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Abstract
The diagnosis of mild cognitive impairment (MCI) is very helpful for early
therapeutic interventions of Alzheimer’s disease (AD). MCI has been proven
to be correlated with disorders in multiple brain areas. In this paper, we used
information from resting brain networks at different EEG frequency bands to
reliably recognize MCI. Because EEG network analysis is influenced by the
reference that is used, we also evaluate the effect of the reference choices on
the resting scalp EEG network-based MCI differentiation. The conducted study
reveals two aspects: (1) the network-based MCI differentiation is superior to
the previously reported classification that uses coherence in the EEG; and (2)
the used EEG reference influences the differentiation performance, and the
zero approximation technique (reference electrode standardization technique,
REST) can construct a more accurate scalp EEG network, which results in a
higher differentiation accuracy for MCI. This study indicates that the resting
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scalp EEG-based network analysis could be valuable for MCI recognition in
the future.

Keywords: mild cognitive impairment, resting scalp EEG, brain network, EEG
reference, MCI recognition, zero reference

(Some figures may appear in colour only in the online journal)

1. Introduction

Alzheimer’s disease (AD) is the most prevalent neuropathological form that leads to dementia;
it affects approximately 25 million people worldwide, and the number of cases is expected to
quickly increase in the near future (Babiloni et al 2006, Bai et al 2012, Fan et al 2008, Ferri
et al 2005, Rossini et al 2008, Brookmeyer et al 2007, Dauwels et al 2010a, Jeong 2004). Mild
cognitive impairment (MCI) is characterized by objective evidence of memory impairment
that does not yet encompass the definition of dementia (Petersen et al 1995, Petrosian et al
2001). MCI is often a prodromal stage of AD and is a good target for early diagnosis and
therapeutic interventions of AD. Studies show that individuals with MCI tend to progress
into AD at a higher rate, approximately 10% to 15% per year (Grundman et al 2004, Misra
et al 2009), compared with healthy controls, who develop dementia at a rate of 1% to 2% per
year (Bischkopf et al 2002). To provide optimal therapeutic, organizational, and rehabilitative
interventions, it would be extremely important to make an early diagnosis of amnesic MCI in
normal elderly subjects who are at risk of developing AD (Albert et al 2011, Fan et al 2008,
Misra et al 2009, Rossini et al 2008, Wee et al 2012).

However, MCI is difficult to diagnose due to the very mild symptoms of cognitive
impairment and the underlying mechanisms are still unknown (Albert et al 2011). Various
techniques, including EEG, MEG and fMRI, have been used to study MCI mechanisms.
Studies based on EEG and MEG have revealed that MCI subjects displayed a significant
decrease in alpha power, a slowing of the EEG, a reduced complexity of the EEG signals, and
perturbations in the EEG synchrony compared to normal elderly people (Babiloni et al 2006,
Koenig et al 2005, Rossini et al 2008, Dauwels et al 2010a, 2011, Jeong 2004). Furthermore, it
has been reported that there is a prominent decrease in the functional coupling of EEG rhythms
in AD and MCI compared to normal elderly subjects (Adler et al 2003, Bai et al 2009, Cichocki
et al 2005, Gomez et al 2009, Koenig et al 2005, Pijnenburg et al 2004, Dauwels et al 2010b).
MRI-related techniques have been used to study MCI from both structural and functional
brain networks (Bai et al 2009, 2012, Fan et al 2008, Misra et al 2009). Clinical patients with
MCI showed decreased medial temporal lobe (MTL) activation during a memory encoding
task (Dickerson et al 2004), and a structural MRI revealed that in addition to gray matter in
the hippocampus and the MTL, a number of other regions have displayed significant atrophy,
including the orbitofrontal and medial-prefrontal area, cingulate (mainly posterior), insula,
uncus, and temporal lobe white matter (Fan et al 2008).

The above features, which appear in various imaging techniques, have been attempted for
MCI recognition. With respect to EEG-based classification, features such as the global field
power, spectral coherence (Coh) and wavelet information have been used as an input, which
can achieve approximately 80% accuracy (Acc) (Bennys et al 2001, Buscema et al 2007,
Cichocki et al 2005, Rossini et al 2008, Stam et al 2003). Compared with EEG-based MCI
recognition, recognition that is based on MRI imaging can achieve a higher classification Acc
(Fan et al 2008, Misra et al 2009); for example, 96.3% was reported when combined structural
and functional MRI features were considered (Wee et al 2012).
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In essence, the disorder of MCI is closely correlated with abnormal activity in multiple
brain areas, as evidenced from fMRI (Bai et al 2012, Fan et al 2008, Misra et al 2009, Wee
et al 2012); thus, the current brain network approach is more suitable for both interpreting
the related mechanisms and performing the MCI recognition. In fact, most of the MRI-related
studies are based on structure or functional network analysis to reveal MCI issues such as neural
mechanisms and recognition. However, most of the existing EEG-related studies are based on
traditional EEG analysis, such as power spectrum and Coh. Compared with the analysis based
on MRI, EEG analysis is prone to be affected by the non-zero reference choice (Nunez et al
1999, Stam et al 2003, Yao 2001) and distorted by the skull, which could be the main reasons
why EEG studies on MCI from the perspective of the network are still limited.

