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Abstract—How to localize the neural electric activities within
brain effectively and precisely from the scalp electroenceph-
alogram (EEG) recordings is a critical issue for current study
in clinical neurology and cognitive neuroscience. In this
paper, based on the charge source model and the iterative
re-weighted strategy, proposed is a new maximum neighbor
weight based iterative sparse source imaging method, termed
as CMOSS (Charge source model based Maximum neighbOr
weight Sparse Solution). Different from the weight used in
focal underdetermined system solver (FOCUSS) where the
weight for each point in the discrete solution space is
independently updated in iterations, the new designed weight
for each point in each iteration is determined by the source
solution of the last iteration at both the point and its
neighbors. Using such a new weight, the next iteration may
have a bigger chance to rectify the local source location bias
existed in the previous iteration solution. The simulation
studies with comparison to FOCUSS and LORETA for
various source configurations were conducted on a realistic
3-shell head model, and the results confirmed the validation
of CMOSS for sparse EEG source localization. Finally,
CMOSS was applied to localize sources elicited in a visual
stimuli experiment, and the result was consistent with those
source areas involved in visual processing reported in
previous studies.

Keywords—EEG source imaging, Inverse problem, Weighted

minimum norm solution, Charge source model, Weight

matrix, Neighbor source information.

INTRODUCTION

The scalp electroencephalogram (EEG) represents
electrical activity manifested by the ensemble of a great
number of neurons within the brain. Estimating the
location and distribution of the underlying equivalent
electric generators based on the scalp EEG is the EEG

inverse problem.16 Presently, the activated areas are
usually simulated or approximated with some electro-
magnetic model. The equivalent dipole,12,19,27 the
equivalent charge and the local field potential are the
three currently adopted source models, and among
these three models, the charge model is promising for
its simpler expression, wider adaptivity and smaller
computation complexity for EEG inverse problem
when compared with other two source models for many
situations.7,10,11,32,33,36 In this paper, the inverse prob-
lem is expressed and solved based on the charge source
model, and the algorithm has the similar procedure
when the other two kinds of source models are con-
sidered for inverse problem, where the only difference is
the lead field matrix constructed with different sources.

The general EEG inverse problem with an assump-
tion of a few unknown focal activated areas is essen-
tially a non-linear optimization problem. To simplify
the EEG inverse problem, the complex non-linear
problem is sometimes realized by a linear approach,
which is usually based on the distributed source
assumption that the solution space consists of all the
possible source positions.11,16,22,28,30,31,33 Mathemati-
cally, such a linear approach can be stated as,

Y ¼ AXþ e ð1Þ

where Y is the scalp EEG recordings of M 9 1, M is
the number of scalp electrodes. A is the lead field
matrix of M 9 N with N being the dimension size of
the discrete solution space. X is the source solution
vector to be estimated and e is the noise induced in the
recording. For EEG inverse problem, M is usually
much smaller than N, which means that the system is
underdetermined, thus the problem lacks a unique
solution because there are an infinite number of pos-
sible source configurations that could explain the
measured recordings Y. To obtain a physiologi-
cally feasible solution, some possible and reasonable
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constraints are necessary, such as the minimum norm
least square solution (MNS) developed in the early
effort.9,30 However MNS favors the superficial source,
that is to say, for a deep source, the localized source
will have some bias toward the scalp surface. The
popularly adopted one is the weighted minimum norm
solution (WMNS), among which the low-resolution
electromagnetic tomography (LORETA) is the mostly
used due to its robust imaging ability to the extended
sources, though its result is really blurring, and
LORETA solution is often used the initialization dis-
tribution for such some iterative procedures as
FOCUSS. Many researchers are still making great
efforts to improve the spatial resolution of EEG
localization methods to satisfy the requirements of
neurological research.15,16,20,21,34

