  = �t ′/2 is the time interval between two  voltage samples.
It follows that the preconductances are given by:

⎧⎪⎨
⎪⎩

g˛(t + 2�t) = 1
�t

ln
[

V(t + 2�t) − V(t + �t)
V(t + �t) − V(t)

]

gˇ(t + 2�t) = V(t + 2�t) − V(t)ea(t+2�t)�t

ea(t+2�t)�t − 1

⎫⎪⎬
⎪⎭ , (12)

when (V(t + 2�t) − V(t + �t))/(V(t + �t)  − V(t)) > 0. However, this
algorithm cannot determine the values of g˛ and gˇ when we  have

(i) V(t + �t) − V(t) = 0

(ii)
V(t + 2�t) − V(t + �t)

V(t + �t) − V(t)
< 0

. (13)

In the following, we will denote the points (t, f(t)) which satisfy
Eq. (13, i or ii) by “singular points” of the extraction algorithm.

Note that the algorithm formulated by Eq. (12) does not guar-
antee the uniqueness of the solution. Indeed, considering Eq. (2) as
an algebraic equation, the knowledge of V does not allow in prin-
ciple to extract the preconductances g˛ and gˇ, because there is an
infinity of couples (g˛, gˇ) which can give the same value of V. This
is expressed by

dV

gˇ(t) =

dt
− g˛(t)V, (14)

where for an arbitrary function g˛(t), we can calculate a function
gˇ(t) which varies according to the choice of g˛(t), while conserv-
ing the same V(t). However, this point of view is only valid if
we assume that the differential equation (2) is equivalent to an
algebraic equation, which is in general not true. For example, the
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ontinuity conditions3 on V have the consequence that g˛ and gˇ

an be considered as constant if the interval �t  is sufficiently small,
n which case we can write:

ˇ = dV

dt
− g˛V, (15)

here gˇ and g˛ are constant. Taking the time derivative of the
atter expression, we obtain

˛ = V̈

V̇
= d

dt
ln V̇ . (16)

The solution of these two last equations shows that we necessar-
ly have a unique couple of possible values of (g˛, gˇ) when V̇ /=  0.
t follows that we have a bi-univocal correspondence between the
unction V(t) and the functions (g˛(t), gˇ(t)) because V̇ /= 0 almost
verywhere (except in some particular cases with constant pre-
onductances).

In general, one can show that it is always possible to deduce from
q. (2) an infinite number of equations by applying the time deriva-
ive operator an infinite number of times. This is the case when
e approximate the preconductances by a polynomial series.4 The

nsemble of equations obtained define an infinite-order matrix,
hich inversion should allow to build a bi-univocal correspondence

etween V(t) and (g˛(t), gˇ(t)) with respect to time (see Appendix
). Approximating these functions by polynomial series, leads to

he operator Êex

g˛

gˇ

ġ˛

ġˇ
...

⎞
⎟⎟⎟⎟⎠ = Êex

⎛
⎜⎜⎜⎜⎝

V̇
V̈
�V
¨V̈
...

⎞
⎟⎟⎟⎟⎠ ,

hich enables extracting the preconductances from the sole
nowledge of V(t), as shown in Appendix A. Moreover, in this
ppendix, we show that this algorithm is a first-order finite
ifference approximation of the following expression:

g˛

gˇ

)
= 1

V̇

(
0 1
V̇ −V

)  (
V̇
V̈

)
, (17)

hich is itself a first-order approximation of the extrac-
ion operator Êex for the preconductances (see Eqs. (31) and
32) in Appendix A).

Thus, in this article, we use the first-order approximation of the
xtraction operator to extract the values of g˛ and gˇ. In the next
ection, we will see how to suppress the numerous singular points
enerated by this extraction procedure.

.4. Suppression of singular points

To remove the first two types of singular points (see Eq. (13);
ee Appendix A), we need one procedure to identify the singular
oint and another procedure to suppress them. In addition, the dis-
retization of the system generates a third type of singular point

see Appendix B), and a fourth type of singularity can be gener-
ted by abrupt transitions in the conductances. We  will successively
xamine these different singular point below.