The existing studies have proved that the choice of EEG reference greatly influences not
only the conventional analyses, such as waveform, power spectrum, and Coh, but also the
brain network topology (Marzetti et al 2007, Nunez et al 1999, Qin et al 2010, Yao et al
2005, Thatcher 2012). In EEG scalp recordings, only the potential differences between two
points can be measured (Geselowitz 1998). However, due to the lack of a neutral (or zero)
point on the body surface or insufficient coverage of the head surface by the electrodes, all
of those conventional references, such as the vertex reference (VR) and average reference
(AR), could inevitably introduce an undesired and unknown temporal bias into the scalp EEG
recordings. To entirely resolve the problems that are involved in using body surface points for
referencing, a reference with a neutral potential is required. Theoretically, a point at infinity is
far from the brain sources and has an ideally zero and neutral potential. Therefore, a point at
infinity constitutes an ideal reference (infinity reference, IR) that has a zero or neutral potential.
Yao proposed a reference electrode standardization technique (REST) to mathematically re-
reference the EEG recordings to IR (Yao 2001). In the present work, REST is adopted to
provide reference independent EEG recordings for further network analysis.

As mentioned above, MCI disorder involves multiple brain areas (Bai et al 2009, 2012,
Fan et al 2008, Huang et al 2000, Misra et al 2009); therefore, network analysis may be a
more appropriate approach for studying the related neural mechanisms and the recognition
of MCI (Rombouts et al 2005, Seo et al 2013, Ding et al 2013). Moreover, because EEG
recording systems are relatively inexpensive and potentially mobile, EEG is equipped in most
hospitals and appears to be an attractive brain imaging modality for diagnosing both AD
and MCI (Dauwels et al 2010a). In the current work, we comparatively constructed the EEG
network and performed MCI recognition based on the network properties that are derived
from the conventional AR, VR and new IR (REST). Our aim was to improve the possible
MCI recognition Acc based on the network mechanisms that underlie MCI and to evaluate the
possible reference effect on the differentiation.

2. Materials and methods

2.1. MCI dataset

2.1.1. Subjects. A total of 11 subjects of amnestic MCI (aMCI) were recruited from the
Neurological Department of Xuanwu Hospital, and 14 volunteers of normal cognition (NC)
from the same community served as the controls in 2011. All of the experimental protocols
were approved by the Ethics Committee of Xuanwu Hospital of Capital Medical University,
Beijing. Informed consent was obtained from each participant, according to the Declaration
of Helsinki.

The aMCI patients satisfied Petersen’s revised aMCI criteria. This diagnosis was
confirmed using the following inclusion criteria: (i) subjective memory complaint; (ii)
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Table 1. Demographic and clinical characteristics of normal controls and aMCIs.

Control group (N = 14) aMCI group (N = 11) p-value

Mean age, years ( ± SD)a 74.04 ± 6.85 75.50 ± 7.39 0.61
Sex (male: female)b 6:8 6:5 0.69
Education, years ( ± SD)a 7.54 ± 3.89 7.05 ± 4.29 0.77
MMSE score ( ± SD)a 26.78 ± 3.72 24.00 ± 5.42 0.14
MoCA score ( ± SD)a 22.36 ± 4.50 16.00 ± 5.08 0.003∗

CDR score (IQR)c 0.0(0.0–0.0) 0.5(0.5–0.5) 0.000∗

a Independent-samples t-test.
b Fisher’ s exact test.
c Mann–Whitney U test.
MMSE: mini-mental status examination, MoCA: montreal cognitive assessment, CDR: clinical dementia rating
scale.

essentially preserved general cognitive function; (iii) objective memory impairment as
evidenced by performance of more than 1.5 standard deviations (SDs) below age and education-
matched controls for a test called the Chinese Verbal Learning Test; (iv) absence of or very
mild impact of impairment in the basic activities of daily life, as determined by a clinical
dementia rating (CDR) score of 0.5; a score not greater than 18 on the basic personal activities
of daily living (ADL) scale; and (v) absence of dementia according to the DSM-IV criteria.

