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Recent evidence indicates the existence of pyramidal cells (PCs) and interneurons with nontrivial tuning characteristics for sound
attributes in the primary auditory cortex (A1) of mammals. These neurons are functionally distributed into layers and sparsely organized
at a small scale. However, their topological locations at a large scale in A1 have not yet been investigated. Furthermore, these neurons are
usually classified from fine maps of attribute-dependent spiking activity, and not much attention is paid to population postsynaptic
potentials related to their activity. We used extracellular recordings obtained from multiple sites in A1 of adult rats to determine neuronal
codifiers for sound attributes defined by coarse representations of the population dose–response curves. We demonstrated that these
codifiers, majorly involving PCs, are heterogeneously distributed along A1. Spiking activity in these neurons during stimulation was
correlated to � (12–25 Hz) and low � (25–70 Hz) postsynaptic oscillations in the infragranular layer, whereas in the supragranular layer,
better correlations were found with high � (70 –170 Hz) oscillations. The time-frequency analysis of the postsynaptic potentials showed
a transient broadband power increase in all layers after the stimulus onset that was followed by a sustained high � oscillation in the
supragranular layer, fluctuations in the laminar content of the low-frequency oscillations, and a global attenuation in the low-frequency
powers after the stimulus offset that happened together with a long-lasting strengthening of the � oscillations. We concluded that, for
rats, sounds are codified in A1 by segregated networks of specialized PCs whose postsynaptic activity impinges on the emergence of
sparse/dense spiking patterns.

Introduction
Perceptual dimensions in human audition (i.e., timbre, pitch, and
loudness) are determined by three fundamental attributes of a
sound, i.e., the frequency, the amplitude, and the time envelope of
harmonic composition. The codification of these attributes has
been thought to occur by means of spatially distributed assem-
blies of neurons exhibiting attribute-dependent response curves.
The threshold-based tonotopic gradient for frequency codification
in the primary auditory cortex (A1) constitutes the most accepted
spatial segregation of a sound attribute in mammals [cats (Woolsey
and Walzl, 1942), rats (Sally and Kelly, 1988)]. Monotonic neurons,

presumably used for such a construction, show a V-shaped fre-
quency response area (FRA) with the spectral bandwidth Q10 (Q40)
for the near (away) response threshold. Quite the opposite, suprath-
reshold stimulation at a single frequency created patchy activation
patterns extended over the entire A1 (Bakin et al., 1996).

Recently, nonmonotonic coding schemes in A1 (i.e., neurons
with an O-shaped FRA), known as intensity tuning, have been
proposed for both level-invariant representations (Sadagopan
and Wang, 2008) and low-level codifications (Watkins and Bar-
bour, 2011). In cats and monkeys, monotonic neurons are spa-
tially segregated from those that are nonmonotonic (Sutter and
Schreiner, 1995; Recanzone et al., 2000; Linden and Schreiner,
2003). Still, it needs to be clarified whether the same or different
neuronal assemblies take part in codifying sound time envelopes
through a spatial segregation strategy. Some studies have re-
ported a pitch-selective area near the low-frequency border of A1
[monkeys (Bendor and Wang, 2005, 2010), ferrets (Bizley et al.,
2009, 2010)], whereas others claim peculiar spatial organizations
[e.g., Mongolian gerbils, circular gradient (Schulze et al., 2002);
cats, linear gradient (Langner et al., 2009)]. Neurons sensitive to
the modulation frequency are uniformly distributed in A1 [rats
(Kilgard and Merzenich, 1999), monkeys (Bendor and Wang,
2005, 2010)].
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Considering both the diversity of FRA patterns and the spatial
heterogeneity of neurons codifying sound attributes in A1 for
several species, it seems imprecise to use searching strategies
based on classical schemes for sound representation (i.e., inde-
pendent neurons with simple tuning effects clearly distributed in
A1). The existence of nonclassical schemes may be in line with
findings reported recently: (1) complex FRA maps (Schreiner et
al., 2000; Gaese and Ostwald, 2003; Turner et al., 2005); (2) in-
hibitory sideband effects (O’Connell et al., 2011); (3) high vari-
ability along cortical layers (Wallace and Palmer, 2008; Sakata
and Harris, 2009; Hackett et al., 2011); and (4) sparseness activa-
tion patterns (Hromádka et al., 2008; Sakata and Harris, 2009;
Rothschild et al., 2010). Therefore, to study the neuronal sub-
strates for sound attribute codification in A1 of Wistar rats, we
chose to apply a simple but complementary approach that is
based on a massive exploration of a large cortical sheet at all
depths. To that end, the strategy to determine the neuronal codi-
fiers was founded on coarse representations of the population
pairwise attribute response curves. For these codifiers, we explored
(1) the topological distributions, (2) the current source density (CSD)–
spikerelationshipsduringongoing/stimulus-relatedactivity,and(3)the
unit activity/oscillatory laminar profiles.

Materials and Methods
All procedures and protocols were performed in agreement with the
policies established by the Animal Care Committee at Tohoku University
(Sendai, Japan). Animal experiments were performed on 8- to 12-week-
old male Wistar rats (287–386 g; n � 5).

Homemade three-dimensional probe. While studying the topological
characteristics of the neuronal response in A1 to auditory stimuli, re-
searchers subsequently insert electrodes in different cortical locations,
e.g., tungsten microelectrodes (Doron et al., 2002; Rutkowski et al., 2003)
and silicon-based laminar (Sakata and Harris, 2009) and planar (Lakatos
et al., 2007; Bizley et al., 2009, 2010) probes. This strategy has two major
drawbacks: (1) the tissue condition deteriorates with each insertion and
(2) it is hard to evaluate the actual probe location because of successive
contractions/expansions of a small cortical area that may occasionally
induce tissue swelling and bleeding. To avoid cortical damage or impre-
cision in the placement of the electrodes caused by a multiple penetration
strategy, and thus bias our results, in this study we preferred to obtain
simultaneous laminar recordings from several places in A1 using a single
insertion strategy. To that end, we created a 3-D probe that consisted of
two planar acute silicon-based probes (a4�8-5mm100-400-177; Neu-
ronexus Technologies) tightly attached together with superglue. Each
planar probe comprises 32 channels (eight active sites on four parallel
shanks, with a vertical spacing of 100 �m; microelectrode area, 177
�m 2). With the help of the S6D microscope (Leica), these two probes
were assembled by hand in such a way that the shanks of both probes
were parallel and their tips approximately aligned. The distance between
the planar probes for all experiments was 450 � 50 �m.

Magnetic resonance imaging and coregistration to a Wistar rat atlas.
Magnetic resonance imaging (MRI) data were acquired using a 7 tesla
Bruker PharmaScan system (Bruker Biospin) with a 38-mm-diameter
birdcage coil. Each rat was initially anesthetized with 5% isoflurane and
then secured on a custom-built holder using adhesive tape and a bite bar.
A breathing sensor (SA Instruments) was placed under the ventral face of
the rat body. Anesthesia was further maintained with isoflurane (at 1
L/min oxygenation) administered via a face mask. A constant breathing
rate was maintained around 50 breaths per minute during the entire MRI
acquisition by manually keeping the concentration of isoflurane between
1.5 and 2.5%. Core body temperature was kept at 37.0 � 1°C by means of
a hot water-circulating pad. The high-resolution T2-weighted images
were obtained using a respiratory-gated, 2-D TurboRARE sequence with
fat suppression (TR, 4628 ms; TE, 30 ms; effective spectral bandwidth,
100 kHz; flip angle, 90°; field of view, 32 � 32 mm 2; matrix size, 256 �
256; in-plane resolution, 125 � 125 �m 2; number of slices, 54; slice
thickness, 0.5 mm; slice gap, 0 mm; number of averages, 10). The total

scanning time for T2-weighted imaging was �50 min, depending on the
respiration rate for each rat. T2-weighted images were normalized to the
rat brain atlas template (P. A. Valdés-Hernández, A. Sumiyoshi, H.
Nonaka, R. Haga, E. Aubert-Vásquez, T. Ogawa, Y. Iturria-Medina, J.
Riera, and R. Kawashima, unpublished observations), which was, by con-
struction, coregistered to a digitalized atlas (Paxinos and Watson, 2007).
The normalized T2-weighted images were converted back to the native
space allowing us to estimate the actual extension of A1 in the individual
rat brain and the relative position of its center in the atlas coordinate
space [Fig. 1 A, left (axial slice) and middle (coronal slice)]. The actual
positions of two crucial landmarks for stereotaxic-guided craniotomy in
rats, i.e., the bregma and the lambda, were also determined from the
individual T2-weighted images. In the same way, we calculated the ap-
proximate point (PA1) where the A1’s center projects perpendicularly to
the anteroposterior axis defined by these landmarks, a step that allowed
us to determine the lateral distance from the sagittal suture to the center
of the surface of A1. Based on the MRI data, we planned the site for the
craniotomy as illustrated in Figure 1 A (right).