The difficulty to solve EEG inverse problem is
somewhat due to the seriously underdetermined char-
acteristics of matrix A with much more unknown
variables than the observed ones, thus another way to
improve the solving of the EEG inverse problem is to
use source model with fewer freedoms to lower the
dimension of matrix A, i.e., reduce the unknown
variables. Currently, dipoles normal to cortex surface
are used to map activations on cortex, and these radial
dipoles are useful when activations are mainly on the
superficial cortex, whereas some deep brain areas have
been found to be involved in such complex cognitive
processes as inhibition of return (IOR).24,25 Appar-
ently, the cortex radial dipoles are not competitive for
such cognitive researches. Alternatively, other source
models such as the charge model and the local field
potential model are newly developed to image brain
activations, both of them are of just one unknown
variable (freedom) for one source point compared to
three when dipole is used for the general EEG inverse
problem,7,16,33 therefore using the charge source model
or local field potential model will lower the dimension
of the inverse problem and improve the performance of
the lead field matrix, and thus the solving will be much
easier and more efficient compared with the dipole
model. (Certainly, when some special dipoles such as
radial dipoles on cortex surface are used, the dipole
freedom can be reduced to one, too.) In Yao et al.,32,33

the authors developed algorithms based on charge
source model to estimate the electrical activities of
brain. The authors also discussed the difference be-
tween charge model and dipole model in detail, and
confirmed that the charge model is feasible for the
localization of the brain activities.33,36 Alternatively, in
Grave de Peralta Menendez et al.,7 the authors devel-
oped the method based on potential to estimate acti-
vated brain areas, too.

To solve this underdetermined system, sparsity of
source distribution has been used as another constraint

imposed to EEG inverse problem.4,15,16,28,31 Presently,
there are three approaches to get sparse solution for
EEG inverse problem. In the source localization ap-
proach developed in early studies, a few sources were
prior supposed, and then a non-linear optimization
method was taken to solve the inverse problem, which
is usually called the dipole fitting approach. The sec-
ond way was to directly solve the lp (p £ 1) norm
solution of the inverse problem, such as the l1 norm
solution.28 In recent years, the methods based on
solution space shrinking were emphasized. Starting
with an initial blurring distributed source solution,
such as MNS and LORETA, by iteratively shrinking
the solution space, the solution would converge to a
relatively sparse one, including the self-coherence
enhancement algorithm (SCEA)34 and the focal
underdetermined system solver (FOCUSS),3–6,17,31 etc.
FOCUSS is a repeated WMN procedure with the
weighting matrix constructed from the source strengths
in previous iteration, and it recursively adjusts the
weighting matrix until most elements of the solution
become nearly zero, thus achieving a sparse solution.

However, the final solution of FOCUSS largely
depends on the initial source distribution,22 and vari-
ous studies confirmed that FOCUSS is sensitive to
source configurations to some degree,16,17 i.e., for some
special source configurations, FOCUSS cannot recov-
ery the sources as desired. Current efforts in
improvement of FOCUSS are mainly paid to improve
the calculation of the matrix inverse and various
techniques such as singular value decomposition
(SVD) truncation and other regularization techniques
are adopted to deal with noise.6,16,17,31

The weight matrix adopted in FOCUSS is based on
the source distribution estimated in the prior iteration.
According to FOCUSS weighting strategy, the stron-
ger source is estimated on one solution point in the last
iteration, the larger weight will be imposed on the
corresponding solution position in the next iteration,
thus in the following iterations, these strong sources
will be usually enhanced and simultaneously sources in
other solution positions will be easily degraded. Such a
strong-source enhancement strategy made it difficult
for FOCUSS to modify the possible solution bias
induced in the previous iterations and the bias will be
unexpectedly passed down to the following iterations,
and we think this weight drawback may be somewhat
overcome with the aiding of the neighboring source
information. In fact, in the initial source distribution
provided by those methods such as LORETA and
MNS to FOCUSS, bias is unavoidable when true
sources are sparsely distributed, and the source posi-
tion is quite possible to be wrongly estimated on some
other neighbored point. Therefore, all those positions
in the neighbor instead of only the position having
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strongest power could be the possible source candidate
locations in one iteration, and we need to impose large
enough weights on those possible source positions to
improve their competitive ability to compete with the
current strongest position in the next iteration to
modify the bias, and the method developed in this
paper is designed in this way to improve the source
localization ability.