The inclusion criteria for the NC group were as follows: (i) absence of a subjective
memory complaint; (ii) preserved general cognitive function; (iii) performance at 1.5 SD or
above age- and education-matched controls for a test, namely, the Chinese Verbal Learning
Test; and (iv) absence of impairment in basic activities of daily life, as determined by a CDR
score of 0; and a score not greater than 14 on the basic personal ADL scale.

The common inclusion criteria for both groups included being over 60 years of age, living
in the same community, and being fluent in hearing and speaking Chinese. The exclusion
criteria were as follows: (i) severe vision or hearing impairments that could affect the test
processing; (ii) current or previous uncontrolled complicated systemic diseases or head trauma;
(iii) history of psychiatric or neurologic disorders, mental retardation, or epilepsy; (iv) alcohol
or drug abuse, use of psychoactive drugs, including acetylcholinesterase inhibitors, or taking
any tranquilizer, such as benzodiazepine; (v) any focal sign of significant neuropathology,
history of cerebral infarction or transient ischemic attack with a Hachinski score of equal to
or greater than 4; and (vi) presence of acute anxiety or depression.

The subjects underwent neurological, psychiatric, and neuroimaging examinations,
neuropsychological assessment and laboratory testing to ensure that the subjects were
free of primary cognitive deficits that result from psychic (e.g., anxiety, depression)
or physical (e.g., hypothyroidism, vitamin B12 and folate deficiency, uncontrolled heart
disease, uncontrolled diabetes, syphilis) conditions. Neuroimaging examinations included
MRI. Moreover, neuropsychological assessment included the mini-mental state examination
of Chinese Edition, Montreal cognitive assessment (MoCA) of Chinese Edition, CDR,
self-anxiety scale, geriatric depression scale (GDepressionS), global deterioration scale
(GDeteriorationS), ADL, and the Hachinski scale. The detailed information for the two groups
is listed in table 1.

2.1.2. EEG recordings. The EEG activity was recorded continuously from 60 sites using
electrodes that were set in an elastic cap (Greentek, Wuhan, China) and positioned according
to the 10–20 International system, including the references, ground, ECG and electrooculogram
(EOG). The reference is at the CPz site between Cz and Pz, and the ground electrode was
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placed in front of the Fpz site. Horizontal and vertical eye movements were detected by
recording the EOG, with the use of an additional two electrodes placed 1 cm below (left-hand
side) and above (right-hand side) the external canthus. Data were recorded with a band-pass
filter of 0.5–70 Hz, a notch of 50 Hz and a digitized data sampling rate of 1024 Hz (Yunshen,
Beijing, China). The electrode-skin impedance was set below 5 k�. All of the recordings were
obtained in the morning with the subjects resting comfortably. An operator will use online
camera to monitor the subject’s state. If the subject is observed with signs of drowsiness like
unconscious nod, the operator will use speaker to alert the subjects and the EEG recording
will be stopped to provide enough time for subject to adjust his state. And the new recording
procedure will be restarted to record the new EEG until the subject is reported to be ready to
perform the experiment awake. Each recording lasted approximately 20 min, with the subject’s
eyes closed.

2.2. Data preprocessing and re-referencing

All of the recordings were further offline band-pass filtered within 4–40 Hz. Linear detrending
and artifact rejection were performed to discard epochs that were contaminated by eye blinks,
eye movement, or muscle potentials. The ocular artifacts were defined as EEGs that have
amplitude exceeding a ± 60 μv threshold, and muscle movement artifacts were those samples
that had characterized high frequency waveforms. EEG data were further visually inspected
by two expert electroencephalographists to ensure that the data were free of EOG and muscle
movement artifacts.

After the above pre-processing, the EEG recordings of one MCI patient and four controls
were observed to be contaminated with obvious artifacts due to the loose contact of the
electrodes, and were excluded from further analysis. For each subject in the two groups,
ten segments with each approximately 2 s long and free of artifacts were visually selected
for further analysis. After above pre-processing, based on the original CPz reference, the
recordings were offline re-referenced to AR and IR according to the REST method described
by Yao et al (2001). In this paper, although the original reference CPz is not the actual vertex
at Cz in practice, for convenience in describing the approach, we still use the VR to denote
this reference.