Surgical procedures. In the electrophysiological experiments, anesthe-
sia was induced with urethane (1.2 g/kg). The animals were placed on a
stereotaxic stage, and the temporal muscles on right side were retracted.
A craniotomy was performed over A1 based on MRI guidance, and the
accuracy of the method was later confirmed by the vessel distribution
(Fig. 1 B, top right). The dura was removed under the digital microscope
KH-1300 (Hirox), and the cortex was covered with HEPES-buffered and
Ca 2�-free aCSF (150 mM NaCl, 2.5 mM KCl, 1 mM MgCl2 � 6H2O, 10 mM

HEPES, 10 mM glucose; the pH was adjusted to 7.4 with Tris base). Two
screws, used as the reference and the ground for the extracellular recordings,
were attached to the skull close to the lambda point (Riera et al., 2010).

Electrophysiological recordings. The insertion length and angle of the
3-D probe were accurately monitored/corroborated through a microma-
nipulator’s control system (SM5; Luigs & Neumann). The 3-D probe was
perpendicularly inserted 1050 �m into the cerebral cortex. Therefore, it
observes neuronal activity from the region between 250 and 1050 �m in
depth. The values of microelectrode impedance in the probe ranged
between 0.7 and 0.9 M�.

Extracellular potentials were recorded using amplifiers at 25 kHz
(PZ2; Tucker-Davis Technologies) connected by an optical fiber to a
signal processing unit that comprises eight parallel central processing
units (RZ2, Tucker-Davis Technologies) and by a coaxial cable to a pre-
amplifier located inside two acute 32-channel, 18-bit hybrid headstages,
respectively. By means of the 3-D probe, we were able to simultaneously
record extracellular potentials from eight different sites along the A1
surface for each rat, a total of 64 channels (Fig. 1 B, bottom). All record-
ings were performed using an on-line logic/symbolic programming lan-
guage supported by the signal processing unit (OpenEx software;
Tucker-Davis Technologies).

Auditory stimulation protocol. Acoustic stimuli were generated digitally
by a custom-written code in MATLAB (R2009b; The MathWorks) and
delivered with a digital-to-analog converter (National Instruments) and
a speaker driver (ED1; Tucker-Davis Technologies) to a calibrated con-
denser speaker (ES1; Tucker-Davis Technologies). Anesthetized animals
placed inside a single-walled soundproof box (VIC International) were
stimulated through a customized ear tube inserted into the left ear canal.
Speaker calibration was conducted using a condenser microphone (UC-
29; Rion) close to the tip of the ear tube. The frequency-dependent gain
for the speaker used in all our experiments was almost constant within
the frequency band of interest (8 – 40 kHz) with a mean value 101 � 6 dB
SPL (�4 V speaker input). Acoustic stimuli consisted of amplitude-
modulated sounds (200 ms long) presented 10 times with an interstimu-
lus interval of 1.6 s (Langner et al., 2009). The coarse scale (k � 1,2,3) for
the attribute values was defined as follows: carrier frequency fc (kHz) �
(2k � 1) � 8; modulation frequency fm (Hz) � 10 0.602�(k � 1) � 50; peak
of amplitude Amp (dB SPL) � 30 � (k � 1) � 20. For each stimulation
block, 27 acoustic stimuli, henceforth called conditions, were randomly
prepared from combinations of these attribute values (Table 1). The final
stimulation protocol for each rat comprised 10 consecutive blocks. A
total of 100 trial-evoked potentials were recorded in each condition. To
illustrate the correspondence between the fine and coarse scales when
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representing the dose–response curves, we used the following attribute
values for one rat: fc (kHz) � k � 8, fm (Hz) � 10 0.301�(k � 1) � 50, and
Amp (dB SPL) � 30 � (k � 1) � 10; with k � 1, . . ., 5.

Histology. To colocalize the shanks of the 3-D probe, DiO dye (Invit-
rogen) was gently applied on the backside surface of the shank before
insertion. After the electrophysiological experiments, each rat was per-
fused transcardially with 10 ml of PBS and 10 ml of PBS with 200 �l of DiI
(Invitrogen) for vessel staining and fixed with 10 ml of 4% paraformal-
dehyde (Li et al., 2008). Finally, the brain was removed and postfixed in
the same fixative through the night at 4°C. Fluorescent images (Fig. 1 B,
top left) containing information about the shank positions (yellow-
green) and the vessel distribution (bright red) were captured with an
upright fluorescent microscope (SZX16; Olympus). A sketch with the

distribution of principal vessels was produced
for each rat (Fig. 1 B, top right). Coronal sec-
tions (100 �m thickness) from the entire A1
were obtained from the postfixed brains with
Vibratome 1000-plus (Leica). Fluorescent
Nissl staining for each brain section was addi-
tionally performed (Goto et al., 2010). Nissl
staining images, colocalized with the shank
traces, were obtained with the SZX16 micro-
scope (Fig. 1C).

Preprocessing of the electrophysiological data.
The extracellular potentials were processed by
a custom-written code in MATLAB (R2009b;
The MathWorks). Local field potentials (LFPs)
and multiunit activity (MUA) were separated by
low-frequency (1–170 Hz) and high-frequency
(500–5000 Hz) Butterworth IIR type bandpass
filters, respectively. Single-trial auditory-evoked
potentials (AEPs) were estimated from the LFPs
using the stimulus triggers, which were also re-
corded by an extra analog channel.

MUA analysis: population codifiers of sound
attributes. Spike sorting was performed off-
line. We used a free downloaded toolbox, Wave
Clus, for the semiautomatical detection of
spikes (Quiroga et al., 2004). An amplitude
threshold of 3.5 SD of the mean amplitude was
used for spike detection in each channel (Rasch
et al., 2011), which is recommended to reduce
the number of missed spikes in the particular
case of data with high noise levels (i.e., the SD
of the noise relative to the amplitude of the
spikes, �40% for our MUA data). This implied
an increase in the number of false positives that
were easily recognized by visual inspection. We
used both positive and negative thresholds to
improve the spike detection accuracy and, as
suggested by Quiroga et al. (2004), to account
for any spike class with opposite polarity. As a
result of the existence of a refractory period,
any spike occurring 1.5 ms after a preceding
spike was ignored (Whittingstall and Logothe-
tis, 2009). The window used to evaluate the
spiking rate in each microelectrode was 10 ms
in size, and it moved in 1 ms steps. To identify
possible cortical sites for attribute codification,
first the MUAs for the eight channels on the
same shank (i.e., population spiking rate) were

integrated, and the result was normalized with respect to the maximal
population spiking activity in the 3-D probe for that particular stim-
ulus condition (Fig. 2 A, 8 kHz, 50 Hz, 70 dB). After that, a respective
interpolated topographic map was created from this normalized/in-
tegrated MUA in all shanks at 15 ms after stimulus onset (Fig. 2 B).
The maximum of the population spiking activity was always reached
at this particular time instant. To define a particular codifier, the normal-
ize/integrated MUA was compared for different conditions (Fig. 2C; the
eighth shank contains information about a neuronal population codifying
the amplitude of the tone with a carrier frequency of 8 kHz and modulated at
50 Hz).