3 According to Eq. (2),  V is necessarily continuous because V must be time deriv-
ble.
4 Note that by virtue of the Weierstrass theorem, it is always possible to approxi-
ate by a polynomial suite any function which is bounded, continuous and defined

ver  a compact interval.
nce Methods 210 (2012) 3– 14

2.4.1. Algorithm to identify singular points
The first type of singular point (Eq. (13), i) is easily identi-

fied because it occurs when the derivative of the voltage is zero
(or quasi-zero), and the logarithmic time derivative of the pre-
conductances becomes very large because we have (d/dt) ln(g˛) =
(d/dt) ln(d/dt) ln V̇) (see Eq. (16)). Thus, this can be identified by
calculating the logarithmic derivative of g˛ and gˇ and define two
thresholds �˛ and �ˇ according to:

⎧⎪⎨
⎪⎩

�g˛

g˛
> �˛

�gˇ

gˇ
> �ˇ

. (18)

In this article, the thresholds �˛ and �ˇ will be fixed empir-
ically. The numerical simulations and biological experiments
(see Section 3) indicate that reasonable values of those parameters
are around 0.1. If these parameters are too large, singular points
will be missed, whereas if they are too small the singular points
will tend to occur at every point. Note that a consistency check can
be used to verify that the values of �˛ and �ˇ are adequate, namely
to solve Eq. (2) with the extracted preconductances and compare
this solution to the original function V(t).

The second type of singular point (Eq. (13), ii) arises from the
fact that the argument of the logarithm is negative,

V(t + 2�t) − V(t + �t)
V(t + �t) − V(t)

< 0,

in the finite difference approximation of g˛ = (d/dt) ln(V̇) and
gˇ = V̇  − ((d/dt) ln V̇)V . This case can be recognized either by
directly testing the value of the argument, or by the fact that the
value of g˛ becomes complex. We  have considered the second
option because it allows us to treat the values of g˛ and gˇ identi-
cally as for the first type of singular point above.

In principle, recognizing these two types of singular points
should be sufficient in a real biological signal, because the pre-
conductances are necessarily analog and continuous in time (for
example real synaptic inputs in a neuron). However, for digital sig-
nals, a third type of singular point appears (see Section 3.5 and
Appendix B). To understand this, we will use a representation of
preconductances using a continuous staircase representation (Eq.
(9)) of the sequence of values resulting from the digitization.

Each function �n in Eq. (9) will generate a Dirac delta function in
the second derivative of the voltage (see Eq. (2)). From the relations
V̈ = g˛V̇ and V̇ = g˛V + gˇ one can easily see that each significant
numeric variation of ge and gi will determine a singularity in the
extraction of the preconductances g˛ and gˇ. Thus, extracting dig-
itized conductances will cause numerous singular points of this
third type, as indeed seen in Fig. 2. To solve this problem, the sam-
pling frequency of the voltage must be at least 4 = 3 + 1 times larger
than that of the conductances, because 1 point is needed to sup-
press the third-type of singular point, and more points are needed
to extract the preconductances values. A minimum of 3 voltage
points (V(t), V(t + �t), V(t + 2�t)) (see Eq. (12)) with no singularity
is needed to correctly apply the extraction algorithm. Fortunately,
one can identify Type 3 singularities using the same algorithm as
for Type 1 and Type 2.

Finally, the fourth type of singularity occurs when there are real
abrupt transitions in the conductances. For example, the sudden
opening of ion channels can generate very sharp transitions, the
rise time of some synaptic currents can be very fast, etc. Such a situ-

ation will correspond mathematically to have additional Heaviside
functions due to the abrupt variations of conductance, in addition
to the Heaviside functions due to the digitization. This additional
Heaviside function will be responsible for a 4th type of singularity.
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Fig. 3. Scheme to illustrate the suppression of singular points in the extraction pro-
cedure. The algorithm to extract the digitized preconductances can generates four
types of singularities (see text). The figure illustrates the case where the sampling
frequency of V (A) is twice that of preconductances and conductances (B). The extrac-
tion proceeds by evaluating the conductances from successive couple of points of
V  (1 and 2 in A), until a singularity occurs (couple 3 in A; dashed circle in B). Once
such singularity is identified, the corresponding conductance points are duplicated
from the values extracted in the preceding step (C, arrow). Next, the extraction pro-
ceeds with the next couple of points (4 in A and D). Note that the same procedure
c
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an  be applied in the case the conductance is oversampled with a factor larger than
wo.  The average over some time window preceding the singularity can also be used
nstead of duplicating the values (see text).

ere again, they can be identified using the same procedure as for
he other types of singularities.

.4.2. Algorithm to suppress singular points
As illustrated in Fig. 3, the singular points are suppressed by

uplicating the extracted values obtained at the preceding step.
ote that instead of duplicating the preceding values, it is also
ossible to use an average over some time window. The latter pro-
edure will be used to extract conductances from experimental
ata (see Section 3.5) because it is more robust to the presence
f noise in the recording. In such a case, a window of 20 succes-
ive points (immediately preceding the singularity) was found to
rovide robust extraction results (see below).
.5. Biological experiments

All research procedures concerning the experimental ani-
als and their care adhered to the guidelines of the American
nce Methods 210 (2012) 3– 14 7

Neuroscience Association, to the European Council Directive
86/609/EEC and to European Treaties series no. 123, and were
also approved by the local ethics committee “Ile-de-France Sud”
(certificate no. 05-019).