In this work, we defined a new weight matrix by
utilizing the neighboring source information in the last
iteration, and then the new weight is integrated into an
iterative procedure like FOCUSS to iteratively solve
the EEG inverse problem with the charge source
model. For convenience to describe the approach in
the paper, the new weighting iterative method is
termed as Charge source model based Maximum
neighbOr weight Sparse Solution (CMOSS). The
method was introduced in section ‘‘Methods.’’ The
adopted head model and lead field were described in
section ‘‘Head model.’’ In section ‘‘Simulation test,’’
the algorithm was tested and compared with FOCUSS
and LORETA on a realistic 3-shell head model for
various source configurations. Finally, the new method
was applied to localize the sources elicited in an
exogenous visual stimulus experiment in section ‘‘Real
data test.’’ Discussions and conclusions concluded this
paper.

METHODS

Charge Source Model and Forward Calculation

The popularly used source model in EEG inverse
problem is the dipole model, and the charge model is a
relatively new one for EEG imaging.32,33,36 In fact, the
theory of brain electric field shows us that the potential
F generated by neural electrical activities in an infinite
homogeneous head model can be stated as,35
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where r is the conductivity, ~JS is the primary current
density distribution of neurons, IF is the divergence of
the current density usually termed as current source
density. The first equation shows that ~JS behaves like a
dipole, and the third equation shows that IF behaves like
a charge, thus Eq. (2) shows us that both charge and
dipole can generated the same potential, and they are
theoretically related to each other. In essence, both of

them are equivalent sourcemodels approximating to the
complex actual physiological neural activities,35,36 and
between them, a dipole may be considered as an
equivalent representation of a pair of closely neigh-
boring positive and negative charges. As compared with
dipole, the number of unknown variables to be esti-
mated when using charge model is only 1/3 of that when
using dipole model without radial orientation or other
constraints imposed, and the reduction of unknown
variables (freedom) can lower the computation com-
plexity and improve the characteristic of lead matrix,
which will avail for the stable solving of the inverse
problem. In this paper, we used the charge source model
to image the source activations, and some further
explanations of the difference between charge model
and dipole model can be found in literatures.32,33,35,36

In this work, the forward calculation for the com-
plex realistic head model is conducted with Boundary
Elements Method (BEM).1,2 The only difference for
BEM between dipole and charge is to use the charge
potential field (the third formula in Eq. 2) instead of
the dipole potential field (the first formula in Eq. 2) in
the standard BEM approach.

Weighted Minimum Norm Solution

Strategy of the Weighted Minimum Norm

The weighted minimum norm solution is the mostly
adopted algorithm in current EEG inverse problem.
With weight matrix W, the weighted form of EEG
inverse problem is,

Y ¼ AXþ e ¼ AWWþXþ e ¼ Dqþ e; with

X ¼Wq;D ¼ AW
ð3Þ

where q is an auxiliary variable. The weighted mini-
mum-norm solution of the inverse problem is,

X̂ ¼W�1AT½AW�1AT�þY ð4Þ

where [AW-1AT]+ denotes the Moore–Penrose pseu-
do-inverse of [AW-1AT]. The weight matrix W greatly
affects the solution of inverse problem and in the fol-
lowing sections, the Laplacian and iterative weights
that can estimate the sources extensively or sparsely
will be introduced.

Laplacian Weighted Minimum Norm Solution

The widely adopted Laplacian weighted matrix W
in EEG inverse problem has the form as,

W ¼ BG; with G ¼ diagðka1k; ka2k; . . . ; kaNkÞ ð5Þ

where B denotes the discrete spatial Laplacian opera-
tor; kaik is the ith column norm of the lead field matrix
A.22 The solution with such weight strategy is the low
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resolution electromagnetic tomography (LORETA)
and the solution of LORETA is extensive and blurring.
The corresponding LORETA based on charge source
model, i.e. cLORETA, was developed by Yao and He,
and the difference of sources localized with these two
source models was discussed in Refs. 11,33.

Iterative Re-Weighted Minimum Norm Solution

Different from the LORETA weight strategy, the
weight of the re-weighted minimum norm solution is
iteratively constructed with the solution during the
iterations. The weight matrix Wk in the kth iteration is
constructed by the prior iteration solution Xk-1 as,

Wk ¼ ðdiagðXk�1ÞÞ ð6Þ

With this weight, the inverse problem can be solved
with a sparse and focal solution and the iterative
solving procedure based on this weight strategy is
named the focal underdetermined system solver
(FOCUSS) by Gorodnitsky.4–6 In practice, FOCUSS is
implemented with the following three steps:

1:Wk ¼ ðdiagðXk�1ÞÞ
2: qk ¼ ðAWkÞþY
3: Xk ¼Wkqk

ð7Þ

The initial source distribution X0 is usually provided
by LORETA at the beginning of the iteration proce-
dure. One FOCUSS procedure needs to repeat the
above three steps for several times, when the iteration
number is above the predefined maximum iteration
number or the difference between the neighboring
iterations is smaller than the termination tolerance
error, the iteration will be terminated and a sparse and
energy localized solution will be achieved.