2.2.1. Reference electrode standardization technique. REST is a novel method that connects
the body reference and the theoretical neural reference at an infinite point. For IR, the forward
EEG calculation is (Qin et al 2010, Yao 2001)

V = GS + e (1)

where G is the transfer matrix that is referenced at infinity, which depends on the head model,
the source configuration and the electrode montage. V is the vector of potentials that are
linearly generated by the source S; and e is the noise. For the vertex referenced recordings
VVR, we similarly have

VVR = GVRS + e (2)

where GVR is the EEG lead-field matrix of the VR and VVR is an M × N matrix of the EEG
scalp recording, with M and N being the channel number and sampling points, respectively.
The minimum norm solution based on the Moore–Penrose generalized inverse for the source
strength S is

S = G+
VRVVR (3)
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Figure 1. The montage of the selected 21 electrodes from the 10–20 system for network
analysis.

where ( )+ denotes the Moore–Penrose generalized inverse and the truncation is used in the
Moore–Penrose generalized inverse to address the noise (Qin et al 2010, Xu et al 2007, 2010b).
From the equations, we can see that the source S is the same in the above two equations (1) and
(2), which reflects the fact that the reference does not influence the localization and activity of
the neural sources. Thus, the IR potential can be reconstructed as the following:

VIR = G(G+
VRVVR), U = GG+

VR (4)

where U is the final transfer matrix that is determined by the lead-field matrix G and GVR, both
of which are known in advance. Based on the above equations, we can transform the EEGs
into genuine EEGs with IR. In the current work, the head model for the REST transformation
is a three-concentric-sphere model, the normalized radii of the three concentric spheres are
0.87 (inner radius of the skull), 0.92 (outer radius of the skull) and 1.0 (radius of the scalp),
and the conductivities are 1.0, 1.0 and 1/80 for the brain, scalp and skull; the truncation value
that is used for the noise is 0.05. Details of the REST technique, could refer to (Qin et al 2010,
Yao 2001), and the free software can be downloaded at www.neuro.uestc.edu.cn.

2.2.2. Average reference. Based on the Vertex referenced recordings VVR, the EEG
recordings VAR with AR were obtained by subtracting the mean voltage waveform calculated
across all channels from each individual channel waveform.

2.3. Brain network construction

The brain network can be used to describe the connectivity among multiple regions. For EEG-
based network analysis, influence from the volume conduction is inevitable (Marzetti et al
2007, Nunez et al 1999, Stam et al 2003). In this work, 21 canonical electrodes of a 10–20
system were selected from 60 electrodes to construct the brain network (Qin et al 2010),
aiming to lower the volume conduction effect. Figure 1 shows the montage of the selected 21
electrodes.
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2.3.1. Coherence. Coh is the most common way of analyzing the cooperative, synchrony-
defined cortical neuronal assemblies, and it represents the linear relationship at a specific
frequency between two signals x(t) and y(t) based on their cross-spectrum. In the current work,
we adopted the frequency-specific Coh to denote the linkage strength between two network
nodes. Coh is expressed as follows (Koopmans 1995):

CXY ( f ) = |PXY ( f )|2
PXX ( f )PYY ( f )

(5)

where PXY ( f ) is the cross-spectrum of x(t) and y(t) at the frequency f , and Pxx( f ), Pyy( f ) are the
auto spectrum at frequency f estimated from the FFT transformation. Based on the frequency-
dependent Coh CXY ( f ), the edge linkages in the relevant frequency bands, including theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), gamma (30–40 Hz), and the full band (4–60 Hz),
were estimated by averaging the Coh strength within the relevant frequency band.

2.3.2. Network properties. The brain network was constructed based on the Cohs of the 21
nodes, using the corresponding Coh as the edge linkage cij between two nodes i and j. After
constructing the weighted network, the clustering coefficients and shortest path length were
used to measure the local and global information processing ability of the brain, respectively.
The (weighted) clustering index of vertex i is defined as (Stam et al 2009)

Ci =

∑
k �=i

∑
l �=i
l �=k

cikcilckl

∑
k �=i

∑
l �=i
l �=k

cikcil
(6)

where ci j is the edge linkage strength between vertices i and j, which is obtained using
equation (5). Then, the mean clustering coefficient (C) of the entire weighted network is
determined using (7), as follows:

C = 1

N

N∑
i=1

Ci. (7)

For the weighted network, the length of the edge between vertices i and j is the inverse
of the aforementioned edge weight (Stam et al 2009)

Li j =
{

1/ci j, if ci j �= 0
1, if ci j = 0

. (8)

Therefore, the length of a weighted path between two vertices is then defined as the sum
of the lengths of the edges of that path. Similarly, the average weighted path length of the
entire graph (L) is computed as

L = 1

(1/N(N − 1))
N∑

i=1

N∑
j �=i

(1/Li j)

. (9)

2.4. Network analysis for the MCI dataset

The above network analysis procedure was performed for each of the 2 s long segments of
one subject, which resulted in ten connectivity matrices for each subject. The ten connectivity
matrices were further averaged to achieve the final connectivity matrix for analysis. Based
on the averaged connectivity matrix, the network topology and properties were calculated for
each subject. The two-sample t-test was performed to evaluate the difference in the network
properties (clustering coefficients and shortest path length) and the network topology between
the groups.
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2.5. MCI recognition