In vitro experiments were performed on 300 �m thick horizon-
tal slices from somatosensory cortex of P15 Swiss mice. Animals
were anesthetized with 3% isoflurane, decapitated, and the brains
rapidly removed and immersed in a ice-cold slicing solution con-
taining (in mM)  234 sucrose, 2.5 KCl, 10 MgSO4, 1.25 NaHPO4,
0.5 CaCl2, 26 NaHCO3, and 10 dextrose and equilibrated with
95%O2/5%CO2 to a final pH of 7.4. The slices were incubated ini-
tially at 32 ◦C for 1 h and then at room temperature in artificial
cerebrospinal fluid (ACSF) containing (in mM):  126 NaCl, 2.5 KCl,
2 MgCl2, 1.25 NaHPO4, 2 CaCl2, 26 NaHCO3, and 10 dextrose equi-
librated with 95%O2/5%CO2 to a final pH of 7.4. Slices were then
transferred to a recording chamber and maintained at 32 ◦C with
a continuous ACSF bath perfusion. Experiments were performed
in the presence of the ionotropic glutamate receptor blockers
dl-(−)-2-amino-5-phosphopentanoic acid (dl-AP5, 100 �M)  and
6,7-dinitroquinoxaline-2,3-dione (DNQX, 10 �M),  and the GABAA
receptor antagonist gabazine (10 �M).  All drugs were obtained
from Tocris Cookson (Ellisville, MO).

We performed patch-clamp whole-cell recordings from visually
identified cells in layer V of sensorimotor neocortex using infrared
video-microscopy (Axioskop Microscope, Carl Zeiss, Germany).
Electrodes (tip resistance 2–3 M�)  were filled with an intracellular
solution containing (in mM): 135 Kgluconate, 10 HEPES, 1 EGTA, 5
MgCl2, 0.1 CaCl2, 4 Na2-ATP, pH 7.3, 290 mOsm.  A liquid junction
potential of +10 mV was  systematically corrected before recording.
A Multiclamp 700B amplifier (Axon Instruments) was  used for Vm

recording and current injection in the current clamp mode via a
NI-PCIe-6251 acquisition board (Texas Instruments) coupled to
both a home-made software (G. Sadoc, ELPHY, CNRS-UNIC) and
a real time version (Sadoc et al., 2009) of the NEURON simulator
(Hines and Carnevale, 1997) for dynamic clamp. RT-NEURON ran
in the INtime kernel (Tenasys) combining hard real-time control
with standard Windows operating systems without requiring
additional hardware.

The dynamic-clamp technique (Robinson and Kawai, 1993;
Sharp et al., 1993) was  used to inject computer-generated con-
ductances in cortical neurons in vitro at a sampling frequency
of 5000 Hz. Dynamic-clamp experiments were run using the RT-
NEURON environment as described previously (Sadoc et al., 2009).
In these experiments, the injected current I(t) was determined
from the conductances ge(t) and gi(t) as well as from the differ-
ence between the recorded membrane voltage V and the respective
reversal potentials:

I(t) = −ge(t)(V − Ee) − gi(t)(V − Ei). (19)

The passive parameters of the recorded cells, C, gL and EL were
estimated as follows. Assuming that the cell is equivalent to a
single-compartment, the injected current equals

I(t) = C
dV

dt
+ gL(V − EL). (20)

To estimate passive parameters, one first computes the
impedance |(Vω)/(I∗ω)|, where Vω and I∗ω are the Fourier transforms
of V and I* = I + k, respectively. We took advantage of the fact that the
slope of |(Vω)/(I∗ω)| is zero at low frequencies when k = gLEL, because
we have∣∣Vω

∣∣ 1
|Zω| = ∣
I∗ω

∣ =
gL + iωC

,

if k = gLEL. Thus, one can fit |Zω| against the experimental data
because in dynamic-clamp experiments, one has access to both I(t)
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ġe = −gi − z
ġi = ge + agi

ż = b + z(ge − c)
, (25)

where Ee = 0 mV,  Ei = − 75 mV,  EL = − 80 mV,  gl = 1.56 nS and
ig. 4. Extraction of constant conductances. (A) Values of V as a function of time w
red,  dashed). These conductances are perfectly superimposed. Note that there is
L = 28 nS and C = 0.35 nF. (For interpretation of the references to color in this figure

nd V(t) to estimate the parameters gL and C. The parameter EL is
iven by k/gL and is the resting membrane potential of the cell.