Similar to that of cLORETA, when the lead field
matrix A is calculated with the charge source model, the
Charge FOCUSS (cFOCUSS) can be easily developed.

Iterative Maximum Neighbor Weight Sparse Solution

The Iterative Maximum Neighbor Weight

In the kth iteration of FOCUSS, the object function
can be represented as,

min
Xk

kWþk Xkk2 ¼ min
Xk

kqkk2 ¼ min
Xk

XN
i¼1;wkii 6¼0

xki
wkii

� �2

ð8Þ

where wkii is the ith diagonal element of Wk, and xki is
the ith element of Xk. The above equation shows that a
large weight can lower the contribution of those
sources at the corresponding spatial position to the
object function, and therefore avails for the estimation
of a source with strength xki at those positions in sense

of the minimum norm solution. As the weights of
FOCUSS are directly constructed with the sources
estimated in the last iteration, the FOCUSS iteration
procedure will favor to enhance those spatial positions
with strong sources estimated in the previous iteration,
and simultaneously the sources on those positions with
weak strength will be easily iteratively degraded, thus
when the strength difference between the strong source
and weak source is too remarkable, in view of mini-
mum sense denoted by Eq. (8), those positions with
very weak sources estimated in the prior iteration are
not able to compete with those positions having strong
sources in prior iteration. Apparently, with such a
weighting way, if the initial or previous estimation has
spatial bias, it is not easy for FOCUSS to modify the
bias effectively in the following iterations due to the
neglect of the neighbor information, and may finally
result in a biased source distribution.15

In each iteration of the FOCUSS procedure, it is
quite possible to wrongly localize the sources on other
position close to the actual source position, and in the
FOCUSS weighting strategy, FOCUSS may fail to
modify this bias due to a relatively weak weights
imposed on the actual solution points in the following
iterations, and if this bias is not rectified in the next
iteration in time, this bias may expand. Alternatively,
we can construct a weight not just using the solution of
the point itself but also combing the information of the
neighbor points to modify the possible solution bias
during iterations. By considering the sources in
neighbors, we defined a new diagonal weighting matrix
WN with its ith diagonal element wNii being,

wNii ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðjxjj;xj 2 XiÞ � xi

q
;xi>0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðjxjj;xj 2 XiÞ � jxij

q
;xi � 0

8><
>: ;1� i�N

ð9Þ

where Xi is the 26-neighbor domain of the ith point in
the discrete solution space. With the weighting matrix
WN, the weighted form of inverse problem is similar to
that in Eq. (3) as,

Y ¼ AX ¼ AWNW
þ
NX ð10Þ

In matrix WN, if the strongest source within neighbor
is located on current neighbor center, the weight is
the current source strength, which is similar to the
FOCUSS weight; however, when the strongest source
is not located at the neighbor center, the weight is
enhanced compared to that used in FOCUSS.
Apparently, the main difference between these two
weight strategies is in the case when the strongest
source is not located at the neighbor center. For this
case, the FOCUSS strategy will impose a weaker
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weight on this spatial position, and the source at this
position is easy to be degraded in the consecutive
FOCUSS iterations, thus if this position is the actual
source position, FOCUSS may localize a source on
other position close to the true position with certain
bias or even lose it; however, with the new construction
strategy, those weights may be enhanced and empha-
sized by the neighboring strong sources so that the
contrast between the large weight and small weight will
be lowered in one neighbor. As stated by the object
function in Eq. (8) that the large weight avails for the
estimation of sources at the corresponding solution
points, so the enhanced weights can provide more
chance for iteration procedure to modify the source
bias induced in the former iterations.

During the first several iterations, the estimated
sources are distributed on many points in the discrete
solution space, and accordingly there may have several
sources in a neighbor, thus the enhancement of weight
is obvious. With the iteration on, the source distribu-
tion becomes sparse with many null entries existing in
the solution space, therefore the weights constructed in
these iterations are not easy to be enhanced and are
very similar to FOCUSS weight, which can guarantee
the convergence of CMOSS.