An unmanageable number of neurons in A1 with differentiated codi-
fying strategies have been defined based on fine FRA maps. These neu-
rons may additionally (1) be spatially distributed, (2) use particular
temporal coding strategies based on distinct input/output dynamics, and
(3) have specialized interlaminar dendritic organizations. Therefore, to
achieve an appropriated identification, localization, and robust charac-
terization of those neuronal populations showing reactivity to variations
in sound attributes, we decided to avoid previously established criteria
for an exhaustive classification of single neurons in A1. In what follows,
we describe our strategy to classify neuronal populations that, in our

Figure 1. Localization of the A1 based on MRI guidance and colocalization of the shanks. A, Rat brain T2-weighted images of the
axial slice (left) and the coronal slice (center). Individual T2-weighted images were coregistered to the atlas coordinate space
(presurgery). Based on the coregistration, we developed a strategy for stereotaxic/MRI guidance, i.e., the bregma, the lambda, and
PA1, and the A1 were localized accurately (right) on the exposed skull (during surgery). In the T2-weighted images, the red color
shows the right A1 coregistrated to the Paxinos and Watson (2007) atlas. B, Colocalization of the shanks based on the vessel
distribution, as revealed by fluorescent staining. A fluorescent image (top left) shows the shank positions (yellow green) and the
vessel distribution (bright red) in A1. A sketch with the distribution of principal vessels was obtained from a photograph captured
by the digital microscope (top right, green circle: position of the shank). C, Laminar structure of the A1 and the colocalization of the
shanks. Based on the Nissl staining, the isocortex in the A1 was divided into three parts, SG, G, and IG layers. The thickness of the
layers were in correspondence, with certain inter-rat variability, to a previous study (SG, 29%; G, 10%; IG, 48%; Games and Winer,
1988).

Table 1. Attributes for the auditory stimuli

V1 V2 V3

A1 Frequency ( fc ) 8 kHz 24 kHz 40 kHz
A2 Amplitude (Amp) 30 dB 50 dB 70 dB
A3 Modulation ( fm ) 50 Hz 200 Hz 800 Hz

A, Type of attribute, V, value of attribute.
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opinion, are engaged in the codification of sound attributes. Such
population codifiers were determined from coarse representations of
the population dose–response curves for all attribute pairwise
combinations.

For one rat, we used the instantaneous normalized/integrated
MUA in all shanks, to create fine maps (Fig. 3A, top) of the population
spiking activity associated with fine variations in the attribute values
for pairwise types. These maps were constructed using the weighted
five-point smoothing method (Rutkowski et al., 2003). We observed
both V-shaped (first) and O-shaped (second) FRA maps, both of
which do not result from the activity of a single neuron but from that
of a population in close proximity to the shank. In addition, complex/
intermediate FRA maps were frequently noticeable (third). Maps re-
sulting from combining other attribute pairs also showed peculiar
patterns (Fig. 3A, an Amp-fm map, fourth). The respective course
representations of these maps (i.e., grayscale matrices; Fig. 3A, mid-
dle) were constructed based on variations in the attribute’s values
with a lower resolution (i.e., the coarse representation; Table 1). From
a side-by-side comparison of the color maps and grayscale matrices, a
good correspondence between both fine and coarse scales at the first
approximation can be noted. We chose these particular examples of
grayscale matrices because they reveal the presence of the four types of
codifiers (Fig. 3A, bottom) we were looking for: positive slope, in-
verted U shape, negative slope, and U shape.

Codifiers showing a normalized/integrated MUA that increased or
decreased with the attribute value were called “positive slope” or
“negative slope” codifiers, respectively. Codifiers having maximum
or minimum values of the normalized/integrated MUA at the middle
value of the attribute were called “inverted U-shape” or “U-shape”
codifiers, respectively. For all four above-mentioned types, we iden-

tified a codifier whenever the maximum–minimum difference of the
normalized/integrated MUA was larger than 0.1, i.e., a neuronal pop-
ulation with, at least, 10% sensitivity (respect to its maximum spiking
rate) to variations in the attribute values. The codifiers of positive and
negative slopes were fitted linearly, and the y-intercept was subtracted
from the normalized/integrated MUA to remove the baseline, as is
shown in Figure 3B (first and third plots, fc codifier) for this particular
rat. The other two codifier types were fitted by a second-order poly-
nomial, and the minimum value of the normalized/integrated MUA
was subtracted (see Fig. 3B, second and fourth plots, fc – codifier,
same rat). Note that our inverted U-shape codifier from the Amp-fc

grayscale matrices approximately represents a population tuning ef-
fect for the particular attribute in the fine FRA maps. For the modu-
lation frequency, we decided to look at neuronal populations that
codify this attribute earlier based on nontemporal tuning features. In
our opinion, this constitutes the first attempt to find information on
the modulation frequency at the very initial phase of a sound. Since
we examined MUA 15 ms after the stimulus onset, there was not
enough information to classify any periodic signal with a frequency
smaller than 66 Hz. Therefore, the modulation frequency of 50 Hz
used in our experiment could not be sensed by any neuronal popula-
tion at the early time instant of 15 ms, but at this time, sufficient
information to properly codify the 200 and 800 Hz modulation fre-
quencies was already available.

We performed the same analysis for the other four rats, which were
actually stimulated using a protocol with low resolution for the attri-
bute values (Table 1). We explored all shanks that were sensitive to
changes in any particular attribute, and, based on the respective gray-
scale matrices, we classified codifiers using the same criteria described
above. We stored all the information about the codifiers (i.e., position

Figure 2. An example of the MUA analysis for the identification of a single codifier (Amp). A, Left, One hundred-trial raster plots (black dot) and the evoked population spike rates (normalized,
blue lines) for each shank. Spikes were detected in all electrodes (eight sites) on each shank. Each row corresponds to data from a particular shank with spikes from all electrodes overlapping. The
stimulus conditions in this example were as follows: fc, 8 kHz; fm, 50 Hz; Amp, 70 dB SPL. The red line identifies the time instant of interest for attribute codification in our study, i.e., 15 ms after
stimulus onset, which constitutes the peak of the population spiking activity. B, The topological mapping of the normalized/integrated MUA, obtained at that particular time instant, is illustrated.
The black rhombus represents the position of the shanks. A color bar is used to represent the level of normalized/integrated MUA. C, Normalized/integrated MUA for different sound amplitudes (blue,
30 dB; green, 50 dB; red, 70 dB; window for counting spikes, 10 ms; moving step, 1 ms). The spikes were classified from data at shank-8 (B, yellow circle). Codifiers of sound attributes were identified
from the normalized/integrated MUA 15 ms after the stimulus onset (vertical black line); hence, these codifiers represent transient encoders for all sound attributes. In A and C, the stimulus interval
is represented by bold black lines (duration, 200 ms). D, Dorsal; V, ventral; A, anterior; P, posterior.
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on the cortical sheet, type of codifier, CSD and MUA data) for all
experiments. Table 2 summarizes the type and number of codifiers
found in all experiments. We realized that a single neuronal popula-
tion could lie behind more than one codifier, which is consistent, for
example, with the existence of neurons with O-shaped FRA maps.
However, in the analysis that follows, we only used codifiers that were
sensitive to a single attribute (Table 2, numbers in parentheses).