The two network properties at different frequency bands were treated as potential inputs for
MCI recognition. The receiver operation curve (ROC) was used to evaluate the discriminative
ability of those features for MCI recognition. Based on the ROC curves, the features that
had a better ROC performance, i.e., a larger area under the curve (AUC), were selected to
serve as the final features for MCI recognition. Moreover, to compare the performance of the
network-based recognition, the mean coherence (MCoh) of the scalp sensors was also used
for MCI recognition (Gomez et al 2009). In the current work, linear discrimination analysis
(LDA) and support vector machine (SVM) were used to perform the MCI recognition. SVM
classification is implemented with the toolbox libsvm using the RBF kernel with default SVM
parameter setups (Chang and Lin 2011). To evaluate the classification performance, the Acc,
sensitivity (Sen) and specificity (Spe) were used, and the detailed calculations for the three
metrics are as follows:

Acc = nc + nmci

Nc + Nmci
× 100%, Sen = nmci

Nmci
× 100%, Spe = nc

Nc
× 100% (10)

where Nc and Nmci are the actual numbers for the control and MCI patients and nc and nmci are
the correctly predicted numbers for the control and MCI patients.

3. Results

3.1. Topology of the EEG networks

Figure 2 shows the constructed networks for the three references (IR, VR, AR) at different
EEG bands, where the network topology is averaged across the subjects for the NC and
MCI groups, respectively. Moreover, the two-sample t-test was used to compare the topology
differences that exist between the two groups, and the edges that had significant differences
(p < 0.05, Bonferroni correction) between NC and MCI were marked as the difference
network (MCI-NC); the red and green edges in figure 2 denote the statistically increased and
decreased linkages, respectively. The different network topologies can be observed when the
three different references are used (Qin et al 2010).

3.2. Network parameters

Figure 3 shows the clustering coefficients and shortest path lengths corresponding to different
EEG bands when the three different referencing methods (VR, AR, IR) were used. One-way
ANOVA with reference (IR versus AR versus VR) was used to test the network properties
on the different oscillatory-band networks, respectively. On the theta network, significant
effects of the referencing methods on the cluster coefficient (F (2, 36) = 6.185, p < 0.005)
and the shortest path length (F (2, 36) = 7.150, p < 0.003) were observed, respectively.
The interactions between the Ref ∗group were non-significant (all ps > 0.1). Post hoc t-
tests (Bonferroni correction) revealed that significant differences on the referencing methods
occurred only between AR and VR (p < 0.004 on the cluster coefficient; p<0.003 on the
shortest path length). On the alpha1 network, significant effects of the referencing methods on
the cluster coefficient (F (2, 36) = 7.601, p < 0.004) and the shortest path length (F (2, 36) =
5.033, p < 0.012) were observed. The interaction between the Ref ∗group was also significant
(F (2, 36) = 3.435, p < 0.044). Post hoc t-tests (Bonferroni correction) revealed that the IR has
a significant difference with both AR (p < 0.006) and VR (p < 0.049) on the cluster coefficient.
A significant difference between IR and AR on the shortest path length was also observed
(p < 0.015). Additionally, a significant effect between the groups (MCI versus normal)
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theta            alpha1             alpha2            beta            gamma             

MCI 

NC 

MCI-NC 

(a) IR 

Figure 2. The network topology for different references. Subfigures (a)–(c) correspond
to the zero reference (IR), vertex reference (VR) and average reference (AR),
respectively. The first and second rows in each subfigure are the corresponding network
topology for the MCI and NC; the third row is the difference network topology (MCI-
NC), where the green edges denote those having statistically decreased (p < 0.05,
Bonferroni correction) linkage.

(p < 0.005) was observed. On the alpha2 network, significant effects of the referencing
methods on the cluster coefficient (F (2, 36) = 3.611, p < 0.045) and the shortest path length
(F (2, 36) = 4.739, p < 0.028) were observed, respectively. The interaction between Ref
∗group was also significant (the cluster coefficient: F (2, 36) = 6.036, p < 0.008; the shortest
path length: F (2, 36) = 5.452, p < 0.019). The post hoc t-test (Bonferroni correction) revealed
that significant differences on referencing methods occur (the cluster coefficient: AR versus
VR, p < 0.035; the shortest path length: IR versus AR (p < 0.028), AR versus VR (p <

0.023)). In addition, significant effects between the groups (MCI versus normal) (all ps <