Besides, such regularization techniques as singular
value truncation can be adopted to deal with the effect
of noise contaminated in signal.6,17,29

Procedure of CMOSS

The CMOSS can be realized with the following
iteration procedure:

1. Preparation. Find and store the 26 neighbors of
each point in the discrete solution space according
to Euclidian distance measure; Calculate the charge
lead field matrix A.

2. Initialization. Set k = 1; set iteration termination
error e and maximum iteration number Tmax; ini-
tialize source distribution Xk-1 with cLORETA
solution.

3. Update the diagonal weight matrix WNk according
to formula (9).

4. Estimate the value of the auxiliary variable qk:
qk = (AWNk)

+Y.
5. Update source distribution: Xk = Wkqk.
6. Judge the termination condition. Compare the dif-

ference between the current and the last source
distribution, if kXk � Xk�1k � e or k ‡ Tmax,
terminate the iteration and Xk is the final source
distribution; else k = k + 1, and jump to step 3
and go on.

Though the procedure is described with the charge
source model, it is easy to extend this weight strategy

to the dipole source model or local field potential
model only by using the corresponding lead field
matrix to replace the charge source lead field matrix.

HEAD MODEL

A 3-shell realistic head model is used for EEG source
localization, whose conductivities for cortex, skull and
scalp are 1.0, 1/80 and 1.0 X-1 m-1, respectively.26 The
solution space is restricted to cortical gray matter,
hippocampus and other possible source activity areas,
consisting of 910 cubic mesh voxels with 10 mm inter-
distance. The number of vertices on brain, skull and
scalp surfaces are 1514, 605 and 1219, and the corre-
sponding numbers of the triangles on brain, skull and
scalp surfaces are 3024, 1206 and 2434, respectively.
The 128 electrodes were registered to the scalp surface,
and the meshes and electrodes are shown in Fig. 1.
When using BEM to calculate the potential of elec-
trodes, we regarded the potential on the vertex closest
to the electrode as the potential of the corresponding
electrode. The lead field matrix A is calculated with
charge model by BEM2 for the 128 electrode system
and it is a matrix with dimension of 128 9 910. The
origin of the coordinate system is defined as the mid-
point between the left and right pre-auriculars, and the
directed line from the origin through the nasion defines
the +X-axis, the +Y-axis is the directed line from the
origin through the left pre-auricular. Finally, the
+Z-axis is the line from the origin toward the top of
the head (through electrode Cz). In all of the results
reported, the maximum iteration number Tmax for
cFOCUSS and CMOSS is 50 for both, and the toler-
ance error e is 1.0E-6 for both of them.

SIMULATION TEST

Localization for Different Source Configurations

The localization methods were greatly affected by
the source configurations, i.e., source number, source

FIGURE 1. Meshes of the realistic head model for BEM. The
blue points are the electrodes on the scalp.
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FIGURE 2. Localization for configuration with two sources. Colorful rectangle area in (b) is the estimated source location; the
blue cross line within the colorful rectangle area indicates the overlapping area of the simulated source and the estimated source;
the blue cross line within green circle indicates those simulated source locations that are not overlapped with the positions of the
estimated sources.
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position, etc.8,16 In the following simulations, three
different source configurations containing some deep
sources were selected to test the localization perfor-
mance of cLORETA, cFOCUSS and CMOSS,
respectively.

Configuration with Two Sources

Two charge sources with strengths of 4.2 and 3.0
were placed at two isolated positions (-43.0, 9.0, 1.7)
(mm) and (27.0, 49.0, 1.7) (mm), where source 1 was a
deep source. The scalp potentials were obtained by
BEM. cLORETA, cFOCUSS and CMOSS were taken
for source localization. The localization results are
shown in Fig. 2.

Configuration with Three Sources

In this simulation, three charge sources with
strengths of 6.0, 4.0 and 3.9 were placed at three
isolated positions (7.0, -21.0, 71.7) (mm), (-13.0,
-11.0, 51.7) (mm) and (67.0, 19.0, 11.7) (mm), among
which the first and the third were two superficial
sources and the second one was a deep source.
The scalp potentials were generated by BEM, too.
cLORETA, cFOCUSS and CMOSS were also used to
localize the three sources. The localization results are
shown in Fig. 3.