CSD analysis. For single-trial AEPs recorded by each codifying
8-channel shank (Fig. 4 A), we estimated the laminar profile of the

postsynaptic activity (Fig. 4 B) through the inverse CSD (iCSD)
method (iCSDplotter software, version 0.1.1; Pettersen et al., 2006).
The parameters used in this analysis were (1) the disk diameter d for
the sources (0.5 mm), (2) the SD for the Gaussian filter (50 �m), and
(3) the electric conductivity of homogenous media (3 mS/cm; Goto et
al., 2010). The thickness l of the cortical columns for the A1 cortex was
2 mm. Assuming these columns are perfect cylinders, their volumes
V � � (d/2) 2 l would be 0.39 mm 3. The CSD maps resulting from the
single-trial AEP were used to create three time series summarizing the

Figure 3. The tuning profile of neuronal populations associated with different codifiers for the attributes of a sound. A, Top, Example of the fine FRA maps for two classical tuning profiles (first:
V shaped, monotonic; second: O shaped, nonmonotonic). The third panel shows the fine FRA map of a nonclassical tuning profile revealing a complex/intermediate pattern. In the forth panel, an
alternative response area map for the pair parameters Amp and fm is illustrated using a fine scale. The color bar beside each map shows the normalized/integrated MUA. These maps were created
using the weighted five-point smoothing method (Rutkowski et al., 2003). Middle, The course representations of the respective maps at the top are shown by means of a grayscale. These coarse
representations were created using a lower-resolution stimulation protocol (Table 1). Bottom, Examples of the coarse dose–response curves for the four types of population codifiers (first: positive
slope; second: inverted U shape; third: negative slope; fourth: U shape) defined in this study. These curves were obtained from particular rows/columns (i.e., rectangles enclosed by dashed lines) of
the coarse grayscale maps. B, Overlapping of the codifiers obtained from a single rat (001) for a particular sound attribute ( fc). In the case of positive and negative slopes, we applied a linear fitting
and subtracted the y-intercept to remove the baseline. For the inverted U shape and the U shape, we used a second-order polynomial fitting and subtracted the minimum of the normalized/
integrated MUA for each codifier. Max, Maximum.
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charge-unbalanced CSD contributions in the supragranular (SG),
granular (G), and infragranular (IG) layers for each neuronal codifier
(Fig. 4C). Each time series was processed using two time-frequency
analysis methods.

The time-varying power spectral density Sl
c(t, �) (Fig. 4D) for each

neuronal codifier (c) and lamina (l ) was calculated from averaging the
respective spectral densities of the 100 single trials. The spectral den-

sity for each single-trial time series was estimated using the function
“spectrogram.m” of the MATLAB Signal Processing Toolbox
(R2009b; The MathWorks) with the following parameters: window �
50 points, noverlap � 49 points, nfft � 508, and Fs � 508 Hz (sam-
pling frequency). The time-frequency difference maps (Fig. 4E; Ray
and Maunsell, 2011) were obtained using the following equation,
Dl

c �t, �	 � 10 � �log10 Sl
c �t, �	 � log10 Bl

c ��		, with the

Figure 4. The time-varying spectral content of the laminar–CSD time series for a particular population codifier. A, Single trial of the AEPs at the eight electrodes on one shank. The order of the
electrodes defines the recording depth (i.e., electrode interval, 100 �m; recording depth, 250 –1050 �m). The black bar shows the period of auditory stimulation. B, CSD estimated from the
single-trial AEP in A using the iCSD method. The color bar shows the sinks (red)/sources (blue) of the brain current sources. The locations of the SG, G, and IG layers defined from the Nissl staining for
this particular rat are shown. C, The summarized (charge-unbalanced) CSD time series in each layer was obtained from the single-trial CSD in B. D, The time-varying power spectral density (decibels)
corresponding to the summarized CSD time series for the SG layer were obtained using the 100 single trials, like the one in C, for this particular codifier. E, The time-frequency difference map obtained
from the time-varying power spectral density in D. F, Instantaneous amplitude/phase (a single trial) in each layer obtained by the Hilbert transform of the summarized CSD time series in C. Before
the Hilbert transformation, bandpass filters were applied to the summarized CSD time series to obtain the amplitude/phase content in the six frequency bands of interest (i.e., 	, 
, �, �, �L, and
�H). The vertical dashed lines in the color graphics represent the stimulus onset and offset.

Table 2. The type and number of codifiers obtained from all experiments

Rat

Positive slope Inverted U shape Negative slope U shape

Totalfc fm Amp fc fm Amp fc fm Amp fc fm Amp

001 14 15 8 10 15 10 10 12 8 14 9 8 133 (84)
005 7 11 10 19 25 16 9 4 7 22 18 23 171 (89)
007 11 0 2 4 0 1 0 0 0 2 6 0 26 (22)
008 41 2 50 3 1 0 0 0 0 13 0 1 111 (96)
009 42 31 46 15 5 0 0 0 0 3 0 0 142 (93)
Total 115 59 116 51 46 27 19 16 15 54 33 32 583 (384)

290 124 50 119

fc , Carrier frequency; Amp, maximum amplitude of sound pressure level; fm , modulation frequency. The numbers of codifiers that were sensitive to a single attribute are shown in parentheses.
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prestimulus baseline defined as Bl
c ��	 �

1

T
�
t�t0

t0�T

Sl
c �t, �	 (t0 �

�300 ms and T � 200 ms). The grand-average difference maps for
each lamina were estimated by pooling the Dl

c(t, �) maps over all
sound codifiers, i.e., Dl(t, �) � 
cDl

c(t, �). We used the Wilcoxon
signed-rank test to detect poststimulus changes in the spectral content
for each lamina. In addition, we performed an interlamina comparison
by means of the Kruskal–Wallis one-way ANOVA by ranks.

To extract instantaneous amplitude and phase for each single trial (Fig.
4F ), a Hilbert transform was applied to the filtered time series for each
neuronal codifier and lamina (bidirectional bandpass filter, six frequency
bands: 	, 1– 4 Hz; 
, 4 – 8 Hz; �, 8 –12 Hz; �, 12–25 Hz; �L, 25–70 Hz; �H,
70 –170 Hz; Whittingstall and Logothetis, 2009). To study the relation-
ship between the oscillatory CSD content and the MUA at the level of
single trials, we smoothed the total spike rate time series that were ob-
tained from the electrodes covering each lamina with a Gaussian kernel
(10 ms width). The single-trial correlations were obtained from the in-
stantaneous amplitudes/phases of the CSD frequency bands for each
lamina and the corresponding convolved-MUA signal. Differences in
these correlations for specific (1) periods (i.e., prestimulus, stimulus, and
poststimulus) and (2) laminas (i.e., SG, G, and IG) were tested by using
the one-way ANOVA with multiple comparisons.

Laminar profile of MUA and classification of neuron types. In this study,
the spike features were extracted through the wavelet transform as im-
plemented in the Wave Clus toolbox (Quiroga et al., 2004). We used the
default values in the toolbox for the parameters. As implemented in the
toolbox, the better wavelet coefficients (from a total of 40) for clustering

the single units were selected using the Kolm-
ogorov–Smirnov test for normality. Note that
the area of the microelectrode in our 3-D probe
is very small, which assures a good detection of
single units. To classify the populations of neu-
rons associated with each codifier, the ex-
tracted spike waveforms of single channels
were clustered by the superparamagnetic clus-
tering method (SPC) (Quiroga et al., 2004).
The mean waveforms of all clusters were ob-
tained from all channels and used to calculate
the spike parameters: the peak amplitude
asymmetry, half-width, and trough peak
(Sakata and Harris, 2009). The peak amplitude
asymmetry is defined as (b � a)/(b � a), where
parameter a is the prepositive peak of the mean
spike waveform and parameter b is the post-
positive peak of the mean spike waveform.
These three parameters were projected in the
3-D space and used to classify wide-spiking
cells [putative pyramidal cells (PCs)] and
narrow-spiking cells [putative interneurons
(INs)] (Fig. 5A). We estimated the mean values
of these parameters for both neuron types: the
peak amplitude asymmetry (PC, 0.04 � 0.20;
IN, 0.15 � 0.18), the half-width (PC, 0.20 �
0.04 ms; IN, 0.16 � 0.04 ms), and the trough
peak (PC, 0.75 � 0.03 ms; IN, 0.31 � 0.02 ms).
Clearly, the half-width and the trough peak
were key parameters in the cluster analysis. The
mean spike waveforms (Fig. 5B; note the large
variability in the peak amplitude asymmetry
for both neuron types) and the histograms of
the interspike interval (Fig. 5C) for both neu-
ron types were calculated from a large dataset
(i.e., all detected spikes at each neuronal codi-
fier). From the classification of PCs and INs, we
created the electrode-based raster plots for
each neuron (Fig. 5D). Based on this classifica-
tion, we evaluated the layer-dependent contribu-
tion of each neuron in the codification of the
three sound attributes (i.e., the stimulus period).