. Results

We start by examining the extraction of conductances from the
m activity using cases of increasing complexity, using numerical
imulations, and then we test the extraction method in real neurons
sing dynamic-clamp experiments.

.1. Simplest case: constant conductances

The simplest example is when there is no time dependency in
he conductances, in which case there is no singularity. As shown
n Fig. 4, the conductances are perfectly well extracted in this case.
ote that if Eq. (2) is considered as an algebraic equation may  give

he false impression that there is an infinity of combinations of (g˛,

ˇ) which gives the same V. However, as we showed in Section 2
see also Appendix A), there is an extraction operator which guar-
ntees the uniqueness of the solution (g˛, gˇ).

Note that this example is very different from Fig. 2, in which the
onductances were quasi-constant. In that case, even small varia-
ions of the conductances can cause singular points, as we  will also
ee below.

.2. Smooth periodic variations of conductances

In this section, we use simple periodic functions (sine and
osine) to illustrate the singular points with digitized conductances.

e use the following periodic functions:

Ge(t) = ga
e

[
cos

(
t

100

)
+

(
7
6

)]

Gi(t) = ga
i

[
sin

(
t

100

)
+

(
9
8

)] (21)

ampled at a frequency of fe = 2.5 kHz and by using ga
e = 6 nS and

a
i

= 8 nS. Using the continuous staircase expression for the con-
uctances gives:

ge(t) =
N∑

n=1

ga
e �n(t)

[
cos

(
n�

100

)
+ 7

6

]
, (22)
gi(t) =
N∑

i=1

ga
i �n(t)

[
sin

(
n�

100

)
+ 9

8

]

here � = 1/fe and �n(t) = H(t − n�)[1 − H(t − (n + 1)�)].
e and gi are constant. (B) Original conductances (blue) and extracted conductances
ngularity in this particular case. Parameters: Ee = 0 mV, Ei = − 70 mV,  EL = − 80 mV,
d, the reader is referred to the web version of this article.)

Applying Eq. (3),  we  obtain:

g˛(t) = − 1
C

N∑
n=1

�n(t)

[
ga

e

[
cos

(
n�

100

)
+ 7

6

]
+ ga

i

[
sin

(
n�

100

)
+ 9

8

]
+ gL

]

gˇ(t) = 1
C

N∑
n=1

�n(t)

[
Eig

a
i

[
sin

(
n�

100

)
+ 1.16

]
+ gLEL

] .(23)

Here, gL = 28 nS, EL = − 80 mV,  Ee = 0 mV,  Ei = − 70 mV,  C = 0.35 nF and
I(t) = 0.

To calculate the solution of Eq. (2),  we  used a sampling frequency
of 10 kHz for V, which is four times larger than that of conductances.
Using Eq. (10), we obtain the following recurrence relation:

V(t + �′)  = eg˛(t+�′)�′V(t) + gˇ(t + �t′)
g˛(t + �′) [eg˛(t+�′)�′ − 1],  (24)

where �′ is 4 times smaller than �.
This numerical solution of equation V̇  = g˛V + gˇ is such that

˙g˛ = 0 and ˙gˇ = 0 when there is no singular point of Type 3. In such
a case, we  can apply the extraction algorithm presented in Section
2 (see Eq. (12)).

The results presented in Fig. 5 show that the extraction gives
values consistent with the theory (see Appendix B). The algorithm
works very well in this case, when singular points are removed.

3.3. Smooth aperiodic conductance variations

In this section, we  consider a more complex model consisting
of smooth conductance variations following temporally irregular
and aperiodic dynamics. We  chose the Rossler (1976) model, which
consists of three coupled first-order differential equations display-
ing deterministic chaos. The conductances ge and gi are given by:
C = 0.346 nF. The model is considered in the parameter region
displaying deterministic chaos (a = 0.38, b = 0.30, c = 4.5).

As shown in Fig. 6, the extraction procedure gives excellent
results in this case when singularities are removed.
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Fig. 5. Extraction of smooth periodic conductances. (A) Membrane potential generated by periodic conductances given by ga
e (cos(t/100) + (7/6)) and ga

i
(sin((t/100) + (9/8))

where  ga
e = 6 nS and ga

i
= 8 nS. Other model parameters were Ee = 0 mV,  Ei = − 70 mV,  EL = − 80 mV,  gL = 28 nS and C = 0.35 nF. (B) Results of the extraction procedure. The