0.000) were observed. On the beta network, significant effects of the referencing methods on
the cluster coefficient (F (2, 36) = 57.010, p < 0.000) and the shortest path length (F (2, 36) =
38.048, p < 0.000) were observed. The interactions between Ref ∗group were non-significant
(all ps > 0.05). A post hoc t-test (Bonferroni adjusted) revealed that a significant difference
on referencing methods occurs (the cluster coefficient between IR and VR (p < 0.009); the
shortest path length between IR and VR and between AR and VR (all ps < 0.000)). On the
gamma network, significant effects of the referencing methods on the cluster coefficient (F (2,
36) = 31.397, p < 0.000) and the shortest path length (F (2, 36) = 27.902, p < 0.000) were
observed. The interaction between the Ref ∗group on the cluster coefficient was non-significant
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theta              alpha1           alpha2            beta            gamma            

MCI 

NC 

(b)   VR 

MCI-NC 

Figure 2. (Continued.)

(F (2, 36) = 1.602, p < 0.216). Post hoc t-test (Bonferroni correction) analysis revealed that
the IR has a significant difference with both AR (p < 0.055, marginal significant) and VR
(p < 0.001) on the cluster coefficient, respectively. It was also found that IR shows significant
differences between other referencing methods (all ps < 0.05), and a significant difference
was observed between AR and VR (p < 0.001) on the shortest path length. The significant
statistical test (p < 0.05, Bonferroni correction) revealed that the network parameters of alpha1
and alpha2 could distinctly differentiate the MCI and NC groups.

3.3. ROC of the network parameters and mean coherence

Figure 4 shows the ROC of the clustering coefficients (C) for different EEG bands when the
three references were adopted, separately. For the shortest path length (L) and MCoh, the ROC
curves are similar and are therefore omitted here. Table 2 summarizes the AUCs of the three
parameters (C, L, MCoh) for different EEG bands based on each of the three references. These
results again indicate that the IR EEG-based parameters have a stronger differentiation ability
for MCI recognition. Table 2 also clearly demonstrates that the network parameters (C, L)
have more differentiating ability than does MCoh.

3.4. MCI recognition

Based on the results shown in figures 3–4 and table 2, the two network parameters and MCoh
are strikingly different for the MCI and NC groups in alpha1 and alpha2; thus, they are
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   theta            alpha1           alpha2             beta            gamma           

MCI 

NC 

MCI-NC 

(c)  AR 

Figure 2. (Continued.)

considered to be the potential features for MCI recognition using LDA and SVM, respectively.
Specifically, for the network based recognition, the feature is composed of the clustering
coefficients (C) and the shortest path length (L), resulting in the two-dimensional feature for
one concerned frequency band. As for the MCoh, the feature is of one dimension for one
concerned frequency band. When the features in alpha1 and alpha2 bands are combined, the
features in the separate band are simply connected to generate the double length features
compared to that in the separate frequency band. Considering that the subject number was
relatively small, the classification was performed using the leave-one-out strategy (Xu et al
2010a, Dauwels et al 2010a). Table 3 gives the classification Acc, Spe and Sen when different
combinations of features under the three references are used for classification. The results
also clearly indicate that the classifications based on the network parameters are usually much
better than those that are based on traditional Coh. The parameters that are derived from IR
and based on EEG perform better in classification than do those obtained from the other two
non-zero references.

4. Discussion

4.1. The topology difference

Figure 2 revealed that the two groups exhibit different topologies, and the significant differences
between the two groups all converged to the alpha1 and alpha2 bands for the three different
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Table 2. The AUC for network properties and mean coherence under different reference choices in different EEG frequency bands.

Theta Alpha1 Alpha2 Beta Gamma

C L MCoh C L MCoh C L MCoh C L MCoh C L MCoh

VR 0.62 0.60 0.65 0.89 0.87 0.83 0.86 0.89 0.93 0.62 0.61 0.60 0.73 0.76 0.81
AR 0.55 0.57 0.56 0.80 0.79 0.75 0.97 0.97 0.93 0.66 0.65 0.59 0.55 0.56 0.63
IR 0.78 0.79 0.73 0.89 0.87 0.83 0.98 0.97 0.97 0.67 0.68 0.64 0.58 0.59 0.65
∗C is the clustering coefficient, L is the shortest path length, and MCoh is the mean coherence.
The bold digits indicate the largest AUC among the three references.
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Table 3. The classification performance for MCI recognition.