Testing phase--amplitude couplings and their
relation to MUA. It was suggested previously that the spontaneous LFP
oscillations are organized with the phases of the low-frequency bands
modulating the amplitudes of the high-frequency bands in a sort of
hierarchical structure. Such a phase–amplitude coupling (PAC) happens
to occur in association with different brain functions, e.g., sensorial
(Lakatos et al., 2005; Whittingstall and Logothetis, 2009), behavioral
tasks (Canolty et al., 2006), and sleeping (Dalal et al., 2010; Le Van Quyen
et al., 2010). Furthermore, increases in the MUA have been related to
particular states of those variables exhibiting a PAC effect, henceforth
called the PAC3MUA effect. For auditory tasks, the highest amplitudes

 frequency band oscillations in A1 occurred at a specific phase of the 	
frequency band oscillations [i.e., 
-amplitude/	-phase coupling (Lakatos
et al., 2005)]. These authors also reported a similar �-amplitude/
-phase
coupling and a clear phase-related modulation in the MUA for all fre-
quency bands.

The alternating conditional expectation (ACE) algorithm (Wang and
Murphy, 2004) provides us a method to verify relationships between
independent and dependent variables without any a priori assumption
about the underlying functions. An ACE regression model has the fol-
lowing general form:


 �Y	 � � � �
i�1

p

i�Xi	 � �, (1)

where 
 is a function of the dependent variable (response) Y, i are functions
of the independent variables (predictors) Xi(i � 1 . . ., p), and � is the error

Figure 5. The classification of the neuron types for the population codifiers in one particular rat (001). A, The results from
applying the SPC method (Quiroga et al., 2004) and the K-mean clustering show a clear distinction of two types of neurons
underlying the population codifiers (red dot, wide-spiking PCs; blue dot, narrow-spiking INs). To estimate the peak amplitude
asymmetry, half-width, and trough peak, the mean spiking waveforms of the identified neurons through the SPC method were
pooled. The K-means method was used to evaluate clusters formation in the three-dimensional space defined by these parameters.
B, Mean spiking waveform for each identified neuron (red curves, PCs; blue curves, INs). The grant averages of the PC and IN mean
spiking waveforms for all neurons were overlapped using black and white curves, respectively. C, Histograms of the interspike
interval (ISI) for each neuron during sound codification in this particular rat. These histograms revealed a key participation of the
PCs in the sound codifying strategies in the A1. Based on the neuron classification, we were able to create electrode-based roster
plots for the PCs and INs in each particular condition. D, Electrode-based roster plots for a particular condition ( fc, 8 kHz; fm, 50 Hz;
Amp, 70 dB) in rat 001.
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term. The parameter � represents an arbitrary
constant term. Therefore, the ACE regression
model is robust and could be useful to study the
existence of PAC3MUA effect for each cortical
lamina from the MUA and CSD time-series data
associated with our codifiers. For example, the
particular model we are interested in testing is
Y � X1(X2 � �), which explicitly pointed out
that MUA (Y) is maximal when the instanta-
neous CSD amplitude (X1) of a particular fre-
quency band is also at its maximum and, at the
same time, the instantaneous CSD phase (X2) of
any other frequency band is 180° away from a
given phase �. This model can be written as an
ACE regression model with the following partic-
ular form:

Log�Y	 � Log�X1	 � Log�X2 � �	

� �. (2)

However, to validate the existence of the
PAC3MUA effect, it is also necessary that func-
tions 
 and i be represented by means of a min-
imal number of parameters in practice. The
departure from complete spatial randomness in
the Y � �(Y) and Xi � i(Xi) point maps could
be used as a quantitative measure of the level of
parameterization needed to represent functions 

and i. Methods based on “second-order” (i.e.,
all point-to-point distances) and “first-order”
(i.e., only mean interpoint distances) statistics
have been developed for spatial point pattern
analysis in geographical epidemiology (Gatrell et
al., 1996). In this study, we used the Ripley’s
K-function with the edge correction, which con-
stitutes one of the most useful functions for esti-
mating the second-order statistics that gave rise
to the data in the two-dimensional point pattern
analysis (Ripley, 1977). The existence of the
PAC3MUA effect was tested by applying the
one-way ANOVA to the areas under the Ripley’s
K-function for two groups defined in terms of the
used independent variables (group 1, the ampli-
tudes of high-frequency oscillations X1 and the
phases of low-frequency oscillations X2; group 2,
the amplitudes of low-frequency oscillations X1

and the phases of high-frequency oscillations X2).

Results
We evaluated the accuracy of the 3-D
probe insertion in A1 from information
about the vessel distribution. For each ex-
periment, the relative position of the 3-D
probe and the vessels were obtained from
both high-resolution photographs of the
craniotomy area and the DiI-based vessel
staining (Fig. 1B). From our estimation,
the 3-D probe was successfully inserted
inside A1 in the five rats.

Spatial aggregation/segregation of
attribute codifiers
Based on the fact that we have colocalized
shanks in each experiment with respect to
the main canonical vessels in A1, we were
able to differentiate the position of each
codifier type (Fig. 6). We were looking for

Figure 6. The distributions of the population codifiers in A1 for all rats. Top, Although the distributions of the carrier frequency
codifiers in the A1 were heterogeneous, the spiking (inserted plots) rate showed an intrinsic tonotopical distribution (see below).
The black dotted line delimited the A1 core region and the anterior auditory field (AAF); the large vessels are represented in gray.
The actual locations of different types of codifiers are shown (blue diamonds, negative slope; orange diamonds, inverted U shape;
green diamonds, positive slope; purple diamonds, U shape). The black dashed lines approximately delimited the regions in A1
corresponding to the three different threshold-based carrier frequencies (i.e., a coarse tonotopic map): 8, 24, and 40 kHz. The
region-dependent population’s susceptibility � was defined as the differences between the normalized/integrated spiking rate
specific for each region (a particular carrier frequency) and that corresponding to the other two carrier frequencies. The inverse of
the parameter � shows a bell-shaped dependency (i.e., a decrease in the population susceptibility for the midfrequency region)
with the carrier frequency ( fc). This result is in agreement with the variations of the narrow (broad) bandwidth Q10 (Q40) along the
anteroposterior axis of the A1 (Imaizumi and Schreiner, 2007). Middle and bottom, Distributions in A1 of the population codifiers
of the modulation frequency and the amplitude, which were also heterogeneously distributed. Diagrams were created by coreg-
istering the codifier’s locations obtained for all rats. D, Dorsal; V, ventral; A, anterior; P, posterior; Max, maximum.
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(1) the presence of sparse distributions, rather than topologically
arranged dense networks, with high heterogeneity for the se-
lective neuronal populations; and (2) any tendency in the or-
ganization of sound codifiers either in the tonotopic or in the
iso-frequency axis.

First, we found that all types of population codifiers for the
carrier frequency fc were distributed heterogeneously in A1 (Fig.
6, top). The most abundant type was the positive slope codifier,
which may consist of neurons with high-pass tuning patterns
similar to those reported in the past (Turner et al., 2005; Sakata
and Harris, 2009). Second, to reproduce the classic tonotopic
organization in the sense of neuronal populations, for each
carrier frequency fc, we calculated the mean of the spiking rate
resulting from integrating the other two conditions (i.e., modu-
lation frequency fm and amplitude Amp). Consistent with previ-
ous studies (Doron et al., 2002; Rutkowski et al., 2003), we
reproduced an obvious tonotopic organization in the rat A1
along the anteroposterior axis (Fig. 6, top subplots). This tono-
topic organization was statistically significant for low (8 kHz) and
high (40 kHz) carrier frequencies. However, it was hard to dis-
criminate the 24 kHz neuronal responses in the midfrequency
region of A1 from the population spiking. For each region of A1,
we estimated the difference � between the population spiking
rate for the characteristic frequency and the mean of that rate for
the other two used frequencies. The introduced parameter � re-
flects the population’s susceptibility in the region to its charac-
teristic frequency. By plotting the fraction 1/� versus fc (Fig. 6,
top, bottom left subplot), we found a decrease in the population
susceptibility for the midfrequency region along the anteropos-
terior axis. In our opinion, this is caused by the increase in Q10

and Q40 in this region of A1, as was recently reported for cats
[Imaizumi and Schreiner (2007), their Fig. 2]. Large Q10/40

values are associated with narrow bandwidths (i.e., neurons with
high selectivity for the carrier frequency), hence a lower population
susceptibility. However, our result is inconsistent with the increase
in Q10 toward the highest-frequency regions in A1, as was originally
reported for rats [see Sally and Kelly (1988), their Fig. 9].