theoretical conductances injected in the model are shown in blue, and the conductances extracted from the Vm are shown with dashed red lines, after having removed the
singular  points (�˛ = 0.1 and �ˇ = 0.1). (C and D) Results of the extraction when singular points are not removed. Insets: details at higher resolution. Note that in between
singularities (sharp deflections in red), the extraction algorithm gives correct conductance estimates, except for values around 0.06 s. (For interpretation of the references to
color  in this figure legend, the reader is referred to the web  version of this article.)
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this  figure legend, the reader is referred to the web  version of this article.)
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Fig. 7. Extraction of stochastic synaptic conductances. (A) Membrane potential V generated by stochastic excitatory and inhibitory conductances (sampling of V was 4 times
higher  than that of conductances). Model parameters: Ee = 0 mV, Ei = − 70 mV,  EL = − 80 mV,  gL = 28 nS and C = 0.35 nF. (B) Results of the extraction procedure, including the
removal of Type 1, 2, 3, 4 singularities with �˛ = 0.1 and � = 0.1. The singularities that appear are due to abrupt variations of conductances. (C and D) Extracted conductances
a lution
c  to col
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fter  removal of singularities (the insets show details of at higher temporal reso
onductances are drawn as dashed red curves. (For interpretation of the references

.4. Stochastic conductance variations

In this section, we consider the most complex case of synaptic
onductance varying stochastically. In this example, the conduc-
ances are given by a shot-noise model, and consist of:

ġe =
∑

i

H(t − ti) exp
[−(t − ti)

�e

]

ġi =
∑

j

H(t − tj) exp

[
−(t − tj)

�i

] , (26)

here ti and tj are the times of presynaptic spikes for excitatory
nd inhibitory synapses; these times are distributed randomly in
ime, according to Poisson processes.

The extraction procedure in this case is shown in Fig. 7. In such
 case of stochastically varying conductances, the Heaviside func-

ions H in Eq. (26) will cause Type 4 singularities, in addition to the
ther singularities, as shown in Fig. 7B. Removing these singular-
ties leads to extracted conductances in excellent agreement with
he conductances injected in the model (Fig. 7C and D).
). In (B–D), the theoretical conductances are drawn in blue, while the extracted
or in this figure legend, the reader is referred to the web version of this article.)

3.5. Injection of artificial synaptic conductances in vitro

In this last section, we consider another stringent test, the injec-
tion of stochastic conductances in real cortical neurons. We  used
the same model of conductances varying as a shot-noise as in
the previous section, but injected in cortical neurons using the
dynamic-clamp technique (see Section 2). A critical aspect is to cor-
rectly estimate the passive parameters of the cells. To this end, we
have used a procedure based on the Fourier transforms of V and I,
as explained in Section 2. A total of 3 cells were recorded.

Fig. 8 illustrates the results of the extraction method applied to
a dynamic-clamp experiment. One can see that the conductances
extracted from the Vm activity (red) are in very good agreement
with the injected conductances (blue). However, this result was
critically dependent on a number of adjustments.

First, an oversampling factor of 6 had to be used in this
experiment to correctly remove the numerous singularities. Over-
sampling factors of 2 and 4 were tested, but produced too many

singular points.

Second, because of the presence of instrumental noise, the
procedure for suppressing singularities had to rely on a moving
average of 20 data points immediately preceding the singularity
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Fig. 8. Extraction of conductances in cortical neurons in vitro. Excitatory (A) and inhibitory (B) conductances injected in a neuron in mouse visual cortex slices using the
dynamic-clamp technique (blue curves). The conductances extracted from the recorded Vm activity are shown in red, and the insets show details at higher temporal resolution.
The  parameters of the conductances were Ee = 0, Ei = − 85 mV,  and the estimated passive parameters of the cell shown here were EL = − 85.41 mV, C = 0.09 nF and gL = 6 nS. The
sampling frequency of V was 5 kHz and was 6 times larger than the conductances ge and gi . (C) The temporal variations of the conductances were produced by a shot-noise
model  (see Section 3.4). Comparison between the recorded V following conductance injection (red) to the V predicted by a single-compartment model (blue) with the same
p tation
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assive properties of the cells, and with the extracted conductances. (For interpre
ersion  of this article.)

see Section 2). This procedure was used because the presence of
oise in the recording of V creates instabilities in the extraction
f the preconductances. We  tested 5, 10, 20 points and acceptable
esults were obtained with 20 points. Note that this factor applies
o the Vm sampling, and means that for some segments of data, the
emporal precision of the extracted conductances was  20 times
ess than that of the Vm. Another possibility – not tested here – is
o use techniques for removing noise from the Vm activity.