To analyse the effect of the new weight matrix on
the source estimation in the iterations, the source
information in the 6 cFOCUSS iterations and in the
6 iterations of CMOSS are shown in Fig. 4, respec-
tively.

Configuration with Four Sources

In this simulation, four charge sources with strengths
2.3, 4.2, 3.0 and -5.8 were placed at four isolated
positions (-53.0, -11.0, -18.3) (mm), (6.7, 9.0, -8.3)
(mm), (-13.0, 29.0, -28.3) (mm) and (-53.0, 59.0,
21.7) (mm), with the former three sources deeply
located and the fourth one superficially located. The
localization results are shown in Fig. 5.

Localization Under Noise

In this simulation, we used the above configuration
with three sources to simply test the effect of noise on
these three EEG inverse methods. In this paper, Noise-
to-signal-ratio (NSR) is used to represent the noise
level, and NSR is defined as the ratio between the
power of noise and that of signal. As EEG inverse
problem is usually sensitive to noise, and 5% limitation
has been suggested for actual problem,23 the simulated
scalp potentials were contaminated with 5 and 10%
white Gaussian noise. The localization results of
cLORETA, cFOCUSS and CMOSS with 5 and 10%
noise are shown in Fig. 6. For the 5% noise case, the
SVD truncation thresholds for cLORETA, cFOCUSS
and CMOSS are 0.03, 0.05 and 0.05, respectively; for
10% noise case, the SVD truncation thresholds were
set to be 0.08, 0.1 and 0.1, respectively.

Statistical Features of the Localization Methods

Generally, the head model, source position and the
source configuration etc affect the performance of a

FIGURE 3. Localization for configuration with three sources. Colorful rectangle area in (b) is the estimated source location; the
blue cross line within the colorful rectangle area indicates the overlapping area of the simulated source and the estimated source;
the blue cross line within green circle indicates those simulated source locations that are not overlapped with the positions of the
estimated sources.
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localization algorithm. Position error and strength
error are two criteria to quantitatively evaluate the
EEG localization algorithm.15,16,31 The localization
position error is defined as Elocalization ¼ kpest � psimuk;
where pest and psimu are the position vectors of the
estimated source and the desired (simulated) source; the
strength error is defined as Eenergy ¼ kJsimu�Jestk

kJsimuk � 100%;

where Jest and Jsimu are strengths of the estimated
source and the assumed (simulation) source, respec-
tively. For the one source case, the source with the
maximum power is usually regarded as the estimated
source,8 and if more sources are used it is not easy
to correctly assign the estimated sources to the
corresponding simulated sources one by one. In this

FIGURE 3. continued.
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simulation, by placing unit source on each solution
node, Elocalization and Eenergy were calculated for each
node with 10% noise considered, and then the mean
and standard deviation (SD) of Elocalization and Eenergy

were calculated over the 910 cases. Apparently, a small
Elocalization and Eenergy were expected for a good local-
ization method when configuration consists of point-
like sources.

After Elocalization, Eenergy were evaluated on each
position, the mean and SD of errors were calculated
over all the 910 cases for the three methods. The two
indices are shown in Fig. 7. SVD truncation thresholds
were set to be 0.08, 0.1 and 0.1 for cLORETA,
cFOCUSS and CMOSS, respectively.

REAL DATA TEST

Exogenous Visual Stimulus Experiment

Twelve subjects (22–30 years of age) participated in
the experiment. All had normal or corrected-to-normal
vision and were naive with regard to the purpose of
the experiment. The subjects were paid for the exper-
iment.

The experiment followed a typical exogenous visual
paradigm. A fixation cross (0.5�9 0.5�) was presented

at the center of the monitor, with a standard EGI’s
keyboard composed of four keys side by side. The
target stimulus with a bar (0.50� 9 0.25�) appeared
with equal probability in the left visual field (LVF) or
right visual field (RVF), with its center 5� off and 2.5�
above the fixation cross. Each trial began with the
presentation of a fixation point (a duration of 700 ms).
And then the target was presented for duration of
200 ms. The intertrial interval (ITI) ranged randomly
between 1200 and 1400 ms.