We found that population codifiers for both modulation fre-
quency (Fig. 6, middle) and amplitude (Fig. 6, bottom) were
heterogeneously distributed along the entire A1 core. Similar to-
pological representations have been reported in previous stud-
ies for single neurons codifying the modulation frequency [rats
(Kilgard and Merzenich, 1999), monkeys (Bendor and Wang,
2005, 2010)]. From our methodology, it was impossible to
identify any particular signature of the segregation of mono-
tonic (i.e., positive slope) and nonmonotonic (i.e., inverted
U-shape) neuronal populations (Sutter and Schreiner, 1995; Re-
canzone et al., 2000; Linden and Schreiner, 2003).

Input/output functioning principles for the neuronal
codifiers
We have evaluated the topological organizations of neuronal codifi-
ers in A1 that were defined from a robust characterization of the
population spiking rates. To understand the input/output function-
ing principles of these population codifiers, we will henceforth ex-
amine (1) perturbations in the CSD oscillatory laminar profiles and
(2) CSD–spike relationships during both ongoing and auditory-
evoked activity.

CSD oscillatory laminar profiles (spectral perturbations)
Figure 7A shows the grand average of the time-frequency differ-
ence map (left) for each layer in A1. We have highlighted three
main periods (i.e., the prestimulus, the stimulus, and the post-

stimulus). We were mostly interested in evaluating sustained ac-
tivity during both stimulus and poststimulus periods. To that
end, we divided the stimulus period into two time windows of
100 ms each (i.e., P1 and P2). The time window P1 must reflect
mainly stimulus onset effects. In a similar way, the poststimulus
period was divided into two time windows of the same size (i.e.,
P3 and P4). The latter division aims both to ensure the same
window size for the statistic analysis and to differentiate short-
from long-lasting poststimulus effects. A magnification of a
particular segment that includes periods P2–P4 (Fig. 7A, box
delimited with a white dashed line) is shown on the right. The
results of applying the Wilcoxon signed-rank tests (Bonferroni
corrected p values, p � 0.05) to detect changes in the spectral
content for all subwindows (i.e., P1–P4) at each layer are shown
in Figure 7B. We applied the Kruskal–Wallis tests (**p � 0.01,
*p � 0.05) with the Tukey’s honestly significant difference criterion
(i.e., the HSD method) to evaluate laminar differences (Fig. 7C).

We found a transient broadband power increase (8 –170 Hz)
in all layers after the stimulus onset (i.e., P1 time window), with
the low-frequency bands (i.e., 	, 
, �) having significantly higher
power in the IG layer. In the P2 time window, we were able to
detect a minor, but significant, increase in power for the �H fre-
quency band at the SG layer that happened together with a rever-
sion in the interlaminar power profile for the low-frequency
bands (i.e., 	, 
, �). Such �H frequency band oscillatory activity
remained up until the P3 time window. The poststimulus P3 and
P4 time windows were both characterized by a global attenuation
in the spectral content for the low-frequency bands with respect
to the prestimulus period and a significant increase in power for
the �-oscillations in all layers (with no significant differences
among layers). In the P3 time window, there was a second reversion
in the interlaminar power profile for the low-frequency bands with a
partial recovery of power in the IG layer. In this time window, we
could appreciate a significant increase in the power of the �L fre-
quency band in all layers. Laminar differences in the power content
for the low-frequency bands disappeared in the P4 time windows.

CSD–spike relationships (ongoing vs auditory-evoked
activity)
Taking into account laminar features for single trials, we evaluate
henceforth the instantaneous correlations between the ampli-
tude/phase of CSD oscillations at each frequency band (i.e., 	, 
,
�, �, �L, and �H) and the respective MUA. To that end, we per-
formed a one-way ANOVA (p � 0.05) with multiple compari-
sons for every frequency band, pooling information about the
single-trial correlations from all codifiers at each particular pe-
riod and layer (Fig. 8A, interperiod differences, B, interlamina
differences).

The CSD amplitude and MUA correlations at all layers in-
creased significantly during the stimulus period for the �, �, �L,
and �H frequency bands. These two magnitudes were negatively
correlated in all layers for the 	 frequency band during both the
prestimulus and poststimulus periods, but their correlation be-
came positive during the stimulus period. For all layers, such a
negative correlation was significantly higher in the prestimulus
period. With respect to the prestimulus period, the correlation
significantly decreased in all layers during the poststimulus pe-
riod for the �, �L, and �H frequency bands (Fig. 8A). A similar
decrease for the � frequency band was only observed in the G
layer. For the 
 frequency band, the correlation in both G and IG
layers first increased significantly during the stimulus period and
then decreased for the poststimulus period (Fig. 8A, middle and
right).
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As shown, CSD amplitudes for the �, �L, and �H frequency
bands were highly correlated with MUA at all layers (Fig. 8B).
However, we were able to detected interlaminar differences for
each of these three frequency bands. The correlation in the �
frequency band was higher in the IG layer during the stimulus
and poststimulus periods. For the poststimulus period, this cor-
relation in the SG was higher than in the G layer. During the
stimulus period, the highest correlations for the �L frequency
band were found in the IG layer, followed by the G and SG layers
in a decreasing order. Such a high correlation in the IG layer for
this particular frequency band dropped off in the poststimulus
period. For the �H frequency band, the correlation was signifi-
cantly higher in the SG layer for both the stimulus and poststimu-
lus periods. In contrast to the other two frequency bands, there
were significant differences in the laminar content of the correla-
tion for the �H frequency band during the prestimulus period,
with the largest values being in the SG layer.

From these results, we concluded that the temporal profile
of MUA underlying attribute codification (i.e., during the
stimulus period) is different at each layer with relatively slower
(� and �L) dynamics at the IG layer and unquestionably faster
dynamics (�H) at the SG layer. It has been pointed out that
sensory-evoked activity propagates fast from layer IV to layers
II/III and V (Sakata and Harris, 2009; Rothschild et al., 2010).
These authors reported that small fractions in layer II/III,
which are distributed sparsely, are activated in the preferable
stimulus condition. From our data, we hypothesize that low
(�–�L) and high (�H) dynamics in the postsynaptic potentials
at the respective IG (sparse) and SG (dense) laminas might be
associated with efficient inputs to the respective codifying
neurons. The correlations between the CSD phase and MUA
were very small. Hence, we did not perform a laminar struc-
ture analysis for the relationships between the CSD phase and
the MUA (data not shown).

Figure 7. The layer-dependent perturbations in the CSD power spectral content in the stimulus and poststimulus periods. A, The grand average (i.e., pooled over the 384 codifiers) of the
time-frequency difference map (right) are shown for the three layers (rows). To differentiate between sustained and stimulus (onset)-induced activities, the stimulus (horizontal black bar) period
was divided into two time windows (P1 and P2). Both to ensure the same window size for the statistic analysis and to differentiate short- from long-lasting poststimulus effects, the poststimulus
period was also divided into two time windows (P3 and P4). Magnifications of the time-frequency difference maps for the particular segments delimited with white dashed lines (left) are shown on
the right. Sustained oscillatory activity in the �H (P2) and � (P3 and P4) frequency bands were highlighted in these magnifications. B, Results of applying the Wilcoxon signed-rank tests (Bonferroni
corrected p values, p � 0.05) to detect stimulus-induced changes in the spectral content for time windows P1–P4 at each layer. C, Results of applying the Kruskal-Wallis tests (**p � 0.01; *p �
0.05) with the Tukey’s honestly significant difference criterion (i.e., the HSD method) to evaluate laminar differences in the stimulus-induced spectral perturbations for all time windows P1–P4.
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Laminar profiles for neuron types
We determined the contributions of each type of neuron, i.e.,
PCs and INs, to the population codification of sound attri-
butes and their respective laminar profiles (tested using the
one-way ANOVA with multiple comparisons, p � 0.05). Fig-
ure 9 shows the laminar distributions of the normalized spik-
ing rates for both PCs and INs that were obtained using all
neuronal codifiers. For all sound attributes, the contribution
from PCs was not only more significant than from INs in the
SG and IG layers, as expected, but, surprisingly, it was also
more significant in the G layer. Sakata and Harris (2009) pro-
vided evidence for the contribution of L4 PCs in the codifica-
tion of sound attributes in rats. In all layers, the contributions
of PCs to the population codifiers were significantly larger for
the attributes fm and Amp. The activity of INs was small and
about the same in the SG layer for all sound attributes. How-
ever, IN activation in the G and IG layers was not only a little
bit higher but also showed interattribute differences. For ex-
ample, INs in the IG layer were more active during the codifi-
cation of the attribute Amp. In the G layer, activation of INs
was only statistically distinguishable for attributes fc and Amp.
There is an interesting discussion by Sakata and Harris (2009)
about the differentiated role played by these two types of neu-
rons while processing sounds in A1. Our results are consistent