Using these settings, some of the fast transient conductances

f ge were not correctly captured (see Fig. 8A and insets). This
rror is presumably due to the moving average of 20 points, which
roduces an effective “filtering” of the data and thus removes
ast transients. Due to this averaging, the temporal resolution
 of the references to color in this figure legend, the reader is referred to the web

of the conductances is about 20 times less than the Vm activ-
ity. In the example shown in Fig. 8, the temporal resolution
on V was  0.2 ms,  but the resolution on conductances was 4 ms.
Nevertheless, even with this down-sampling factor, the extraction
provides estimates of conductance which are of very reasonable
accuracy.

4. Discussion
In this paper, we  have shown theoretically and experimen-
tally that it is possible to extract conductances from single traces
of Vm recordings, under some conditions. First, the Vm must be
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which uniformly converges towards f on [a, b]. It follows that it
is always possible to build a mathematical model Mw (Weier-
strass model) of the preconductances g˛ and gˇ, with any required
accuracy, such that preconductances can be represented as a
time-dependent polynomial. Because the general solution of Eq.
(2) is such that V is holomorphic when preconductances are
holomorphic, we can say that the membrane potential is holomor-
phic when the preconductances are represented by a Weierstrass
model.5
2 C. Bédard et al. / Journal of Neu

ubthreshold, so that the equation for V remains linear, which is
 prerequisite for the present method to apply. If the Vm trace
ontains action potentials, they should be removed because the
nderlying membrane equation is nonlinear, in which case the
resent theory does not hold. The second condition is that an over-
ampling factor is required between the Vm and the conductances
o extract. This is also a requisite of the present method. The third
ondition is to obtain procedures to remove the singular points
hich will necessarily appear in the extraction procedure. We  have

llustrated the application of these principles using numerical sim-
lations of increasing complexity, and tested it on cortical neurons

n vitro using the dynamic-clamp technique.
The principle of the extraction method is that there is a unique

orrespondence between the oversampled membrane potential
nd two variables, which we call “preconductances” (see defi-
ition in Section 2). The uniqueness of preconductances can be
emonstrated formally (see Appendix A). In a second step, the
onductances are extracted from the preconductances. In sim-
le cases with two voltage-independent conductances (excitatory
nd inhibitory), there is also a unique correspondence between
onductances and preconductances, and thus uniqueness is also
uaranteed for the conductances. In principle, this method can be
pplied to extract more than two conductances, but in this case
niqueness is guaranteed for the preconductances, but not neces-
arily for the conductances. This extension of the method should
e considered in future work.

It is important to note that in all simulations done here, as well
s in the dynamic-clamp experiments, we have assumed that the
ell is well described by a single compartment RC circuit. Here
gain, the exact model only concerns the conversion from pre-
onductances to conductances. All simulations were done with
his standard RC model, and of course the extraction yielded the
xpected result. However, for dynamic-clamp experiments, we
ave shown that there is a significant error as not all fast transients
ere captured by the extraction method. Part of this deviation
ay  be attributable to the “filtering” which is due to the time-

veraging (20 data points in Fig. 8) which necessarily removes
ome of the fast components of conductances. It may  also be due
o the fact that the recorded cell is more complex than a simple RC
ircuit. Like somatic voltage-clamp, the present method extracts
he conductances as “visible” from the recording site (the soma
n most cases), which may  be different from the conductances
resent in dendrites. Another limitation is that the Vm record-

ng must be at the highest sampling frequency as possible, to
nable removing the singularities. Besides these limitations, we can
onsider that the extracted conductances are of very reasonable
ccuracy.

To date, no other method has been proposed to extract the full
ime course of conductances from single traces of membrane poten-
ial activity, but several alternatives exist. For example, one can
xtract excitatory and inhibitory conductances from Vm activity
y building current–voltage relations with repeated trials (for a
eview, see Monier et al., 2008). However, this approach requires
epeated trials at different levels of DC current injection, so it only
an be applied to specific responses to well-timed stimuli, but
ot to spontaneous activity. Another approach was proposed to
stimate statistical properties of excitatory and inhibitory conduc-
ances from single Vm traces (Pospischil et al., 2009a).  This approach
rovides estimates of the mean and variances of synaptic conduc-
ances, but not of the full time course of conductances, as proposed
y the present method.

The present method should be applied to intracellular record-

ngs in vivo in the future, as well as compared to conductances
stimated by other methods. For example, by using classical
onductance estimates from repeated trials (Monier et al., 2008), it
hould be possible to analyze the individual traces with the present
nce Methods 210 (2012) 3– 14

method, and obtain the conductance time courses of individual
trials, which average value should match the former estimates.
This is another possible test and extension of the present work.
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Appendix A. Uniqueness of extracted preconductances

In this appendix, we show that there is a bi-univocal cor-
respondence between the membrane potential V(t) and the
preconductances (g˛(t), gˇ(t)) in a single-compartment model neu-

ron (see Fig. 1). We  show that there is a unique operator Êex which
allows extracting the preconductances g˛ and gˇ.