Alpha 1 Alpha 2 Alpha1+alpha 2

Acc (%) Spe (%) Sen (%) Acc (%) Spe (%) Sen (%) Acc (%) Spe (%) Sen (%)

NET MCoh NET MCoh NET MCoh NET MCoh NET MCoh NET MCoh NET MCoh NET MCoh NET MCoh

LDA VR 75 70 70 70 80 70 80 75 90 70 70 80 90 75 100 70 80 80
AR 65 70 60 70 70 70 85 75 80 70 90 80 75 75 70 70 80 80
IR 85 80 80 80 90 80 90 85 80 80 100 90 85 80 70 70 100 90

SVM VR 75 70 70 70 80 70 75 75 80 70 70 80 65 70 60 60 70 80
AR 75 65 70 50 80 80 80 70 70 60 90 80 75 65 70 50 80 80
IR 80 75 80 70 80 80 90 85 80 80 100 90 85 75 80 80 90 70

VR = vertex reference; AR = average reference; IR = infinity zero reference; Acc = accuracy; Sen = sensitivity; Spe =s; NET = network properties; MCoh = mean coherence.
The bold digit indicates the best performance among the three references for the two classifiers, respectively.
Alpha1, alpha2 and alpha1+alpha2 denote that the corresponding network and coherence features in those frequency bands are separately used for MCI recognition.
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Figure 3. The parameter differences of the EEG networks with different references (VR,
AR, IR). ∗ indicates p < 0.05 (Bonferroni correction) between the MCI and control
groups; –∗– indicates p < 0.05 (Bonferroni correction) between the corresponding
references.

references. Such an agreement in the results among different references strongly suggests
that the differences between the two groups exist mainly in alpha1 and alpha2, and thus, the
corresponding network features in these two bands could be reliable for discriminating these
two groups. Based on these topology differences, MCI patients could have dramatically
decreased linkages between the frontal and posterior areas in the alpha band, which indicates
that MCI could be partly due to the weakened long-range linkage in the brain.

Figure 2 also showed that the detailed topologies that correspond to the three references
had large differences. For example, VR-based EEG networks had less connection in the parietal
area close to the vertex. In fact, when the VR is used, those electrodes that are close to the
reference electrode naturally have similar EEG information as the reference channel, and
therefore, useful information could be lost due to the subtraction of the EEG waveforms at the
vertex. Compared to VR, both IR (REST) and AR can result in a meaningful network topology
with abundant long-range connections between frontal and posterior areas. In our previous
evaluations of REST (Qin et al 2010, Yao 2001, 2005), AR was proved to be the closest to
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(a) theta                                                 (b) alpha1 

(c) alpha2                                                 (d) beta 

(e) gamma 

Figure 4. The ROC of the clustering coefficients for the three references in different
EEG frequency bands.
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REST because the average of all of the electrodes would lower the dependence of the reference
on any specific electrode (Thatcher 2012). More specifically, if an electrode configuration was
sufficiently dense and covered the whole surface evenly, then AR would also be a true zero
reference (Yao 2001).

4.2. The difference in the network parameters

As illustrated in figure 3, the network properties in alpha1 and alpha2 showed significant
differences between the two groups regardless of the reference that was adopted. Specifically,
the MCI group showed the decreased clustering coefficients and increased shortest path length
compared to the control group, while no consistent and obvious differences were revealed in
the other relevant EEG bands. The most obvious differences were revealed in the alpha band
and are consistent with previous studies, which reported a decrease in the Coh in the alpha
band for MCI and AD (Adler et al 2003, Locatelli et al 1998, Stam et al 2003). From a network
perspective, the clustering coefficients and the shortest path length represent the processing
ability of the brain for local and global information, respectively. The decreased clustering
coefficients and increased shortest path length in alpha1 and alpha2 for MCI consistently
demonstrated that MCI patients have less efficiency in processing both local and global
information, which could account for cognition problems such as the memory impairment that
is usually encountered by aMCI patients (Petersen et al 2001, Pijnenburg et al 2004, Portet
et al 2006). Interestingly, VR shows the relatively obvious network parameter difference in
the Gamma band. In van Deursen et al (2008), although increased Gamma activity has been
revealed between MCI and the control under task conditions, no difference is observed in the
resting state for the two groups. Based on this finding, we could further prove the important
effect of the reference choice on the EEG analysis and that VR could result in a controversial
difference between the two groups in the Gamma band.

Consistent with the topology difference revealed in figure 2, an obvious difference in
network properties between the two groups still exists in alpha1 and alpha2 for the three
references. However, the EEG reference choices actually have obvious effects on the concerned
EEG properties (p < 0.05, Bonferroni correction). Figure 3 and the ANOVA test results show
that IR can uncover differences most reliably in alpha1 and alpha2 with the smallest p-value
compared to the other two references, and thus, it provides more chances to discern the MCI
patients. In other words, transforming a traditional reference to the zero reference by REST
could partially recover the lost information that is induced by the non-zero reference; therefore,
this approach gives a higher likelihood of finding the truly existing differences between MCI
and NC.