with Sakata and Harris (2009), who sug-
gested that the sensory-evoked spiking
activity in A1 is mainly based on the ac-
tivity of layer 2/3 and 5 PCs.

PAC3MUA effect in A1 for
anesthetized rats
We tested the existence of the PAC3MUA
effect for sound codification in anesthe-
tized rats by applying the ACE regression
analysis to the data corresponding to indi-
vidual codifiers. For each layer and pe-
riod, we performed such an analysis for
amplitude and phase pairwise combina-
tions (i.e., the independent variables) in
all frequency bands. The MUA always
constitutes the dependent variable. For
all layers, periods, and amplitude–phase
pairs, the mean (across codifiers) of the
ACE correlation coefficients was between
0.7 and 0.8 (data not shown). Such a high
correlation coefficient indicates a good
predictability of the dependent variables
based on the values of the independent
variables by means of the estimated func-
tions 
 and i.

Figure 10A (top) shows the results
using a particular codifier of the ACE re-
gression for the �H-amplitude and the
	-phase as the pair of independent vari-
ables. Figure 10A (bottom) shows the Ri-
pley’s K-functions for the corresponding
normalized point distributions for func-
tions 
 and i. In this study, to quantify
the degree of parameterization of the ACE
regression functions for each codifier and
amplitude–phase pair, we used the aver-
age area under the Ripley’s K-functions
for the three corresponding normalized

point maps. The areas under the Ripley’s K-function for these
representative point maps are given in Figure 10A. The higher
this area is, the smaller the degree of randomness of the respective
point map. Figure 10B (left) shows the average areas (grayscale
matrix map) of the Ripley’s K-functions of all possible combina-
tions of amplitude and phase pairs for this particular codifier
(positive slope, Amp), layer (SG), and period (prestimulus).

The hierarchical organization of the PAC3MUA effect
with the phases of the low-frequency bands modulating the ampli-
tudes of the high-frequency bands implies the upper triangle (UT)
parts of the matrices in Figure 10B must be larger than the lower
triangle (LT) parts. Figure 10C shows the respective means and SDs
of the averaged UT and LT parts for the matrices estimated from 62
randomly selected codifiers. The content in the UT parts (group 1;
see Materials and Methods) of these matrices were statistically sig-
nificantly higher (p � 0.05) than that in their LT parts (group 2). It
implies functions 
 and i resulting from the ACE regression analy-
sis have lower dimensionalities for the amplitude (high-frequency
oscillations)–phase (low-frequency oscillations) pairs. During
ongoing activity (prestimulus period), such significant differ-
ences were observed only in the SG layer, which is in agreement
with the laminar organization of PAC effect in A1 (Lakatos et al.,
2005). However, the stimulus presentation induced a
PAC3MUA effect in all cortical layers, probably related to the

Figure 8. The relationship between the MUA and the CSD amplitude. A, Correlation between the MUA and the CSD amplitude
are shown for each layer (i.e., SG, G, and IG), frequency band (i.e., 	, 
, �, �, �L, and �H), and period (i.e., prestimulus, stimulus,
and poststimulus). The statistical differences among different periods for each layer and frequency band are shown (ANOVA with
multiple comparisons, *p�0.05). B, To compare the dependency of these correlations along cortical layers, we applied the ANOVA
with multiple comparisons (*p � 0.05) for the three frequency bands that showed highest correlations (i.e., �, �L, and �H). Corr.
Coeff., Correlation coefficient.

Figure 9. The contribution of each neuron type to the population strategies of sound attribute codification in A1. The results of
comparing the contributions of each neuron type to all sound attributes are shown (one-way ANOVA with multiple comparisons,
*p � 0.05). In most cases, PCs are the neuron type with major contributions in the population codifying strategies. However, the
contributions of INs, even though they are smaller than those of the PCs, must not be ignored. In particular, significant differences
in the role of each neuron type for different sound attributes can be appreciated.

Ogawa et al. • Heterogeneous Population Code for Sounds J. Neurosci., October 12, 2011 • 31(41):14639 –14653 • 14649



entrainment of the low-frequency oscilla-
tions to stimulus presentation (i.e., 1.6 s
interstimulus interval3 0.6 Hz) (Lakatos
et al., 2005). The PAC3MUA effect in the
SG and IG layers (i.e., the endogenous
processing layers) remained up until the
poststimulus period. Therefore, MUA is
mainly related to the CSD amplitudes for
the �, �L, and �H frequency bands, hold-
ing clear relationships to the CSD phases
at low-frequency bands.

Discussion
Here, we attempt to create a bridge between
studies of sound processing in the A1 based
on single-unit analysis and those that use
population strategies. In particular, we in-
vestigated the topological segregations of
sound attributes inside the A1 using coarse
representations of the spiking sensitivity of
different neuronal populations underlying
an audio signal codification. To that end,
we used a homemade, silicon-based 3-D
probe. We defined four types of popula-
tion codifiers, i.e., positive slope, negative
slope, inverted U shape, and U shape. The
distributions of these codifiers in A1 were
heterogeneous at a large spatial scale. To
understand the input/output dynamics
of these codifiers, we explored both the
CSD–spike relationships during ongoing/
stimulus-related activity and the unit ac-
tivity/oscillatory laminar profiles. We found
that when codifying sound attributes, the
MUA in the IG and SG laminas were cor-
related to the CSD amplitudes of the �-�L

and the �H frequency bands, respectively.
The relationships between MUA and the
CSD amplitudes of these high-frequency
oscillations were dependent of the CSD
phase of the low-frequency oscillation, i.e.,
a global PAC3MUA effect. Nonphase-
locked activity showed specific interlaminar
profiles for each frequency band. These pro-
files additionally changed with time, as was
evaluated using different periods relative to
the stimulus onset/offset. After stimulus
onset, long-lasting oscillatory activity in
different frequency bands showed lami-
nar specificities, with � and �H oscilla-
tions observed predominantly in the IG
and SG layers, as was reported in vitro for the
somatosensory cortex of rats (Roopun et al.,
2006). Interestingly, spectral content in the
low-frequency bands for all laminas fluctu-
ated very much in these periods. The codi-
fication of sound attributes was mainly
associated with the activity of PCs in all cor-
tical laminas. INs were also involved, but to
a minor degree. There was a clear laminar
distinction in the relative role of these two
neuron types for the codification of the
sound attributes.