To demonstrate this, we  express the functions as polynomials,
and we  use the Weierstrass theorem to demonstrate uniqueness.
On a topological point of view, the approximation of a continuous
function f by a polynomial sequence is equivalent to use a sequence
of staircase functions (see Eq. (9))  when these functions are in L2.
Thus, demonstrating the uniqueness of the extraction operator is
also valid for the ensemble of all staircase functions. By virtue of
the triangular inequality, we can write:

‖f − f ⊥
n ‖L2 = ‖f − Pn + Pn + f ⊥‖L2 ≤ ‖f − Pn‖L2 + ‖Pn − f ⊥

n ‖L2 (27)

and

‖f − Pm‖L2 = ‖f − Pm + f ⊥
m − f ⊥

n ‖L2 ≤ ‖f − f ⊥
m ‖L2 + ‖Pm − f ⊥‖L2 (28)

such that the open ensembles defined by the two  types of sequence
are homeomorphic, because in L2, we can approximate to any
degree of accuracy any staircase function by a polynomial sequence,
and vice versa. On a theoretical point of view, it is more interesting
to work with polynomial sequences than with staircase functions,
because the former enables using the derivative operator, which
will allow us here to analytically determine the extraction operator.
Staircase functions are more practical for numerical approxima-
tions.

The Weierstrass theorem (see Rudin, 1976) demonstrates
that if we have a real and continuous function f, defined over
the real interval [a, b], then there is a polynomial sequence (Pn)
5 Because a polynomial is holomorphic.

http://cns.iaf.cnrs-gif.fr
http://cns.iaf.cnrs-gif.fr/files/extraction-demo.zip
http://senselab.med.yale.edu/senselab/ModelDB
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Applying the operator (d/dt) on Eq. (2) an infinite number of
imes and writing the ensemble of solutions in matrix form, gives:

d̂1V

d̂2V

d̂3V

d̂4V

.

.

.

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

V 1 0 0 0 0 0 0 0 · · ·
d̂1V 0 V 1 0 0 0 0 0 · · ·
d̂2V 0 c2

1 d̂1V 0 V 1 0 0 0 · · ·
d̂3V 0 c3

1 d̂2V 0 c3
2 d̂1V 0 V 1 0 · · ·

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
. . .

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

g˛

gˇ

d̂g˛

d̂gˇ

.

.

.

⎞
⎟⎟⎟⎟⎠ ,

(29)

here d̂n = (dn)/(dtn) and cn
m = n!/((n − m)!m!).

This matrix is composed of a series of linearly independent
olumn-vectors (when V(t) /= 0), and is thus invertible. Note that
his matrix is a representation of the inverse of the extraction
perator Êx.

However, because in practice, successive derivatives of the Vm

re prone to huge errors, we consider the following first-order
pproximation of the extraction operator:

V̇
V̈

)
=

(
V 1
V̇ 0

)  (
g˛

gˇ

)
. (30)

nverting, we obtain:

g˛

gˇ

)
= 1

V̇

(
0 1
V̇ −V

)  (
V̇
V̈

)
, (31)

hen V̇ /= 0. A finite difference first-order approximation of the last
quation gives the following expressions

g˛(t + 2�t) = d

dt
ln(V̇) ≈ 1

�t
ln

[
V(t + 2�t) − V(t + �t)

V(t + �t) − V(t)

]

gˇ(t + 2�t) = V̇ − g˛V ≈ V(t + 2�t) − V(t)eg˛(t+2�t)�t

eg˛(t+2�t)�t − 1

.

(32)

ote that the values of t for which V̇ = 0 are singular points
f the first-order approximation of the extraction operator. Such
ingular points are due to the approximation of the extraction oper-
tor and vary with the order of the approximation. For example,

t the second order, the approximation of the extraction operator
s given by:

g˛

gˇ

ġ˛

ġˇ

⎞
⎟⎟⎠ = 1

�

⎛
⎜⎜⎝

0 0 −3V̈ 2V̇

� 0 −3V̇ V̈ 2VV̇

0 0 −�V V̈

0 � −3V̇ V̈ + VV̈ 2V̇2 − V �V

⎞
⎟⎟⎠

⎛
⎜⎜⎝

V̇

V̈

�V

¨V̈

⎞
⎟⎟⎠ , (33)

here � = 3V̈2 − 2V̇ �V , and the singular points at second-order are
hose which obey 3V̈2 = 2V̇ �V and not V̇ = 0. In this paper, we have
nly considered the first-order approximation because it is very
ifficult to accurately estimate with finite differences �V and ¨V̈ . Nev-
rtheless, if it was possible to have a precise algorithm to estimate
hese quantities, one could reduce the sampling rate of the voltage
ecause the conductances could then be approximated by a lin-
ar time variation, which would be a significant gain. Note that to
btain a good first-order approximation, the sampling time must
e sufficiently small so that the conductances can be considered
onstant over the interval.