Subjects were required to fixate at the cross and
minimize eye blinks and body motion as possible
during all the stimulus blocks. They were instructed to
press the key with their right thumb if the target
stimulus appeared. Response accuracy and speed were
emphasized equally. The experiment consisted of a
total of 800 trials for each participant, separated into
five blocks with each of 160 trials. Short breaks were
allowed between blocks.

The EEG was recorded with the EGI 128-channel
EEG recording system (Electrical Geodesics, Inc.,
2003). The vertex electrode was used as reference for
recording and the recordings were re-referenced to
average offline. The bandpass was set to 0.1–40 Hz; the
sampling rate was 250 Hz (4-ms samples); and all
impedances was kept below 5 kX by moistening a

Iteration:  1

(a) (b)

Iteration:  2

Iteration:  3 Iteration:  4

Iteration:  5 Iteration:  6

 cFOCUSS 

Iteration:  1 Iteration:  2

Iteration:  3 Iteration:  4

Iteration:  5 Iteration:  6

 CMOSS 

FIGURE 4. The sources estimated in 6 iterations for cFOCUSS and CMOSS: (a) 6 iterations for cFOCUSS; (b) 6 iterations for
CMOSS.
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sponge with saline and placing it between the skull and
electrode.18 The continuous EEG was segmented into
an epoch starting 200 ms before the onset of the
stimulus and lasting until 800 ms after the stimulus
onset. EEGs were averaged separately for all combi-
nations of conditions (visual field: left vs. right) over
the 1000 ms epoch. Individual trials with excessive
muscle activities, eye movements, or blink artifacts
were excluded. The grand average of the epochs for the

left target stimuli is shown in Fig. 8. The peak at
176 ms elicited by visual stimulus was used for source
localization.

Sources of Visual Stimuli Localized with CMOSS

With CMOSS, the activated areas at 176 ms
responding to visual stimuli are shown in Fig. 9 where
SVD truncation threshold used for CMOSS was 0.1.

FIGURE 5. Localization for configuration with four sources. Colorful rectangle area in (b) is the estimated source location; the
blue cross line within the colorful rectangle area indicates the overlapping area of the simulated source and the estimated source;
the blue cross line within green circle indicates those simulated source locations that are not overlapped with the positions of the
estimated sources.
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FIGURE 5. continued.
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As shown in Fig. 9, the strong activations at 176 ms
elicited by the left stimuli were mainly localized in the
right occipital (i.e. the contralateral to the visual
stimulus), and the left occipital also was weakly

activated. These early sensory related activations
reflected that the visual stimulus was perceived in the
primary visual cortex. The relatively weak activations
were localized in the left frontal eye fields and the right

FIGURE 6. Localization for configuration with three sources under noise of different NSRs. Colorful rectangle area in (b) is the
estimated source location; the blue cross line within the colorful rectangle area indicates the overlapping area of the simulated
source and the estimated source; the blue cross line within green circle indicates those simulated source locations that are not
overlapped with the positions of the estimated sources.
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parietal areas. The common activation of these two
oculomotor areas were consistently involved in exog-
enous orienting.13,14,24,25

DISCUSSION AND CONCLUSIONS

In section ‘‘Localization for different source con-
figurations,’’ three different source configurations
including the deep sources were used to test the

localization ability of cLORETA, cFOCUSS and
CMOSS. For the tested three configurations,
cLORETA and cFOCUSS both showed some locali-
zation bias toward the superficial surface for the deep
sources or even lost them. Furthermore, as shown in
Figs. 2a, 3a, and 5a, the source configuration esti-
mated with cLORETA was very scattering and blur-
ring with most sources strength rather weaker than
actual they were. Compared with cLORETA, the
sources recovered by cFOCUSS were much closer to