Figure 10. EvaluationofthePAC3MUAeffect intheA1ofanesthetizedrats. A,Datafromasinglecodifier isusedtoexemplifytheACE
regression analysis. Top, The plots represent the point maps for the dependent Y � �( Y) (left, MUA) and the independent Xi � i(Xi)
(middle, CSD �-amplitude; right, CSD 	-phase) variables for a particular layer and period. These point maps show no clear logarithmic
forms as expected from the classical PAC3MUA effect (Eq. 2) in the visual cortex of monkeys for these particular combinations of inde-
pendent variables (Whittingstall and Logothetis, 2009). Bottom, The plots show the results of estimating the Ripley’s K-function with the
edge correction to evaluate the degree of randomness in these point distributions. For a point map, the Ripley’s K-function defines the
dependency of the clusterization levels with the interpoint distances. Clearly, the point map with the highest function dimensionality/
randomness (i.e., for the CSD 	-phase) has a smaller area under the Ripley’s K-function (right). B, The areas under the Ripley’s K-function
estimated for all amplitude and phase pairwise combinations for this particular codifier are shown using a grayscale matrix map (left). High
values in the upper triangle part of such a matrix indicates a low degree of randomness not only in the Y��( Y) point map but also in the
ACE regression functions for the particular combinations of high-frequency CSD amplitude and low-frequency CSD phase (i.e., a
PAC3MUA effect) for independent variables (group 1). PAC effects reported in the past for the sensory cortices in monkeys (Lakatos et al.,
2005; Whittingstall and Logothetis, 2009) are highlighted with dashed boxes. C, The results of comparing (ANOVA, *p � 0.05) the upper
and lower triangle parts of the matrices, estimated from 62 randomly selected codifiers, are shown for each layer and period. UT, Upper
triangle; LT, lower triangle; Max, maximum; Min, minimum.
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Interpreting the population codifiers
Neurons that might play an important role in codifying auditory
signals have been identified by their particular responses (i.e., the
spike rate) to variations of sound parameters. The most estab-
lished auditory codifiers are associated with neurons that show
FRA maps with tuning characteristics for one or two of these
sound’s attributes (e.g., monotonic V-shaped and nonmono-
tonic O-shaped FRA maps). FRA maps with multiple patterns
have also been reported in the past. For example, Turner et al.
(2005) showed some neurons with complex, intermediate, and
high-threshold FRA maps in layer V of the rat A1, which is in
agreement with the FRA maps latterly noted by Sakata and Harris
(2009) for PCs and INs in other cortical layers of the rat A1.
Neurons with separated subregions in their FRA maps, besides
classical V-shaped tuning, have also been found (Gaese and Ost-
wald, 2003). The complexity of FRA maps in A1 is such that,
based on a two-tailed split Gaussian model, Watkins and Barbour
(2011) recently introduced a subclassification for neurons with
monononic/nonmonotonic response curves (i.e., strong, weak,
upper, and lower). This last study constitutes a step forward in
the original classification used by Schreiner et al. (1992), who
based the analysis of topological distributions for codifying neu-
rons on five parameters (i.e., threshold, transition point, stron-
gest response level, dynamic range, and monotonicity).

Identifying these types of neurons with electrophysiological
techniques, and at the same time investigating their topological/
laminar distributions and input/output working principles, is a
highly challenging endeavor. Therefore, we defined sound codi-
fiers based on the classical FRA maps for codifying neurons in the
A1 and adapted them to the case of a coarse representation of the
population spiking rates. The strategy we adopted was to use a
simple definition that captures the activity of the predominant
codifying networks in close proximity to the electrodes. There
were few previous studies that defined similar types of coarse
scales for the single neurons that codify these two sound attri-
butes (Bizley et al., 2010; Watkins and Barbour, 2011).

Finally, the amplitude modulation of a pure tone or, alterna-
tively, its periodicity constitutes the simplest example of time
envelopes in a sound level. We did not focus our attention on
neurons codifying the frequency modulation based on a tempo-
ral strategy but on those achieving it without delay through early
variations in the levels of MUA. Using the population MUA for
neuronal codifiers of the attribute fm, we were able to determine
the periodicity of a sound from its first repetitive cycles. We be-
lieve that such types of neurons, which quickly modify their spik-
ing rates depending on variations in sound levels, must be crucial
for survival and behavior.

Topological heterogeneity
The concept of “sparseness,” as defined by previous studies, orig-
inated from the fact that only a small fraction of neurons is re-
quired for sound codification, as observed in the time domain
(Hromádka et al., 2008) and at a small spatial scale (Sakata and
Harris, 2009; Harris et al., 2011). In this sense, a few preferable
neurons seem to be enough to properly codify any sound attri-
bute. For example, Smith and Lewicki (2006) reconstructed nat-
ural complex sounds from the spikes generated by a few neurons.
In our study, the population codifiers of sound attributes were, in
a large-scale sense, heterogeneously distributed and sparse in the
rat A1 region (Rothschild et al., 2010). Our main results regard-
ing spatial distributions of the underlying population codifiers, as
well as their neuronal compositions and laminar profiles, were
consistent with data reported in previous studies for different

species, e.g., classical tonotopic organization in rats (Sally and
Kelly, 1988; Doron et al., 2002; Rutkowski et al., 2003), the com-
plex character of sound level representation in the A1 core in cats
(Schreiner et al., 1992), the existence of a patchy organization for
the suprathreshold neuronal activation in rats and guinea pigs
(Bakin et al., 1996), the particular laminar profile for several neu-
ronal types in rats (Wallace and Palmer, 2008; Sakata and Harris,
2009), and the uniform distribution of neurons sensitive to mod-
ulation frequency in rats/monkeys (Kilgard and Merzenich,
1999; Bendor and Wang, 2005, 2010).

These days, silicon-based probes that have excellent compat-
ibility with brain tissues are built with microelectrodes for both
voltage recording and current stimulation (Kipke et al., 2008).
Therefore, our strategy for codifier selection and characterization
is helpful, not only in reconstructing the neuronal encoders of
sounds in A1, but also for recreating complex sound percepts
through adequate stimulation (e.g., by prosthetic devices) of the
neural tissue in close proximity to each population codifier (De-
liano et al., 2009).

Spiking and postsynaptic activities: dynamic relationships
From observations in the A1 of monkeys, Lakatos et al. (2005)
reported initially two hierarchically organized PAC effects (i.e.,
	-phase/
-amplitude and 
-phase/�-amplitude couplings) that oc-
curred in all layers during spontaneous activity, but that were
greater in the SG layers. The latter result may be in agreement
with the highest PAC3MUA effect reported in this study for
the SG layer during the prestimulus period. However, in the
study by Lakatos et al. (2005), phase-related modulation in the
MUA was found to be larger in the G layer. These authors also
demonstrated that the sensory-related CSD response and
MUA depend on the phase of oscillatory activity in the 	 fre-
quency band at the stimulus onset and that such dependence
showed a laminar profile. From our data, the global emergence
of the PAC3MUA effect in all cortical layers during sensory
stimulation may hold a direct relationship with the entrain-
ment of ongoing oscillations in the 	 frequency band during
rhythmic stimulation. The PAC effect probably emerges mainly
in experimental paradigms with high attention demand [e.g.,

-phase/�-amplitude coupling in humans (Canolty et al., 2006);
	-phase/�-amplitude coupling in monkeys (Whittingstall and
Logothetis, 2009)] and it is totally attenuated during the anes-
thetized stage. However, in the past, evidence of PAC effects in
anesthetized animals has also been found (Montemurro et al.,
2008).

In different experimental protocols, the existence of time vari-
ations in the interlamina spectral contents at different locations
in the A1 during periods of sound processing has previously been
reported (Lakatos et al., 2005; Steinschneider et al., 2008). It has
been suggested that such a laminar organization of the CSD os-
cillatory content might reflect the actual flow of information in-
side cortical columns (Oviedo et al., 2010) from different
neuronal populations during both spontaneous and entrained
activity (Atencio and Schreiner, 2010). Lakatos et al. (2005)
found a laminar segregation in the amplitudes of the spontaneous
oscillations, with higher powers in the 	–
 frequency bands for
the SG layers and lower power in the � frequency bands for the IG
layers. The stimulus induced an increase in the power of the 
 and
� frequency bands, but not in the power of the 	 frequency band.
The latter results are, to some extent, in agreement with findings
in the current study for the neuronal codifiers in A1. We did not
separate the effect of sources and sinks in each cortical layer;
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hence, our results are not comparable with those reported by
Steinschneider et al. (2008).

Overall, our findings suggest that results based on single-unit
analysis could be useful for tapering the strategies for population
analysis, and vice versa.
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