g˛ = V̈

V̇
= (−1/C)

∑N
n=1�̇n(t)[f (n�) +

−(1/C)
∑N

n=1�n(t)[f (n�) +
ppendix B. Analytic solution of extracted g˛ and gˇ

Because the extraction algorithm presented here is the inverse
f the algorithm giving an exact solution of the standard RC-circuit
nce Methods 210 (2012) 3– 14 13

membrane model (see Eqs. (2) and (3)) for digitized conductances,
it necessarily generates a third type of singular point which does not
come from the first-order approximation of the extraction opera-
tor Êex (this happens when V̇ = 0). In this appendix, we show how
the digitization of the conductances can affect the results of the
extraction of g˛ and gˇ within this first-order approximation.

Let us assume that the conductances vary according to{
ge(t) = f (t)
gi(t) = g(t)

, (34)

which is sampled at a frequency fe. The digitized conductances are
then given by:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ge(t) =
N∑

n=1

�n(t)f (n�)

gi(t) =
N∑

i=1

�n(t)g(n�)

, (35)

where � = 1/fe and �n(t) = H(t − n�)[1 − H(t − (n + 1)�)].  It follows
that the values of digitized preconductances (see Eq. (3))  are given
by:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g˛(t) = − 1
C

N∑
n=1

�n(t)[f (n�) + g(n�) + gL]

gˇ(t) = 1
C

N∑
n=1

�n(t)[Eef (n�) + Eig(n�) + gLEL]

. (36)

Thus, V̇ (see Eq. (2)) is given by:

V̇ = − 1
C

N∑
n=1

�n(t)[f (n�) + g(n�) + gL]V + 1
C

N∑
n=1

�n(t)[Eef (n�)

+Eig(n�) + gLEL]. (37)

According to the first-order approximation of the extraction oper-
ator, we  obtain the following expressions:

�) + gL]V + (1/C)
∑N

n=1�̇n(t)[Eef (n�) + Eig(n�) + gLEL]

�) + gL]V + (1/C)
∑N

n=1�n(t)[Eef (n�) + Eig(n�) + gLEL]
,  (38)

and

gˇ = V̇ − g˛V, (39)

where g˛ and gˇ are respectively the approximations of g˛ and gˇ.
We obtain:

�̇n(t) = ı(t − n�)[ 1 − H(t − (n + 1)�)]  − H(t − n�)ı(t − (n + 1)�),

(40)

where Dirac delta functions will appear in the values of g˛ and gˇ.
Because in this paper, the extraction algorithm is a finite differ-

ence approximation of

g˛ = V̈

V̇
,

singularities will appear at each numeric variation of the conduc-
tances.

Note that to approximate dg˛/dt with finite differences at first
order by assuming dg˛/dt ≈ �g˛/�t, it is necessary that the sam-
pling time interval is sufficiently long so that the Dirac delta
functions caused by the digitization of the conductances are

insignificant. However, in the extraction of preconductances we
have to assume the opposite, namely that the time interval must
be very small so that preconductances can be considered constant
in the interval. In such a case, there will be strong discontinuous
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umps of preconductances, which will cause singularities. The lat-
er criterion implies that we cannot approximate dg˛/dt with finite
ifferences (except when dg˛/dt ≈ 0) without generating singular-

ties (see Fig. 2). This is another reason why the voltage V must be
ampled at a frequency greater than that of conductances, because
he oversampled V allows to extract conductances in regions where
o singularity appear (see Fig. 5).

ppendix C. Approximation order of the voltage and
reconductances

In this appendix, we show that if the error on preconductances is
f first-order, then the error on voltage is second order. To simplify,
e consider a time interval �t  starting at t = 0, which leads to:

g˛(t) = ao + 0(t)
gˇ(t) = bo + 0(t)

, (41)

here the term 0(t)  tends to 0 as t when t → 0. It follows that

 = exp

(∫ t

0

g˛(�)d�) = exp(aot + 0(t2)

)
, (42)

uch that the voltage must follow the following law (see Eq. (8)):

(t) = e(aot+0(t2))

[
V(0) +

∫ t

0

(bo + 0(�))e−(ao�+0(�2))d�

]
. (43)

ecause e(aot+0(t2)) = ea0t(1 + 0(t2)), we obtain:

(t) = V(0)e(aot) + bo

ao
(e(aot) − 1)e(aot) + 0(t2). (44)
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