FIGURE 6. continued.
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the actual cases. For CMOSS and cFOCUSS, there
were many cases that both cFOCUSS and CMOSS
recovered the actual sources well, which were not
reported in this paper. The shown three cases are
configurations that cFOCUSS did not recover the
sources perfectly, but CMOSS did. When using the
new weighting matrix combined with the neighboring
source information, CMOSS modified the possible
estimation bias and reconstructed the sources ideally.
As shown in Fig. 4, the difference between cFOCUSS
procedure and CMOSS procedure was obvious: In the
iterations of cFOCUSS, only two relatively strong
sources were observed. As shown in Fig. 3, cLORETA
did not estimate a relatively strong source at the
expected solution position for the third source, and
when cFOCUSS was initialized with this cLORETA
solution, the adopted weight strategy would consis-
tently impose a small weight on this solution point in
the following iterations, which would not provide the

strong enough competitive ability for the source on this
point to compete with points in the discrete solution
space with strong source values. As the iterations
show, the cFOCUSS weighting strategy did not effec-
tively modify the bias during iterations and accord-
ingly lost this source eventually. During the iterations
based on the new weight matrix, though the source at
the simulated source 3 was still of small strength in the
first iteration, however, with the combination of
neighboring source information into the iterations, a
stronger weight than that constructed in cFOCUSS
procedure was assigned to this solution point, which
would give this point more chance to compete with
other positions. With this enhanced weight strategy,
the bias could be gradually modified in the following
iterations and the source lost in cFOCUSS could be
well recovered. As shown in Fig. 4, from the 2th iter-
ation, CMOSS began to construct a relatively strong
source on the position of source 3, which was still weak
in the corresponding iterations of cFOCUSS. When
source configuration becomes more complex with
more sources or with deep sources, both cFOCUSS
and cLORETA showed to be uncompetitive to image
them with some blurring and biased sources occur-
ring,15,16 however the results in this section confirmed
that CMOSS was less affected by the source configu-
rations and could localize those sources robustly.

When contaminated with noise, the sources esti-
mated with cLORETA, cFOCUSS and CMOSS were
more blurring with some relatively strong artificial
sources occurring in other unexpected positions.
Compared with cLORETA and cFOCUSS, CMOSS
still recovered the sources with higher accuracy.

For the statistical performance calculated on the
whole discrete solution space, the Elocalization and
Eenergy of cLORETA were much larger than those

FIGURE 8. ERP evoked by left target stimuli.

FIGURE 7. The statistical localization indices of cLORETA, cFOCUSS and CMOSS. (a) Mean and SD of Elocalization; (b) Mean and
SD of Eenergy.
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calculated with other two methods. However, this
result just means cLORETA is not so good for local-
izing sparse sources. cFOCUSS localized the tested 910
isolated sources well with 10.45 mm for average of
Elocalization and 29.11% for average of Eenergy. When
CMOSS was used, the average of Elocalization and
Eenergy were 6.45 mm, 16.97% for the 910 cases.

When applied to localize the sources elicited by the
left visual stimuli, the activations were mainly detected
in right occipital, left frontal eyes fields, left occipital
and right parietal areas, and these activated areas were
consistent with those reported in previous similar
visual researches.13,14,24,25

In essence, the new weight strategy gives CMOSS
more chance to correct the biased solution in the
iterations. In the cFOCUSS iteration procedure, once
the source on the true position was incorrectly esti-
mated with a rather weak strength in certain iteration
step, in the following iterations, this source is easy to
be compressed because of the smaller weight imposed
on it, and it is very hard for cFOCUSS to modify this
bias. Whereas, by combining the neighbor source

information into the new weight, the sources on those
points in the solution space incorrectly compressed in
previous iteration still have chance to be re-emphasized
by the information of neighboring sources, thus those
re-emphasized points can compete with other points to
capture possible strong sources on them again, and
accordingly the possible bias may be compensated in
the following iterations.

Certainly, as CMOSS was designed to localize
sparse sources, for an actual extensive source config-
uration, it may not get the real image but an equivalent
sparse one with some sources lost just like that of
cFOCUSS. In this paper, the inverse problem was
solved with the charge source model, and accordingly
the similar weighting strategy was suitable for the
dipole model or the local field potential model, where
the main difference among them is only the different
lead fields A and different number of unknown vari-
ables for inverse problem. In this work, we make use of
the original version of LORETA to get the initializa-
tion values for both FOCUSS and CMOSS, we may
also use other new low-resolution solution such as

FIGURE 9. The activated areas of left visual stimulus localized with CMOSS. Areas tagged with arrows: (a) right occipital; (b) left
frontal eyes fields; (c) left occipital; (d) right parietal areas.
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eLORETA21 or sLORETA20 to initialize FOCUSS
and CMOSS, and such a substitution may potentially
further improve the performance of them.
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