4.3. AUC of the network parameters and MCoh

To further confirm the feasibility of the network parameters for MCI recognition, the AUC
of the network parameters (C, L) and MCoh were calculated and compared in the concerned
EEG bands. According to table 2, three basic facts were clearly revealed: (a) the two network
parameters have a higher discriminative ability than MCoh, which indicates that the network
approach for MCI recognition is a better method than the previous MCoh-based approach; (b)
the alpha1 and alpha2 bands are the two best bands for MCI classification because the AUC
of these two bands are distinctly larger than the other bands, for either the network properties
or MCoh, and thus, these two bands are adopted for MCI recognition in this work; and (c)
regardless of which parameter is adopted, the EEG based on IR consistently provides the
largest AUC for the concerned frequency bands except for gamma, which means that REST
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partially recovers the lost information that is induced by the non-zero reference. As mentioned
in section 4.2, VR can contribute the controversial difference between the MCI and control
group in the Gamma band, which could account for this exception.

4.4. The MCI recognition

Based on the most prominent AUCs that existed in alpha1 and alpha2, the network and
MCoh features in those two bands were used for MCI recognition. Table 3 clearly shows
the classification differences between the network properties and the MCoh. When the same
reference was adopted, the network feature-based recognition outperformed the MCoh-based
classification (with only one exception in the alpha1 band, when LDA is used for the AR
reference features). The classification Acc using the MCoh is between ∼75% and ∼85%,
which is consistent with the 78%–84% Acc based on the scalp EEG, as reported in previous
studies (Bennys et al 2001, Buscema et al 2007, Cichocki et al 2005, Rossini et al 2008,
Stam et al 2003). In the current work, the 90% Acc was achieved when the network features
in the alpha2 band were adopted for MCI recognition. Unlike the MCI recognition studies
that use the power spectrum or Coh, the current work used network properties as the basis
for classification. MCI disorder has been proven to involve the abnormality of multiple
brain areas just as the different network topology shown in figure 2. In essence, network
properties are the statistical measurement of the spatial topology and it can capture the topology
information for MCI recognition. Therefore, it may be more appropriate to explain and classify
the MCI from the network perspective (Ding et al 2013, Rombouts et al 2005, Seo et al
2013).

Table 3 also demonstrated that the EEG reference choice did influence the MCI
recognition, where the EEG with IR from REST could provide the higher recognition ability
(>85%) for most of the tested cases, regardless of whether the different feature combinations
or the different classifiers were adopted, compared to the other two non-zero references. More
importantly, one critical criterion for a clinical application is to recognize the patients as
accurately as possible; in other words, a high Sen that denotes less possibility of failing to
recognize the MCI patients is expected. Table 3 showed that IR can reach a recognition Sen
of above 90%, which is consistently much higher than the other two references for the two
classifiers when the network features are considered.

In the current work, the NC group is screened using relatively strict criteria to select
the NC subjects that have a high performance, which could result in reliable differentiation,
as reported in the current work. However, among the different reference and metric-based
classifications, recognition based on network properties constructed with a zero reference
consistently has the best Acc in most of the concerned frequency bands. IR in the current
work is realized using the 3-shell sphere head model, and the realistic head model constructed
for a specific individual may further improve the closeness of the reference to the actual zero
reference. A possible limitation of the current work is that the MCI dataset is relatively small.
Although the results are stable and promising, more subjects are needed to further confirm the
findings. Another possible solution to improve MCI recognition performance is to combine
various types of features and use the feature selection criteria to choose the compensational
information (Dauwels et al 2010a). Compared with other techniques like fMRI, EEG is usually
non-stationary, which may influence the related analysis. The future study needs to pay special
attention to this issue. In addition to the methodology development, a difficulty for the accurate
diagnosis of MCI arises mainly because of the very limited knowledge about the underlying
neural mechanism of MCI, and a more reliable recognition is dependent on future studies for
the related neural mechanism (Albert et al 2011, Dauwels et al 2010a, Rossini et al 2008).
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5. Conclusions

The conducted studies demonstrate that the resting network of the scalp EEG with a zero
reference that is realized by REST can be used to robustly classify the MCI with an Acc of
approximately 90%, which is close to the classification obtained using MRI (Fan et al 2008,
Misra et al 2009, Wee et al 2012). Compared with the existing MCI classification studies that
use EEG, the performance improvement of the current work can be attributed to the following
exclusive techniques: (a) first of all, the network properties have more discriminative ability
than the traditional Coh for the MCI recognition, possibly because the network view is a better
portrayal of the intrinsic neural mechanisms of MCI; and (b) IR-based EEG data can construct
networks to save information about the truly existing differences between MCI and NC; in
other words, REST can partially recover the lost information that is caused by a non-zero
transformation.
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